
Page 1 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

CAHN
Cahn/D1-06-Architecture



Page 2 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Table Of Contents:
20-D1-06 Architecture
CAHN Architecture
CAHN Overview

BRSKI Mapping 
Interfaces and processes 

Policy oriented methods 
Networking methods. 
Pledge/device methods. 

Policy Introduction
Verifiable Credential Technology 

Continuous Assurance
Claim Flows
Claim Cascade Design

Signing of VCs 
Receipt of VCs 
Verification of VCs 
Trust Engine 
Trusted VC to Inference Environment 
Querying the system 
Databots 
System Diagram 

claim-schemas
VOLT architecture
Continuous Assurance

CA Command Protocol 
CA Protocol Authentication 

Continuous Assurance Commands 
Continuous Assurance Use Cases 

Network Owner Trusts Manufacturer 
Network Owner Trusts Device 
Device Has Been Purchased 
Device No Major Vulnerabilities 

Continuous Assurance Demonstrator
VC Syntax
NIST technical specification
BRSKI overview
Terminology
Stages Overview
0 - Factory Provisioning
A - Onboarding Discovery

A.1 BRSKI SSID Name Wildcard Match 
A.2 802.11u eap.arpa 
Onboarding Process 

B - Discover Registrar
Discover Registrar (Full Options) 

C - Request Voucher Registrar
C - Request Voucher Overview (Basic) 
3 - Request Voucher Overview (Advanced Policy) 

D - Enrol the Device
E - Join the Network
F Continuous Assurance of the Network
Appendix: Key References

Footnotes 



Page 3 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Certificate Lifecycle
Cert relationships 
iDevID 
Domain 
Registrar 
Radius 

Use of Radius certificate 
Router 

Use of router certificate 
LDevID 

Use of LDevID certificate 
Binary artifact API

Voucher binary array 
copy_binary_array 
compare_binary_array 
free_binary_array_content 
free_binary_array 
Buffer linked list definition 
init_array_list 
free_array_list 
push_array_list 

BRSKI API
BRSKI Core API 

sign_pledge_voucher_request 
sign_voucher_request 
voucher_req_fn 
sign_masa_pledge_voucher 
verify_masa_pledge_voucher 

BRSKI Usage
Voucher Library Usage 
Example CMakeLists.txt file 
BRSKI Tool usage 

Exporting a pledge voucher request 
Sending a pledge-voucher request to the registrar 
Starting the registrar 
Starting the MASA 

Voucher artifact API
Voucher attributes 
Voucher creation/manipulation API 

init_voucher 
free_voucher 
set_attr_bool_voucher 
set_attr_time_voucher 
set_attr_enum_voucher 
set_attr_str_voucher 
set_attr_array_voucher 
set_attr_voucher 
clear_attr_voucher 
is_attr_voucher_nonempty 
get_attr_bool_voucher 
get_attr_time_voucher 
get_attr_enum_voucher 
get_attr_str_voucher 
get_attr_array_voucher 

Voucher serialization and deserialization API 
serialize_voucher 
deserialize_voucher 

Voucher CMS signing and verification API 



Page 4 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

sign_eccms_voucher 
sign_rsacms_voucher 
sign_cms_voucher 
verify_cms_voucher 

RFC 8995
Bootstrapping Remote Secure Key Infrastructure (BRSKI)

Abstract 
Status of This Memo 
Copyright Notice 
Table of Contents 
1. Introduction 

1.1. Prior Bootstrapping Approaches 
1.2. Terminology 
1.3. Scope of Solution 

1.3.1. Support Environment 
1.3.2. Constrained Environments 
1.3.3. Network Access Controls 
1.3.4. Bootstrapping is Not Booting 

1.4. Leveraging the New Key Infrastructure / Next Steps 
1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices 

2. Architectural Overview 
2.1. Behavior of a Pledge 
2.2. Secure Imprinting Using Vouchers 
2.3. Initial Device Identifier 

2.3.1. Identification of the Pledge 
2.3.2. MASA URI Extension 

2.4. Protocol Flow 
2.5. Architectural Components 

2.5.1. Pledge 
2.5.2. Join Proxy 
2.5.3. Domain Registrar 
2.5.4. Manufacturer Service 
2.5.5. Public Key Infrastructure (PKI) 

2.6. Certificate Time Validation 
2.6.1. Lack of Real-Time Clock 
2.6.2. Infinite Lifetime of IDevID 

2.7. Cloud Registrar 
2.8. Determining the MASA to Contact 

3. Voucher-Request Artifact 
3.1. Nonceless Voucher-Requests 
3.2. Tree Diagram 
3.3. Examples 
3.4. YANG Module 

4. Proxying Details (Pledge -- Proxy -- Registrar) 
4.1. Pledge Discovery of Proxy 

4.1.1. Proxy GRASP Announcements 
4.2. CoAP Connection to Registrar 
4.3. Proxy Discovery and Communication of Registrar 

5. Protocol Details (Pledge -- Registrar -- MASA) 
5.1. BRSKI-EST TLS Establishment Details 
5.2. Pledge Requests Voucher from the Registrar 
5.3. Registrar Authorization of Pledge 
5.4. BRSKI-MASA TLS Establishment Details 

5.4.1. MASA Authentication of Customer Registrar 
5.5. Registrar Requests Voucher from MASA 

5.5.1. MASA Renewal of Expired Vouchers 
5.5.2. MASA Pinning of Registrar 
5.5.3. MASA Check of the Voucher-Request Signature 



Page 5 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

5.5.4. MASA Verification of the Domain Registrar 
5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-request' 
5.5.6. MASA Nonce Handling 

5.6. MASA and Registrar Voucher Response 
5.6.1. Pledge Voucher Verification 
5.6.2. Pledge Authentication of Provisional TLS Connection 

5.7. Pledge BRSKI Status Telemetry 
5.8. Registrar Audit-Log Request 

5.8.1. MASA Audit-Log Response 
5.8.2. Calculation of domainID 
5.8.3. Registrar Audit-Log Verification 

5.9. EST Integration for PKI Bootstrapping 
5.9.1. EST Distribution of CA Certificates 
5.9.2. EST CSR Attributes 
5.9.3. EST Client Certificate Request 
5.9.4. Enrollment Status Telemetry 
5.9.5. Multiple Certificates 
5.9.6. EST over CoAP 

6. Clarification of Transfer-Encoding 
7. Reduced Security Operational Modes 

7.1. Trust Model 
7.2. Pledge Security Reductions 
7.3. Registrar Security Reductions 
7.4. MASA Security Reductions 

7.4.1. Issuing Nonceless Vouchers 
7.4.2. Trusting Owners on First Use 
7.4.3. Updating or Extending Voucher Trust Anchors 

8. IANA Considerations 
8.1. The IETF XML Registry 
8.2. YANG Module Names Registry 
8.3. BRSKI Well-Known Considerations 

8.3.1. BRSKI .well-known Registration 
8.3.2. BRSKI .well-known Registry 

8.4. PKIX Registry 
8.5. Pledge BRSKI Status Telemetry 
8.6. DNS Service Names 
8.7. GRASP Objective Names 

9. Applicability to the Autonomic Control Plane (ACP) 
9.1. Operational Requirements 

9.1.1. MASA Operational Requirements 
9.1.2. Domain Owner Operational Requirements 
9.1.3. Device Operational Requirements 

10. Privacy Considerations 
10.1. MASA Audit-Log 
10.2. What BRSKI-EST Reveals 
10.3. What BRSKI-MASA Reveals to the Manufacturer 
10.4. Manufacturers and Used or Stolen Equipment 
10.5. Manufacturers and Grey Market Equipment 
10.6. Some Mitigations for Meddling by Manufacturers 
10.7. Death of a Manufacturer 

11. Security Considerations 
11.1. Denial of Service (DoS) against MASA 
11.2. DomainID Must Be Resistant to Second-Preimage Attacks 
11.3. Availability of Good Random Numbers 
11.4. Freshness in Voucher-Requests 
11.5. Trusting Manufacturers 
11.6. Manufacturer Maintenance of Trust Anchors 

11.6.1. Compromise of Manufacturer IDevID Signing Keys 



Page 6 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

11.6.2. Compromise of MASA Signing Keys 
11.6.3. Compromise of MASA Web Service 

11.7. YANG Module Security Considerations 
12. References 

12.1. Normative References 
12.2. Informative References 

Appendix A. IPv4 and Non-ANI Operations 
A.1. IPv4 Link-Local Addresses 
A.2. Use of DHCPv4 
Appendix B. mDNS / DNS-SD Proxy Discovery Options 
Appendix C. Example Vouchers 
C.1. Keys Involved 

C.1.1. Manufacturer Certification Authority for IDevID Signatures 
C.1.2. MASA Key Pair for Voucher Signatures 
C.1.3. Registrar Certification Authority 
C.1.4. Registrar Key Pair 
C.1.5. Pledge Key Pair 

C.2. Example Process 
C.2.1. Pledge to Registrar 
C.2.2. Registrar to MASA 
C.2.3. MASA to Registrar 
Acknowledgements 

Authors' Addresses 
BRSKI over wifi
BRSKI-AE: Alternative Enrollment Protocols in BRSKI

Abstract 
Status of This Memo 
Copyright Notice 
Table of Contents 
1. Introduction 

1.1. Motivation 
1.2. Supported Environment 
1.3. List of Application Examples 

2. Terminology 
3. Requirements and Mapping to Solutions 

3.1. Basic Requirements 
3.2. Solution Options for Proof-of-possession 
3.3. Solution Options for Proof-of-identity 

4. Adaptations to BRSKI 
4.1. Architecture 
4.2. Message Exchange 
4.3. Enhancements to Addressing Scheme 
4.4. Domain Registrar Support of Alternative Enrollment Protocols 

5. Instantiation to Existing Enrollment Protocols 
5.1. BRSKI-EST-fullCMC: Instantiation to EST (informative) 
5.2. BRSKI-CMP: Instantiation to CMP (normative if CMP is chosen) 

6. IANA Considerations 
7. Security Considerations 
8. Acknowledgments 
9. References 

9.1. Normative References 
9.2. Informative References 

Appendix A. Using EST for Certificate Enrollment 
Appendix B. Application Examples 

B.1. Rolling Stock 
B.2. Building Automation 
B.3. Substation Automation 
B.4. Electric Vehicle Charging Infrastructure 



Page 7 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

B.5. Infrastructure Isolation Policy 
B.6. Sites with Insufficient Level of Operational Security 

Appendix C. History of Changes TBD RFC Editor: please delete 
Authors' Addresses 

network integration architecture
wifi integration method
lora integration method
satellite integration method
20 5G integration method
Physical Architecture

5G Network 
WIFI Network 



Page 8 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

20-D1-06 Architecture



Page 9 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

CAHN Architecture
The nature and ambition of CAHN means it needs to integrate with many different systems, both physical and logical. It necessarily
touches many different network types at a low level of detail. As a consequence the documented CAHN architecture is extensive,
with critical touch points, with many different networking protocols, the interface of which needs fully defining.

Many of the core concepts in CAHN reflect critical security requirements that have been actively evolving in the NIST trusted
onboarding activities. The final NIST Trusted onboarding specification has yet to be published. We have been actively evolving the
primary documentation directly on the NIST documents, event though it reflects CAHN activities. Similarly for the BRSKI family of
specifications. BRSKI is core the CAHN vision. The practical delivery of CAHN, means actively implementing and evolving the
BRSKI specification. And, the same is true of the Volt public documentation. Volt is an NQM product, but defined by an open spec.
In order to reduce duplication of effort, we directly include the completed or in progress specifications for the destination technical
documents. Hence the CAHN specification is an aggregation of technical architecture documents, which have their final "home" in
different organisation and specifications but all of which represent the aggregate efforts of the CAHN initiatives.

The cornerstone of the CAHN specification is the "policy frameworks", this is the area of active innovation that represents the critical
commonality between the different networking protocols.

The critical sections of the architecture document are as follows.

Architecture overview: conceptual high level architecture showing how the different parts fit together

Policy frameworks: detailed design of the verifiable credential based policy core.

Integration architecture: detailed design and specification of the volt system, used the communications and security glue to
bind the different pieces together

NIST reference architecture: the complete (close to final) NIST architecture for trusted on boarding and continuous
assurance

BRSKI specification: define the IETF method of joining a security domain and the evolving mappings for different
networking protocols.

Device security architecture: defines low level user equipment security requirements and specifications, including
mappings to various legislative domains

Networking interface architecture: the detailed binding mappings for each target networking type. (Note this is delivered in full
in milstone2)

Physical architecture: detailed architecture documents for the physical deployment architecture at the test sites. Define how
the physical networking element fit together at an implementation level.



Page 10 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

CAHN Overview
CAHN is delivered as a physical embodiment of the NIST trusted onboarding conceptual architecture

This is defined in full in the originating specific documents, but repeated below

The continuous authorisation service is the lynchpin of this target architecture; it provides a concrete method of delivering a zero
trust architecture.

BRSKI Mapping
The following schematic shows how this abstract architecture maps onto the BRSKI variation on a WIFI network



Page 11 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Within the above we have the following critical elements

Pledge or end user device which is being onboarded to the network

Registrar: which represents the network owner, it is the logical thing to which the pledge must "belong" before networking
credentials can be provisioned

Routers: are the physical networking device to which the pledge will attach

MASA: which represents the pledge, manufactures enterprise/cloud services services which are part of the onboarding
process.

The process of onboarding goes through the following abstracted phases

0. The assumed precondition: each device has been provisioned with a unique "birthing certificate"; a secure cryptographic
identity which is unique to each device

1. Discover onboarding network: the pledge must search for and find candidate onboarding networks, which can be used to start
the bootstrap process

2. Discover registrar: once physical onboarding network has been found the device must discover one or more registrars with
which they can negotiate

3. Initiate onboarding: the pledge initiates the negotiation to join the network, via the registrar. Optionally this may involve further
negotiation with the manufacturer (and other sites)

4. Generate network credential at the registrar and simultaneously notify the "routers" and pass the credential to the pledge

5. Store credential: the pledge should store the credential, ideally in secure storage

6. Attempt to attach: the pledge should attempt to attach to the operational network, and the router should evaluated the request

7. SUCCESS: the pledge is connected to the network

8. Continuous assurance: the registrar continuously evaluates the security posture of the pledge, ejecting it if necessary.

Interfaces And Processes
To scale this solution and adapt it for multiple network types we need to define a number of interoperable interfaces and data
structures, as well as implementing some key algorithms.

These are summarised conceptually below and find their detailed specification in the documents to follow



Page 12 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Policy Oriented Methods

Policy data formats: these are the interoperable data structures for sharing data with the policy engine and the outside
world. Concretely a family of verifiable credential data structures that embody our policy use cases.

Policy interchange protocols: these are a set of methods for ingesting security relevant data into the policy engine. The
nature of verifiable credentials means this can be expansive. Predominately however these will be generic REST interfaces

Policy query engine: the algorithmic core of the policy engine that can operate on ingested VCs and perform structure
queries that result in appropriate security actions.

Networking Methods.

For each networking type (5G, Wifi etc) we need to define the following

Onboarding discovery: a method of discovering the onboarding network and candidate registrar

Authentication/authorisation hooks: for each networking type we need a mechanism to hook into the authentication and
authorisation flows in order to insert the continuous assurance policy enforcement.

Authentication/authorisation hooks: for each networking type we need a mechanism to hook into the authentication and
authorisation flows in order to insert the continuous assurance policy enforcement.

Continuous assurance hook: to complement the authorisation hooks, we need an asynchronous interface that allows the
policy engine to notify the network(s) when a mitigation action is needed

**Credential provisioning **: for each networking type we need a mechanism negotiate/provision the appropriate bearer level
networking credential onto the pledge device

Pledge/Device Methods.

For each end device for each networking type (5G, Wifi etc) we need to define the following

Onboarding client: the local client that will do the client side negotiation of the protocols

(optional)SE/TPM interface: optionally for each client we need a method to store security sensitive information (e.g
credentials) in a tamper proof form

The detailed CAHN architecture makes these conceptual requirements concrete



Page 13 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Policy Introduction
Continuous Assurance for Heterogeneous Networks (CAHN) is a new technology that underpins network-of-networks, with novel
identity models and zero-trust security. [1]

CAHN, delivers continuous assurance, by building on some innovative work that has been developed within NIST as part of the
trusted network-layer onboarding program [2]

CAHN will develop new architectures working across networks. It will use advanced notions of identity and distributed credentials,
combined with dynamic (AI) reasoning to dynamically infer trustworthiness and assurance. We will work with many different use
case and endpoints, with use cases that include Digital Secure by Design hardware silicon to protect against memory vulnerabilities
developed with ARM and University of Cambridge. [3][4]

The policy framework is the cornerstone of this approach and is documented in full.

Verifiable Credential Technology
CAHN will be a system which can take in information from many sources and through many channels through the use of Verifiable
Credential (VC) technology. With traditional secure communication, such as online banking, the channel by which you communicate
information is secured (e.g. the https connection made to your online banking provider of choice, established via standard PKI
technology). Using verifiable credentials you instead secure the information you are communicating itself by using PKI technology to
sign the packets of information. The advantages of this approach are:

the information can come via unsecured or out-of-band mechanisms and the information's content can still be tamper-proof
and it's source may be cryptographically attested to and verified.

the provenance of the information may be attested to and tracked, VCs themselves may be signed and attested to as VC
recursively, which may be utilised as a method to attest to the mechanism and routes by which the information came into the
system.

By storing the data as VCs then the provenance of each piece of information's origin is maintained, and can be
retrospectively reasoned about post receipt of the information. By virtue of this one can also introspect on the VCs issuers to
gain insights into the issuers, for example the trustworthiness of those issuers, or the kinds of information they provide, and
can model their behaviour to spot unusual activity.

users consuming data from a system which embodies it's data as VCs can choose which VC issuers and routes to trust, and
the time period / conditions in which they trust them. Each user may therefore have a different view of the same data by
trusting different VCs, the data host does therefore not impose their own world view of concept of trust onto system users,
they gain the autonomy to decide for themselves what information they believe.

Use of VCs facilitates multiple decentralised signing authorities, rather than relying on one central authority to secure the
route via which data enters your system. This mitigates the risks of a central authority being compromised and decouples you
from relying on a single providers services, freeing data providers being reliant on a single central source. This also facilitates
self-signing of information, supporting the self-sovereign identity model, which gives individuals full ownership and control of
their digital data and identity.

https://www.ukri.org/news/major-future-telecoms-research-boost-announced/#:~:text=UKRI%20is%20investing%20%C2%A370,foundational%20role%20in%20communication%20networks.
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management
https://www.dsbd.tech/
https://www.arm.com/architecture/cpu/morello


Page 14 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Because the information itself is signed distributed storing of data becomes much easier, as it can be re-communicated and
distributed between data lakes later, while maintaining the security and provenance of the information.

Continuous Assurance
Another piece of our solution is continuous assurance, that is, continuously examining the claims made to the system to see if we
still believe those piece of information and their sources, and assuring that the data and its sources are still trustworthy. Rather than
relying on a one-off assurance event the system will continuously apply multiple multiple analytical techniques to infer the
trustworthiness and validity of the information claimed to the system.

This can be configured to work differently for each data-consuming user in the system, rather than being a top down authoritative
approach of prescribing to users what facts, issuers or routes they should trust, we give the freedom to users to configure their own
thresholds and metrics for what information, routes of data provenance and issuers they should trust.



Page 15 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Claim Flows
Every piece of information communicated to the system will be claimed in the form of a verifiable credential, and signed by the
private key of the user making the claim (henceforth called the claim issuer). Where this signing takes place is completely optional,
for example below we've outlined several different schemes by which the VC may be produced, signed and send to a node set up to
receive the VC, with differing levels of locality, from everything performed on a local machine, including a node on the local machine,
to a user authoring and signing the claim entirely through a web interface.



Page 16 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.



Page 17 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The VC may be communicated to the a node of the system via a number of different routes, for the simplest example lets assume a
REST API endpoint is present on the node which may receive VCs. The VC will be verified to check that it was signed by the private
key of the user and that the information contained within has not been tampered with. Next the VC may optionally be propagated to
other nodes on the system (encapsulated within a VC signed by the node which received the VC). The next step is that the VC is
parsed by the trust engine to determine whether the VC is trusted to make inferences upon, this trust engine may be differently
configured on different nodes of the system, if the trust engine determines that the VC is trusted it is passed to the next stage of the
system. The next stage of the system parses the information in the verifiable credential and translates it into the appropriate Prolog
representation, and updates the current Prolog inferencing environment of that node, such that the encapsulated information may
be used to perform inferences.

In this way each node of the system can pass verified information to each other node of the system, and the route by which it got to
that node of the network (the provenance of that claim) may be cryptographically attested to by the nesting of VCs.



Page 18 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.



Page 19 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Claim Cascade Design

Signing Of VCs
The claim cascade system is designed such that users or automated agents may sign claims with their private key (stored locally or
stored on a remote server which for signs the claims on the user's behalf), the only requirement for the VC to be verifiable is that
public key paired with the private key which was used to perform the signing will need to be securely shared in a trusted way with
the system, such that the public key can be tied to a particular user's identity.

This will be achieved by utilising an authentication server which can be sent a request to generate a VC binding a public key to a
user's identity, this request will contain the public key and a users credentials, in the most simple case, an email address. These
credentials will then be verified, for example in the case of email; the user will receive an email which contains a link they must click
to prove their identity, once that is completed the authentication server will sign a VC with it's own private key, which is trusted bt the
system, binding the user's identity to that public key. This can be submitted to the system by the user to allow them to submit further
VCs signed with their private key.

Receipt Of VCs
VCs will be submitted to a particular Claim Cascade node (running on a router / access point for example) through a HTTPS REST
API endpoint. The VC will then be stored in an append only return as a received VC on that node using an Event Sourcing pattern.
This means that once received a record of all the VCs received will be maintained and if our trust basis or verification basis changes
one could regenerate the entire state of the system from the received VCs.

Verification Of VCs
Once a new VC has been received it will be stored on the node and a verifier process will start, which runs on that VC to verify that
the VC was signed by the issuer (the VC issuer is specified in the VC) and has not been tampered with, this requires the verifier to
have access to the public key of the issuer, which requires it to have been communicated through a trusted method to the node, or
for the node to have access to, and trust, a server which has a record of the pubic key of the issuer. Once a VC is verified it may be
passed onto the next stage of the process, which is the trust engine, it may also at this stage be signed by the node's public key as
a VC and communicated to other nodes on the system, so they can process the information claimed within.

Trust Engine
The verification step above merely checks that the VC was signed by the issuer contained within and that it has not been altered
since signing, it doesn't say anything about whether the issuer of that VC is trusted to be making claims to this node. The trust
engine's purpose is to resolve whether we should trust the information contained within the VC and use the information contained
within to perform inference. The details of the algorithm to use to determine if we trust the VC issuer is still in development and
discussion but the idea is to use the following information to infer whether the issuer is to be trusted:



Page 20 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

which other users trust or distrust the issuer, and the trust we have in those users

which claims this issuer has submitted in the past

Trusted VC To Inference
Environment
The VCs which are trusted are then passed to a utility which generates the code in Prolog for the information contained within the
VC. The VCs which may be submitted here come in 4 types:

schema - this defines the schema for a fact which may be submitted, for example, for a fact that a device has a vulnerability
the schema defines how that fact is structured, i.e. what fields are associated with this fact and any constraints on the values
which may be entered for each field.

fact - this defines a fact which should be added to the inferencing environment to be reasoned about, the fact structure should
match a schema submitted to the system, for example a fact that a device has a vulnerability

retraction - a statement that a user retracts a previously submitted fact, used to retract falsely submitted information

rule - this defines a rule, which defines the logic used for inference, for example a rule may be that a device is not allowed to
connect to this wifi router if it has a vulnerability with a score higher than a certain threshold.

Using these building blocks one may build any general inferencing system.

Querying The System
When an external process needs to query the system, this query will take the form of a VC, the verification step will check the query
is from the the VC issuer, and the trust engine will check that the VC issuer has the rights to perform that query and access the data
required to fulfil the query.

Databots
In order to perform more complex or numerical analytics which cannot be simply performed with a prolog query, for example
generating some computed analytical artifact by analysing the data about device behaviour the analytics will be performed by a
process set up to run on configurable inputs by a configurable trigger, which we call a databot. Upon a trigger being triggered, the
trigger will receive any inputs which need to be configured at run-time and the process will run for those inputs, retrieve any data
required for the analytics from the system by means of a query VC submitted to the system, and once it's computation is complete,
send its output data into the system by means of a VC. These triggers can be triggered at query time if the information for a query
result is not already present in the system, or is in need of update.

System Diagram
Below is a diagram showing the components of the system. The components in the Claim Handling System box will be installed on
a node of the system, inside a router or network element. The databots may be installed locally on the node, or run on a remote



Page 21 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

server. The authentication server, likewise could sit locally on the node, or run on a remote server.

Any process or app which wants to submit VCs to the system must generate a key pair and have it's public key bound to an identity
which is verified through the authentication server. The process may submit VCs signed with it's private key and once the public key
has been bound, those VC which have been submitted, or will be submitted, will be verified as being issued by their issuer and may
proceed to be entered into the knowledge base held in the inference engine, depending on if the issuer is trusted by the trust engine
or not.



Page 22 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.



Page 23 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Claim-Schemas
Although the policy framework is fully extensible, in order to fulfil the concrete policies use cases, we need very specific
interoperable claims to be defined.

Each of these claims is defined as fully specified verifiable credential.

The current draft claims can be found at Schemas

http://127.0.0.1:43321/schemas


Page 24 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

VOLT Architecture
The VOLT system and accompanying SDK provide the implementation level glue that is used to integrate the diverse systems with
CAHM

The VOLT provides the following key capabilities

VOLTs implementation and specificaiton has been enhanced considerably inorder to accomodate the current CAHN requirments.
We anticipate some further additions as the system evolves.

VOLT provides the following key capabilities

Identities - and managed rotating keys

Verifiable credential creation and attestation

Discovery

Service publishing

Proxy services

Authentication

Authorisation

Transport and marshalling

The full specification can be found here

[30-tdxvolt docs.pdf](30-tdxvolt docs.pdf)



Page 25 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Continuous Assurance
The continuous assurance process is the mechanism by which the  continuously monitors the security posture of the
connected  and responds appropriately.

CA Command Protocol
Within the BRSKI architecture, evaluation of network policy happens at the .

A many-to-one relationship exists between the  and the . This connection is initiated by the router, which finds
the registrar using the same mechanism the device uses (GRASP or mDNS). The connection is a simple bi-directional TLS session.

CA Protocol Authentication

The authentication method between the router and registrar is intentionally undefined. This is an implementation detail of the setup.
For the purposes of this demonstrator, we shall use the notion of "common ownership." The steps for this are:

1. A one-off event:  generates a public/private key and self-signs a certificate.

2. A one-off event:  generates a public-private key pair and self-signs a certificate.

network
device

registrar

router registrar

registrar

router



Page 26 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

3. A one-off event: a VC is generated to the effect that person@email.com trusts the  (public key thereof). VC is
signed by the private key of the person's DID: Trust(person@email.com, +) : .

4. A one-off event: a VC is generated to the effect that person@email.com trusts the  (public key thereof). VC is signed
by the private key of the person's DID Trust(person@email.com, +) : .

5. The router attempts to connect to the registrar using mutually authenticated TLS. The router passes the router-signed VC as
the initiation parameter. The connection is ACCEPTED IF the same person is the signatory, the same person is in both VCs,
and the router and registrar public keys match the certificate evidence presented in the mutually authenticated TLS.

Continuous Assurance Commands
There are two primary commands that the  must be able to process from the :

Trust device

Revoke trust on device

We trust the device by sending the following VC on the CA protocol:

Trust( , +) : 

We revoke trust by sending the following VC:

Revoke( , +) : 

When we revoke trust on the device, we have a number of options:

1. Remove iDevID and LDevID pair from the registrar and reboot wifi

2. Change the VLAN allocation of the device to a constrained network

In this demonstrator, we shall use version 1; specifically, we shall remove the iDevID/LDevID from the permitted list of devices. At an
implementation level, this means removing the record from the RADIUS server.

Continuous Assurance Use Cases
The following lists out the different continuous assurance use cases we want to implement and defines the method by which it is
implemented.

Network Owner Trusts Manufacturer

The owner of the network specifically trusts the manufacturer.

The following VC is inserted into the registrar:

Trust(person@email.com, +) : 

registrar

registrar person-

router

router person-

router registrar

device+ registrar registrar-

device+ registrar registrar-

manufacturer person-

mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com


Page 27 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Note: If the network owner does not trust the manufacturer, the registrar should NOT forward the voucher request to the
manufacturer. This would create information leakage.

Network Owner Trusts Device

The owner of the network specifically trusts the device being onboarded.

The following VC is inserted into the registrar:

Trust(person@email.com, +) : 

Device Has Been Purchased

The device has been purchased by the person.

In the simple case, the manufacturer (MASA) records the purchase.

If the device is owned by the user, then we can infer the user trusts the device.

Purchase( , person@email.com,) :  => Trust(person@email.com, +) : 

Or more specifically, only where the person trusts the manufacturer:

Purchase( , person@email.com,) :  &&

Trust(person@email.com, ) :  => Trust(person@email.com, +) : 

Device No Major Vulnerabilities

The device is trusted if vulnerabilities are below a threshold.

For each device connected to the network, we need a type identifier. There are a number of options for this, some examples are:

1. A purchase invoice declaring type

2. A device owner declaration

3. An iDevID with a custom attribute

4. An intercepted MUD statement

For the moment we will just consider 1 & 2.

The purchase invoice could have the following form:

Purchase( , person@email.com, ) : 

The device owner declaring could have the following form:

device person-

device+ manufacturer- device person-

device+ manufacturer-

manufacturer+ manufacturer- device person-

device+ device-type manufacturer-

mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com
mailto:person@email.com


Page 28 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

OwnerDeclaration( , ) : 

From either declaration, given that the registrar has a list of accepted iDevIDs (the iDevID and the issued LDevID need to be stored
at the registrar to implement the RADIUS permission), it is possible to uniquely identify the .

The registrar should cache a list of SBOM declarations. These map the device type to the SBOM statement.

SBOM( , , SBOM) : 

The registrar should intermittently run the CVE function against the declared SBOMs. There should be a configurable CVE threshold
function. If the threshold is not met, then a revoke command should be sent from the registrar to the routers.

Continuous Assurance
Demonstrator
At any moment in time, we should be able to see:

1. All VCs that have been received by the registrar (and time received)

2. Any VCs created through inference (and time inferred)

3. Any VCs issued through the command interface (and time sent)

We should be able to delete any VC. We should be able to manually add new VCs and have a batch of templates to draw from.

device+ device-type person-

device-type

device+ device-type manufacturer-



Page 29 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

VC Syntax
In order to efficiently describe verifiable credentials, we shall use the following simplified syntax.

The notation that we propose is as follows:

using the normal shorthand expression, where:

Relation: is the relation holding between one or more entities;

entity1@: identifies an entity using an indirect expression, such as a URI;

entity2+: identifies an entity using a direct public key reference;

signatory-: identifies the private key of the entity acting as a signatory of the expression;

and  is used to denote message passing, e.g.

At an implementation level, each statement is encapsulated as a W3C Verifiable Credential (VC).

The schemas used are formally defined in the following section: xxx

{ Relation (entity1@, entity2+) } [signatory-]

A -> B

signatory -> entity2 : { Relation (entity1@, entity2+) } [signatory-]

https://www.w3.org/TR/vc-data-model/


Page 30 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

NIST Technical Specification
The NIST Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management a major new initiative
define best practice and interoperable specifications relating to "continuous netrwork security"

NQM have invested considerable effort in developing these public spacing specifications, and continue to do so as the work
evolves. The NIST work is an integral part of the CAHN vision.

The publications in their current draft version are attached as follows

Overview nist-sp-1800-36-draft.pdf

Vol A Executive Summary nist-sp-1800-36a-draft.pdf

Volume B: Approach, Architecture, and Security Characteristics nist-sp-1800-36b-draft.pdf

Volume C: How-To Guides nist-sp-1800-36c-draft.pdf

Volume D: Functional Demonstrations nist-sp-1800-36d-draft.pdf

Volume E: Risk and Compliance Management nist-sp-1800-36e-draft.pdf

http://127.0.0.1:43321/assets/files/nist-sp-1800-36-draft-a8be9a7c44b09415092344cb08ada0b4.pdf
http://127.0.0.1:43321/assets/files/nist-sp-1800-36a-draft-4704bcf61198fe59f239661c75cd1f41.pdf
http://127.0.0.1:43321/assets/files/nist-sp-1800-36b-draft-c4f95d42a1cfd5d84d1096aaf8a73fff.pdf
http://127.0.0.1:43321/assets/files/nist-sp-1800-36c-draft-c7bd15f22c74592f9e8929ed3c786d11.pdf
http://127.0.0.1:43321/assets/files/nist-sp-1800-36d-draft-64fc1d18b6ca1d0f43919abd485ad459.pdf
http://127.0.0.1:43321/assets/files/nist-sp-1800-36e-draft-f0b6fa26c878886f8629a52a91e2fae2.pdf


Page 31 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI Overview
BRSKI defines and open IETF specification that securely on boards a device to a "security domain"

Joining security domain is manifest, within the provisioning of a an appropriately signed certificate on the target device.

The joining of a security domain is then dovetailed wiht the physical provisioning of network credentials on a device. This can be
different for each network type.

The initial work in this area has focussed on the onboarding onto WIFI networks, specifically using EAP-TLS as the network
provisioning method. As the development matures, these protocols will be asbtract3ed and refined to work over many network
types.



Page 32 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Terminology
We will use the term  interchangeably with the term  for easier reading.

: The device wishing to onboard to the network.

: The principal decision-making entity in the onboarding process.

: A proxy to the registrar - useful if the registrar is located externally or shared between networks.

: The Manufacturer Authority, which issues manufacturer assurances (like iDevID) and can attest to the validity of these
assurances.

: The physical router to which a device is connecting; the router may potentially host many networks.

: A constrained network used to bootstrap the onboarding process.

: The operational network to which the device intends to attach.

: A unique device certificate issued by the manufacturer.

: A certificate used by the device to gain network access (EAP certificate).

Stages Overview
O - Factory Provisioning

A - Discover Onboarding Network

B - Discover Registrar

C - Request Voucher

D - Enrol the Device

E - Join the Network

F - Continuous Assurance of the Network

ManufacturerDevice

ManufacturerDevice

critical [Private Network]

0-Request iDevID
1

device pledge

device

registrar

proxy

MASA

router

onboarding network

target network

iDevID

LDevID



Page 33 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

0 - Factory Provisioning
The demonstrated factory provisioning flow is as follows:

0.1 - Device is pre-provisioned with the manufacturer's CA and URI for the manufacturer's servers.

0.2 - Device generates a unique public/private key pair.

0.3 - Device requests an iDevID from the manufacturer.

0.4 - The returned iDevID is installed on the device.

A - Onboarding Discovery
There are two methods for discovering potential onboarding networks:

A.1 - Search for public Wi-Fi networks matching a particular SSID wildcard name.

A.2 - Search for Wi-Fi networks advertising a particular realm.

A.1 BRSKI SSID Name Wildcard
Match
The device will search for all SSIDs matching the wildcard as specified in 1.

The device will iterate round-robin across successful pattern matches in strength order.

Every time a device finds a viable match, it will connect to the onboarding network and attempt to discover the registrar.

A.2 802.11u Eap.Arpa
The device will search for all networks supporting the  realm.

The device will iterate round-robin across successful pattern matches in strength order.

Every time a device finds a viable match, it will connect to the onboarding network and attempt to discover the registrar.

Onboarding Process
The device will prefer onboarding networks with realm support over BRSKI SSID matches.

eap.arpa

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fn-friel


Page 34 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Yes

No

Yes
No

Start

Find

eap.arpa

Realms
Discover

Registrar
Find

BRSKI

SSIDs

B - Discover Registrar
When the device discovers a candidate onboarding network, it will attempt to discover the registrar.

If the registrar is non-discoverable, this onboarding network will be temporarily marked as failed, and the onboarding process will
proceed to the next candidate onboarding network.

The device operates either in IPV6 or IPV4 mode. The options for Registrar discovery are slightly different in each case.

For the purposes of the NIST Build 5 demonstrator, we shall use the mDNS method of directly discovering the registrar as outlined

in Appendix A 2.

Discovery of the registrar MAY also be performed with DNS-based Service Discovery by searching for the service "_brski-
registrar._tcp.example.com". In this case, the domain "example.com" is discovered as described in [RFC6763], Section 11
(Appendix A.2 of this document suggests the use of DHCP parameters).

Specifically:

Device obtains an IP address via DHCP as per A.2 2.

Device listens for service announcement  as per Appendix B 2.

Device secures IP address of candidate Registrar.

Device attempts to initiate voucher request.

Discover Registrar (Full Options)
TBD: Outline the full list of methods for discovering the registrar.

"_brski-registrar._tcp.example.com"

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fn-rfc8995
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6763
https://www.rfc-editor.org/rfc/rfc6763#section-11
https://www.rfc-editor.org/rfc/rfc8995.html#IPv4dhcp
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fn-rfc8995
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fn-rfc8995


Page 35 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C - Request Voucher
Registrar
Preconditions: Before we initiate the Request Voucher, we assume the following conditions are met:

 is provisioned with a valid .

 has connected to a candidate .

 has a valid IP address on the .

 has discovered the IP address of a candidate  (or a ).

Post Conditions (Success): If the voucher request is successful:

 is in possession of a valid .

where the tests that need to pass are

voucher has not been revoked, which requires:

behaviour of IoT device bound by MUD descriptor

No requests to blacklisted domains / IP addresses

Manufacturer is trusted

Device is trusted or is owned by a user who is trusted to connect devices

SBOM vulnerability score lower than set threshold

C - Request Voucher Overview
(Basic)
The complete flow of the voucher request process is as follows:

C.0  creates a partially authenticated TLS connection with registrar.

C.1  constructs  construct request and signs it with  private key.

C.2  sends  to .

C.3  validates .

C.4  forwards  to .

C.5  validates .

C.6  signs .

C.7  returns  to .

device iDevID

device onboarding network

device onboarding network

device registrar proxy

device voucher

device

device voucher request iDevID

device voucher request registrar

registrar voucher request

registrar voucher request MASA

MASA voucher request

MASA voucher

MASA voucher registrar



Page 36 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.8  validates .

C.9  returns voucher to .

C.10.  validates .

MASAregistrardevice

MASAregistrardevice

C.1 prepare and
sign Voucher
Request (VR)

C.3 validate VR

C.5 validate VR

C.6 sign voucher (V)

C.8 validate V

C.10 validate V

C.0 partially authenticated TLS

C.2 send VR

C.4 forward VR

C.7 return V

C.9 return V

3 - Request Voucher Overview
(Advanced Policy)
Validation processes exist at stages:

C.1 -  constructs  construct request and signs it with  private key.

C.3 -  validates .

C.5 -  validates .

C.8 -  validates .

C.10 -  validates .

registrar voucher

registrar device

device voucher

device voucher request iDevID

registrar voucher request

MASA voucher request

registrar voucher

device voucher



Page 37 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

At each of these stages, there is the option to evaluate and enforce a policy decision.

C.3 and C.8 are validation and policy enforcement points implemented at the registrar and therefore ideal for implementing the core
networking policy.

D - Enrol The Device
Enrolling the device consists of the following steps:

D.0 - Fully authenticate the TLS connection, using iDevID (using the pinned cert in the voucher response).

D.1 - Generate LDevID public/private key pair.

D.2 - Device constructs the CSR request for enrolment, which includes the iDeviD and is signed by iDeviD.

D.3 - Device sends the CSR to the registrar (over the authenticated TLS session).

D.4 - The registrar validates the CSR request.

D.5 - The registrar constructs the certificate response (LDevID).

D.6- The registrar returns the certificate to the device.

D.7 - The device saves the LDevID (network credentials) locally ready to attach to the network.

registrardevice

registrardevice

D.1 gen LDevID+/- key pairs

D.2 prepare CSR

D.4 validate CSR

D.5 construct and sign certificate

D.7 install certificate locally

D.0 fully authenticated TLS connection

D.3 send CSR

D.6 return certificate

E - Join The Network
Joining the network can be triggered by the device as soon as the device is in possession of a valid LDevID (or other network
credential).



Page 38 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The router will receive the network connection request. It may confer with the registrar to check that the device is adequately
permissioned to join the network. Typically, this may be performed through the RADIUS interface.

registrarrouterdevice

registrarrouterdevice

This is often
implemented by
RADIUS protocol

E.2 check permission

E.3 respond permission

E.4 accept connection

F Continuous Assurance Of
The Network



Page 39 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

external-sourcesregistrarrouterdevice

external-sourcesregistrarrouterdevice

This is an
unreliable process
can't trust device

Router manages
through ejection

or subnets

alt [CMD to device]

[manage at router]

F.0 attempt connection

F.1 attempt connection

F.2A ask device to remove itself

F.3A confirm

F.2B check permission

F.4 respond with status

F.5 respond with status

For the full details of the continuous assurance process, see the reference document Continuous Assurance.

Appendix: Key References
Footnotes

1. https://ftp.kaist.ac.kr/ietf/draft-friel-brski-over-802dot11-00.txt ↩

2. https://datatracker.ietf.org/doc/rfc8995/ ↩ ↩2 ↩3

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/certificates
https://ftp.kaist.ac.kr/ietf/draft-friel-brski-over-802dot11-00.txt
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fnref-friel
https://datatracker.ietf.org/doc/rfc8995/
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fnref-rfc8995
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fnref-rfc8995-2
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/prot-overview#user-content-fnref-rfc8995-3


Page 40 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Certificate Lifecycle
Certificates are used throughout the BRSKI-WIFI onboarding process.

It is helpful to clearly distinguish how these are used in a practical implementation and outline how they are structured

Cert Relationships
: is the unique identifier for the device, and is typically only created once

: are created when a device is onboarded and represents the evidence that the device has joined the logical domain

: is the logical domain to which the device is onboarded, and implicitly to which the network also belongs

: is the intermediate mechanism by which a device joins a logical domain.

: is not mentioned directly by the BRSKI specification, but is used in the implementation. Logically the radius and the
registrar are in a 1:1 relationship

: the originating manufacture of the device

: each router must have an end point certificate,

iDevID

LDevID

domain

registrar

radius

manufacturer

router



Page 41 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

referenced by
1

*
signed by

1

*

signed by

1

*

signed by1

*

signed by
1

*

signed by

1

*

managed by
1

*

authorizes connections
1

*

authenticates with
1

*

iDevID

LDevID

domain

radius registrar

manufacturer

router

IDevID
The iDevID sits on the device (pledge).

It is typically created as a one off process. It should not change during the devices lifecycle

It typically is installed by the manufacture as a privileged process.

The method of installing a manufacturer created iDevID is covered in depth in the factory use case. The basic flow however is as
follows.

Creation

1. [@ DEVICE] create a public private key pair

2. [@ DEVICE] create a CSR

3. [TO MANUFACTURER] send CSR

4. [@ MANUFACTURER] validate CSR



Page 42 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

5. [@ MANUFACTURER] create and sign certificate with manufacture key

6. [TO DEVICE] return signed iDevID certificate

7. [@ DEVICE] locally install iDevID certificate

X509 Attribute Description/use

Name of device (optional)

CN="serial number"

OU="model name"

Public key of the 

Name of the manufacture

CN="Manufacturer ltd"

OU="www.manufacture.com"

Public key of the 

(signed by) Private key of the 

Domain
The domain represents the root logical ownership of the network it is broadest sense. It is therefore an organisational perimeter,
which can own network routing devices and onboarded devices.

The root domain CA is typically a self signed certificate

Practically for the purposes of the demo, the domain is collocated with the registrar

Creation

1. [@ DOMAIN] create a public private key pair

2. [@ DOMAIN] self sign with domain private key

Subject

Subject Key Identifier device+

Issuer

Authority Key Identifier manufacturer+

manufacturer-

http://www.manufacture.com/


Page 43 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

X509 Attribute Description/use

Name of the owner

CN="name of owner"

OU="www.manufacture.com" OR email@address

Public key of the 

Name of the manufacture

CN="name of owner"

OU="www.manufacture.com" OR email@address

Public key of the 

(signed by) Private key of the 

Registrar
According to the specification, the registrar

is element of the network domain that it will belong to and that will perform its bootstrap

It is best to conceive of it as the part of the network (domain) which provides a method the device of logically joining the network
(domain)

The  is signed by the 

Creation Practically, for this build, the domain and registrar are co-located, so the creation process can be simplified.

1. [@ REGISTRAR] create a public private key pair

2. [@ REGISTRAR] create CSR

3. [@ DOMAIN] sign CSR with domain private key and create registrar X509 In a real deployment, where the registrar and
domain are not in a 1:1 relationship, we need to consider how the registrars certificates are deployed.

This could end up looking very like the BRSKI provisioning process

The process should be in infrequent setup process

Subject

Subject Key Identifier domain+

Issuer

Authority Key Identifier domain+

domain-

registrar domain

http://www.manufacture.com/
http://www.manufacture.com/


Page 44 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

X509 Attribute Description/use

C = IE, CN = registrar-tls-meta

Public key of the 

C = IE, CN = registrar-tls-ca

Public key of the 

(signed by) Private key of the 

Radius
The radius server is an implementation detail of the router.

It is not needed or referenced in the BRSKI definition; it is useful in a practical implementation.

Many routers, use a RADIUS server to abstract the authentication process

Specially the implementation of EAP-TLS on HostAPD in the Raspberry Pi (See implementation notes )

Creation

The creation process for the RADIUS certificate is identical to the creation process for the registrar. It just refers to a different subject
(the radius public key)

Subject

Subject Key Identifier registrar+

Issuer

Authority Key Identifier domain+

domain-



Page 45 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

X509 Attribute Description/use

C = IE, CN = registrar-tls-ca

Public key of the 

C = IE, CN = registrar-tls-ca

Public key of the 

(signed by) Private key of the 

Use Of Radius Certificate

The radius certificate is used to setup EAP on the hostapd (the router)

In operational mode hostapd will accept a presented EAP certificate (LDevID), if it signed by the same root (the domain), as long as
that LDevID has not been revoked.

Router
The router certificate not needed or referenced in the baseline BRSKI definition. It is used in Build 5, to secure the connection
between the router and the registrar. Specifically it is used to implement the continuous assurance command server.

Many routers can be connected to a single registrar.

Creation

For the purposes of the Build 5 demonstrator, we assume the router certificate to have been created and provisioned before time.

Interestingly however, a router joining a network, is not dissimilar to an IOT device joining a network.

It just happens that after joining, the router (over and above a normal IOT device), can physically extend or bridge the network.

A later demonstrator should show how live router provisioning can be performed using BRSKI provisioning

Essentially its just an iDevID

Subject

Subject Key Identifier radius+

Issuer

Authority Key Identifier domain+

domain-



Page 46 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

X509 Attribute Description/use

Name of router(optional)

CN="serial number"

OU="model name"

Public key of the 

Name of the manufacture

CN="Manufacturer ltd"

OU="www.manufacture.com"

Public key of the 

(signed by) Private key of the 

Use Of Router Certificate

The router certificate us used to authorise the connection between the router and the registrar.

If the router and registrar are signed by the same domain, then the connection is deemed authorised.

LDevID
The LDevID is created when a device is successfully enrolled

It is used as a cryptographic artefact to prove that the device (iDevID logically belongs to the domain )

If the device can prove it belongs to the domain this is one of the primary dimensions of authorisation, to allow a device physical
operational access to the network

Creation

The LDevID creation process is formally defined in the BRSKI specification and is summarised in protocol overview section 4.

There are a few specific additions needed to get EAP working

Subject

Subject Key Identifier router+

Issuer

Authority Key Identifier manufacturer+

manufacturer-

http://www.manufacture.com/


Page 47 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Simplified

1. [@ DEVICE] creates mutually authenticated TLS with registrar using iDevID

2. [ -> REGISTRAR] send the enrol command (optimally repeating iDevID)

3. [@ REGISTRAR] extracts iDevID (from TLS session or enrol command) and constructs a signing request for LDevID

4. [@ REGISTRAR] add the SSID identifier to the CSR

5. [@ REGISTRAR] signs the LDevID with the registrar- private key (where in turn the registrar has been signed with the
domain-)

6. [-> DEVICE] send certificate back to device

7. [@ DEVICE] install LDevID

X509 Attribute Description/use

Name of connection (optional)

CN="SSID of network"

OU="model name"

Public key of the 

Name of the registrar

Public key of the 

(signed by) Private key of the 

Use Of LDevID Certificate

LDevID is created in the EST enrol stage of the BRSKI flow LDevID is signed by registrar

LDeviD is presented by the device as its EAP-TLS certificate when attempting to connect to the operational network.

Subject

Subject Key Identifier iDevID+

Issuer

Authority Key Identifier registrar+

registrar-



Page 48 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Binary Artifact API
The binary array APi defines the helper functions and structure to encode binary arrays and lists of binary arrays. The below
structure and functions are used in the voucher and  protocol API as inputs and outputs.

Voucher Binary Array
The array API defines a structure to encode binary arrays:

If  and  the array is considered to be emtpy.

Copies a binary arrays to a destination.

Parameters:

 - The destination binary array and

 - The source binary array.

Return:  on success or  on failure.

Compare two binary arrays.

BRSKI

struct BinaryArray {
  uint8_t *array;
  size_t length;
};

array == NULL length == 0

Copy_binary_array

int copy_binary_array(struct BinaryArray *const dst,
                      const struct BinaryArray *src);

dst

src

0 -1

Compare_binary_array



Page 49 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Parameters:

 - The source binary array and

 - The destination binary array.

Return:  if arrays are equal,  otherwise or  on failure.

Frees a binary array content, i.e., frees the  element of the .

Parameters:

 - The binary array

Frees a binary array structure and its content.

Parameters:

 - The binary array

Bu�er Linked List Definition

The  is an array list that holds a pointer to a heap allocated array, the length and a generic flags integer.

int compare_binary_array(const struct BinaryArray *src,
                         const struct BinaryArray *dst);

src

dst

1 0 -1

Free_binary_array_content

array struct BinaryArray

void free_binary_array_content(struct BinaryArray *arr);

arr

Free_binary_array

void free_binary_array(struct BinaryArray *arr);

arr

struct BinaryArrayList

struct BinaryArrayList {
  uint8_t *arr;        /**< The array (heap allocated) */
  size_t length;       /**< The array length (heap allocated) */



Page 50 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Parameters:

 - pointer to the heap allocated array,

 - the array length,

 - the generic array flags and

 - the structure containg the previous and next element of the linked list.

Initializes the array list.

Return: Initialised array list or  on failure.

Frees the array list and all of its elements.

Parameters:

 - The array list to free.

Pushes a heap allocated array into the list and assigns the flags.

  int flags;           /**< The generic array flags */
  struct dl_list list; /**< List definition */
};

arr

length

flags

list

Init_array_list

struct BinaryArrayList *init_array_list(void);

NULL

Free_array_list

void free_array_list(struct BinaryArrayList *arr_list);

arr_list

Push_array_list

int push_buffer_list(struct BinaryArrayList *arr_list,
                     uint8_t *const arr,
                     const size_t length,
                     const int flags);



Page 51 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Parameters:

 - The array list structure,

 - The array pointer to insert,

 - The array length and

 - The array flags.

Return:  on success or  on failure.

arr_list

arr

length

flags

0 -1



Page 52 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI API
This  API implements the bootstrapping functionalities that allows a pledge to discover or being discovered by an element of
the network domain (registrar) that it will belong to and that will perform its bootstrap.

The logical elements of the bootstrapping framework are described in RFC8995:

The API details the functions to allows implementing the below state description for a pledge:

1. Discover a communication channel to a registrar.

BRSKI

                                           +------------------------+
   +--------------Drop-Ship----------------| Vendor Service         |
   |                                       +------------------------+
   |                                       | M anufacturer|         |
   |                                       | A uthorized  |Ownership|
   |                                       | S igning     |Tracker  |
   |                                       | A uthority   |         |
   |                                       +--------------+---------+
   |                                                      ^
   |                                                      |  BRSKI-
   V                                                      |   MASA
+-------+     ............................................|...
|       |     .                                           |  .
|       |     .  +------------+       +-----------+       |  .
|       |     .  |            |       |           |       |  .
|Pledge |     .  |   Join     |       | Domain    <-------+  .
|       |     .  |   Proxy    |       | Registrar |          .
|       <-------->............<-------> (PKI RA)  |          .
|       |        |        BRSKI-EST   |           |          .
|       |     .  |            |       +-----+-----+          .
|IDevID |     .  +------------+             | e.g., RFC 7030 .
|       |     .           +-----------------+----------+     .
|       |     .           | Key Infrastructure         |     .
|       |     .           | (e.g., PKI CA)             |     .
+-------+     .           |                            |     .
              .           +----------------------------+     .
              .                                              .
              ................................................
                            "Domain" Components

https://www.rfc-editor.org/rfc/rfc8995.html


Page 53 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

2. Identify itself. This is done by presenting an X.509 IDevID credential to the discovered registrar (via the proxy) in a TLS
handshake. (The registrar credentials are only provisionally accepted at this time.)

3. Request to join the discovered registrar. A unique nonce is included, ensuring that any responses can be associated with this
particular bootstrapping attempt.

4. Imprint on the registrar. This requires verification of the manufacturer-service-provided (MASA) voucher. A voucher contains
sufficient information for the pledge to complete authentication of a registrar.

5. Enroll. After imprint, an authenticated TLS (HTTPS) connection exists between the pledge and registrar. EST [RFC7030] can
then be used to obtain a domain certificate from a registrar.

BRSKI Core API

Signs a pledge voucher request using CMS with a private key (type detected automatically) and output as binary array (
format).

Parameters:

 - Time when the pledge is created,

 - The serial number string of the pledge,

 - Random/pseudo-random nonce (  for empty),

 - The first certificate in the TLS server "certificate_list" sequence presented by the registrar to the
pledge (  format),

 - The certificate buffer (  format) corresponding to the signig private key,

 - The private key buffer (  format) for signing the pledge-voucher request and

 - The list of additional pledge certificates (  format) to append to CMS (  for empty).

Return: The signed pledge-voucher CMS structure as bianry array (  format) or  on failure.

Sign_pledge_voucher_request

DER

__must_free_binary_array struct BinaryArray * 
sign_pledge_voucher_request(const struct tm *created_on,
                            const char *serial_number,
                            const struct BinaryArray *nonce,
                            const struct BinaryArray 
*registrar_tls_cert,
                            const struct BinaryArray 
*pledge_sign_cert,
                            const struct BinaryArray *pledge_sign_key,
                            const struct BinaryArrayList 
*additional_pledge_certs);

created_on

serial_number

nonce NULL

registrar_tls_cert

DER

pledge_sign_cert DER

pledge_sign_key DER

additional_pledge_certs DER NULL

DER NULL



Page 54 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Signs a voucher request using CMS with a private key (type detected automatically) and output as binary array (  format).

Parameters:

 - The signed pledge-voucher request CMS structure as binary array (  format),

 - Time when the voucher request is created,

 - The serial number string from the idevid certificate,

 - The idevid issuer from the idevid certificate,

 - The first certificate in the TLS server "certificate_list" sequence presented by the registrar to the
pledge (  format),

 - The certificate buffer (  format) corresponding to the signing private key,

 - The private key buffer (  format) for signing the voucher request,

 - The list of intermediate certificate buffers (  format) to verify the pledge-voucher request (
for empty),

 - The list of trusted certificate buffers (  format) to verify the pledge-voucher request (  for
empty). The lists' flags are described in verify_cms_voucher function and

 - The list of additional registrar certificate buffers (  format) to append to CMS (  for
empty).

Return: The signed CMS structure as binary array (  format) or  on failure.

Sign_voucher_request

DER

__must_free_binary_array struct BinaryArray * 
sign_voucher_request(const struct BinaryArray 
*pledge_voucher_request_cms,
                     const struct tm *created_on, const char 
*serial_number,
                     const struct BinaryArray *idevid_issuer,
                     const struct BinaryArray *registrar_tls_cert,
                     const struct BinaryArray *registrar_sign_cert,
                     const struct BinaryArray *registrar_sign_key,
                     const struct BinaryArrayList 
*pledge_verify_certs,
                     const struct BinaryArrayList 
*pledge_verify_store,
                     const struct BinaryArrayList 
*additional_registrar_certs);

pledge_voucher_request_cms DER

created_on

serial_number

idevid_issuer

registrar_tls_cert

DER

registrar_sign_cert DER

registrar_sign_key DER

pledge_verify_certs DER NULL

pledge_verify_store DER NULL

additional_registrar_certs DER NULL

DER NULL

Voucher_req_fn

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/BRSKI%20implementation/voucher#verify_cms_voucher


Page 55 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Callback function definition to find a pledge serial number in a user defined database and output a pinned domain certificate (DER
format).

Parameters:

 - The serial number string from the idevid certificate,

 - The list of additional registrar certificates (  format) appended to the voucher request
CMS,

 - The callback function user context and

 - The output pinned domain certificate (  format) for the pledge.

Return:  on success or  on failure.

Signs a MASA voucher request using CMS with a private key (type detected automatically) and output as binary array (DER format).

typedef int (*voucher_req_fn)(
    const char *serial_number,
    const struct BinaryArrayList *additional_registrar_certs, const 
void *user_ctx,
    struct BinaryArray *pinned_domain_cert);

serial_number

additional_registrar_certs DER

user_ctx

voucher_req_fn DER

0 -1

Sign_masa_pledge_voucher

__must_free_binary_array struct BinaryArray 
*sign_masa_pledge_voucher(const struct BinaryArray 
*voucher_request_cms,
                         const struct tm *expires_on, const 
voucher_req_fn cb,
                         void *user_ctx,
                         const struct BinaryArray *masa_sign_cert,
                         const struct BinaryArray *masa_sign_key,
                         const struct BinaryArrayList 
*registrar_verify_certs,
                         const struct BinaryArrayList 
*registrar_verify_store,
                         const struct BinaryArrayList 
*pledge_verify_certs,
                         const struct BinaryArrayList 
*pledge_verify_store,



Page 56 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Parameters:

 - The signed pledge voucher request CMS structure as binary array (  format),

 - Time when the new voucher will expire,

 - The callback function to output pinned domain certificate (  format),

 - The callback function user context (  for empty),

 - The certificate buffer (  format) corresponding to the signing private key,

 - The private key buffer (  format) for signing the MASA voucher request,

 - The list of intermediate certificate buffers (  format) to verify the voucher request from
registrar (  for empty),

 - The list of trusted certificate buffers (  format) to verify the voucher request from registrar
(  for empty). The lists' flags are described in verify_cms_voucher function,

 - The list of intermediate certificate buffers (  format) to verify the pledge-voucher request (
for empty),

 - The list of trusted certificate buffers (  format) to verify the pledge-voucher request (  for
empty). The lists' flags are described in verify_cms_voucher function and

 - The list of additional MASA certificate buffers (  format) to append to CMS (  for empty).

Return: The signed CMS structure as binary array (  format) or  on failure.

Verifies a MASA pledge voucher and outputs a pinned domain certificate (  format) and the CMS appended list of certificates.

Parameters:

 - The signed MASA pledge voucher CMS structure as binary array (  format),

 - The serial number string from the idevid certificate,

                         const struct BinaryArrayList 
*additional_masa_certs);

voucher_request_cms DER

expires_on

voucher_req_fn DER

user_ctx NULL

masa_sign_cert DER

masa_sign_key DER

registrar_verify_certs DER
NULL

registrar_verify_store DER

NULL

pledge_verify_certs DER NULL

pledge_verify_store DER NULL

additional_masa_certs DER NULL

DER NULL

Verify_masa_pledge_voucher

DER

int verify_masa_pledge_voucher(
    const struct BinaryArray *masa_pledge_voucher_cms, const char 
*serial_number,
    const struct BinaryArray *nonce,
    const struct BinaryArray *registrar_tls_cert,
    const struct BinaryArrayList *domain_store,
    const struct BinaryArrayList *pledge_verify_certs,
    const struct BinaryArrayList *pledge_verify_store,
    struct BinaryArrayList **pledge_out_certs,
    struct BinaryArray *const pinned_domain_cert);

masa_pledge_voucher_cms DER

serial_number

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/BRSKI%20implementation/voucher#verify_cms_voucher
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/BRSKI%20implementation/voucher#verify_cms_voucher


Page 57 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 - Random/pseudo-random nonce from the pledge voucher request (  for empty),

 - The first certificate in the TLS server "certificate_list" sequence presented by the registrar to the
pledge (  format),

 - The list of trusted certificate buffers (  format) to verify the pinned domain certificate (  for empty).
The lists' flags are described in verify_cms_voucher function,

 - The list of intermediate certificate buffers (  format) to verify the masa pledge voucher (
for empty),

 - The list of trusted certificate buffers (  format) to verify the masa pledge voucher (  for
empty). The lists' flags are described in verify_cms_voucher function,

 - The list of output certificate buffers (  for empty) from the MASA pledge CMS structure and

 - The output pinned domain certificate buffer (  format)

Return:  on success or  on failure.

nonce NULL

registrar_tls_cert
DER

domain_store DER NULL

pledge_verify_certs DER NULL

pledge_verify_store DER NULL

pledge_out_certs NULL

pinned_domain_cert DER

0 -1

http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/BRSKI%20implementation/voucher#verify_cms_voucher
http://127.0.0.1:43321/cahn/D1-06-architecture/BRSKI/BRSKI%20implementation/voucher#verify_cms_voucher


Page 58 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI Usage

Voucher Library Usage

Example CMakeLists.Txt File
Below is an example  config file to import the voucher library into a  project and use it with OpenSSL. The path for the
static voucher library file  is set by the  variable and the voucher library include path is set by

 variable.

cmake cmake
libvoucher.a LIBVOUCHER_LIBRARY

LIBVOUCHER_INCLUDE_PATH

cmake_minimum_required(VERSION 3.1...3.26)

project(
  LibTest
  VERSION 1.0
  LANGUAGES C)

find_package(OpenSSL 3 MODULE REQUIRED COMPONENTS Crypto SSL)
message("Found OpenSSL ${OPENSSL_VERSION} crypto library")
add_library(OpenSSL3::Crypto ALIAS OpenSSL::Crypto)
add_library(OpenSSL3::SSL ALIAS OpenSSL::SSL)
set(LIBOPENSSL3_INCLUDE_PATH "${OPENSSL_INCLUDE_DIR}")

set(LIBVOUCHER_INCLUDE_PATH "${CMAKE_SOURCE_DIR}/include/voucher")
set(LIBVOUCHER_LIB_PATH "${CMAKE_SOURCE_DIR}/lib")
set(LIBVOUCHER_LIBRARY "${LIBVOUCHER_LIB_PATH}/libvoucher.a")

add_library(Voucher::Voucher STATIC IMPORTED)
set_target_properties(Voucher::Voucher PROPERTIES
  IMPORTED_LOCATION "${LIBVOUCHER_LIBRARY}"
  INTERFACE_INCLUDE_DIRECTORIES "${LIBVOUCHER_INCLUDE_PATH}"
)

add_executable(libtest libtest.c)
target_link_libraries(libtest PRIVATE Voucher::Voucher 
OpenSSL::Crypto)



Page 59 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI Tool Usage
The BRSKI  test creates a  file (located at 

), which has some pregenerated example certificates for running the MASA, registrar, and pledge on localhost.

Exporting A Pledge Voucher Request

To export a pledge voucher request to a  SMIME file  use the command  as following:

where the example  file is defined as follows:

generate_test_certs test-config.ini ${CMAKE_BINARY_DIR}/tests/brski/test-

config.ini

CMS out.cms epvr

$ brski -c config.ini -o out.cms epvr

config.ini

[pledge]
createdOn = "1973-11-29T21:33:09Z"
serialNumber = "12345"
nonce = "some-nonce-value-in-base64"
idevidKeyPath = ""
idevidCertPath = ""
idevidCACertPath = ""
cmsSignKeyPath = "/absolute_path_to/pledge-cms.key"
cmsSignCertPath = "/absolute_path_to/pledge-cms.crt"
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[registrar]
bindAddress = ""
port = 0
tlsKeyPath = "/absolute_path_to/registrar-tls.key"
tlsCertPath = "/absolute_path_to/registrar-tls.crt"
tlsCACertPath = ""
cmsSignCertPath = ""
cmsSignKeyPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[masa]



Page 60 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Sending A Pledge-Voucher Request To The Registrar

To send a pledge-voucher request to a registrar use the command  as following:

where the example  file is defined as follows:

bindAddress = ""
port = 0
expiresOn = ""
ldevidCAKeyPath = ""
ldevidCACertPath = ""
tlsKeyPath = ""
tlsCertPath = ""
tlsCACertPath = ""
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

preq

$ brski -c config.ini preq

config.ini

[pledge]
createdOn = "1973-11-29T21:33:09Z"
serialNumber = "idev-serial12345"
nonce = "some-nonce-value-in-base64"
idevidKeyPath = "/absolute_path_to/idevid.key"
idevidCertPath = "/absolute_path_to/idevid.crt"
idevidCACertPath = "/absolute_path_to/idevid-ca.crt"
cmsSignKeyPath = "/absolute_path_to/pledge-cms.key"
cmsSignCertPath = "/absolute_path_to/pledge-cms.crt"
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[registrar]
bindAddress = "https://registrar-address.com"
port = 12345
tlsKeyPath = ""



Page 61 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Starting The Registrar

To start the registrar server on port  use the command  as following:

where the example  file is defined as follows:

tlsCertPath = "/absolute_path_to/registrar-tls.crt"
tlsCACertPath = "/absolute_path_to/registrar-tls-ca.crt"
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[masa]
bindAddress = ""
port = 0
expiresOn = ""
ldevidCAKeyPath = ""
ldevidCACertPath = ""
tlsKeyPath = ""
tlsCertPath = ""
tlsCACertPath = ""
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

12345 registrar

$ brski -c config.ini registrar

config.ini

[pledge]
createdOn = ""
serialNumber = ""
nonce = ""
idevidKeyPath = ""
idevidCertPath = "/absolute_path_to/idevid.crt"
idevidCACertPath = "/absolute_path_to/idevid-ca.crt"
cmsSignKeyPath = ""



Page 62 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Starting The MASA

To start the MASA server on port  use the command  as following:

where the example  file is defined as follows:

cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[registrar]
bindAddress = "127.0.0.1"
port = 12345
tlsKeyPath = ""
tlsCertPath = "/absolute_path_to/registrar-tls.crt"
tlsCACertPath = "/absolute_path_to/registrar-tls-ca.crt"
cmsSignKeyPath = "/absolute_path_to/registrar-cms.key"
cmsSignCertPath = "/absolute_path_to/registrar-cms.crt"
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[masa]
bindAddress = "https://masa-address.com"
port = 12346
expiresOn = ""
ldevidCAKeyPath = ""
ldevidCACertPath = "/absolute_path_to/ldevid-ca.crt"
tlsKeyPath = ""
tlsCertPath = "/absolute_path_to/masa-tls.crt"
tlsCACertPath = "/absolute_path_to/masa-tls-ca.crt"
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

12346 masa

$ brski -c config.ini masa

config.ini



Page 63 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

For detailed example of  files and certificates pleasce check the  folder.

[pledge]
createdOn = ""
serialNumber = ""
nonce = ""
idevidKeyPath = ""
idevidCertPath = "/absolute_path_to/idevid.crt"
idevidCACertPath = "/absolute_path_to/idevid-ca.crt"
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[registrar]
bindAddress = ""
port = 12345
tlsKeyPath = ""
tlsCertPath = "/absolute_path_to/registrar-tls.crt"
tlsCACertPath = "/absolute_path_to/registrar-tls-ca.crt"
cmsSignKeyPath = ""
cmsSignCertPath = ""
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

[masa]
bindAddress = "127.0.0.1"
port = 12346
expiresOn = "1973-11-29T21:33:09Z"
ldevidCAKeyPath = "/absolute_path_to/ldevid-ca.key"
ldevidCACertPath = "/absolute_path_to/ldevid-ca.crt"
tlsKeyPath = "/absolute_path_to/masa-tls.key"
tlsCertPath = "/absolute_path_to/masa-tls.crt"
tlsCACertPath = "/absolute_path_to/masa-tls-ca.crt"
cmsSignKeyPath = "/absolute_path_to/masa-cms.key"
cmsSignCertPath = "/absolute_path_to/masa-cms.crt"
cmsAdditionalCertPath = ""
cmsVerifyCertPath = ""
cmsVerifyStorePath = ""

config.ini test



Page 64 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.



Page 65 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Voucher Artifact API
The voucher artifact is a JSON RFC8259 document that conforms with a data model described by YANG RFC7950, is encoded
using the rules defined in RFC8259, and is signed using (by default) a CMS structure RFC5652.

Voucher Attributes
The voucher artifact attributes are define by the enum below:

module: ietf-voucher
   yang-data voucher-artifact:
      +---- voucher
         +---- created-on                       yang:date-and-time
         +---- expires-on?                      yang:date-and-time
         +---- assertion                        enumeration
         +---- serial-number                    string
         +---- idevid-issuer?                   binary
         +---- pinned-domain-cert               binary
         +---- domain-cert-revocation-checks?   boolean
         +---- nonce?                           binary
         +---- last-renewal-date?               yang:date-and-time
         +-- prior-signed-voucher-request?      binary
         +-- proximity-registrar-cert?          binary

enum VoucherAttributes {
  ATTR_CREATED_ON = 0,
  ATTR_EXPIRES_ON,
  ATTR_ASSERTION,
  ATTR_SERIAL_NUMBER,
  ATTR_IDEVID_ISSUER,
  ATTR_PINNED_DOMAIN_CERT,
  ATTR_DOMAIN_CERT_REVOCATION_CHECKS,
  ATTR_NONCE,
  ATTR_LAST_RENEWAL_DATE,
  ATTR_PRIOR_SIGNED_VOUCHER_REQUEST,

https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc7950
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc5652


Page 66 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Voucher Creation/Manipulation API

Initialises an empty voucher structure.

Return: Pointer to an allocated voucher or NULL on failure.

Frees an allocated voucher structure.

Parameters:

 - The allocated voucher structure.

Sets the value for a voucher bool attribute.

Parameters:

 - The allocated voucher structure,

 - The voucher attribute corresponding to the  value and

  ATTR_PROXIMITY_REGISTRAR_CERT
};

Init_voucher

__must_free_voucher struct Voucher *init_voucher(void);

Free_voucher

void free_voucher(struct Voucher *voucher);

voucher

Set_attr_bool_voucher

int set_attr_bool_voucher(struct Voucher *voucher,
                          const enum VoucherAttributes attr,
                          const bool value);

voucher

attr bool



Page 67 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 - The  attribute value.

Return:  on success or  on failure.

Sets the value for a voucher time attribute.

Parameters:

 - The allocated voucher structure,

 - The voucher attribute corresponding to the  value and

 - The  attribute value.

Return:  on success or  on failure.

Sets the value for a voucher enum attribute.

Parameters:

 - The allocated voucher structure,

 - The enum voucher attribute and

 - The enum attribute value.

Return:  on success or  on failure.

The enum attribute API sets the value for the assertion attribute with one of the following values as described in RFC8995:

value bool

0 -1

Set_attr_time_voucher

int set_attr_time_voucher(struct Voucher *voucher,
                          const enum VoucherAttributes attr,
                          const struct tm *value);

voucher

attr struct tm

value struct tm

0 -1

Set_attr_enum_voucher

int set_attr_enum_voucher(struct Voucher *voucher,
                          const enum VoucherAttributes attr,
                          const int value);

voucher

attr

value

0 -1

enum VoucherAssertions {
  VOUCHER_ASSERTION_NONE = 0,

https://www.rfc-editor.org/rfc/rfc8995.html


Page 68 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Sets the value for a voucher string attribute.

Parameters:

 - The allocated voucher structure,

 - The string voucher attribute name and

 - The string attribute value.

Return:  on success or  on failure.

Sets the value for a voucher array attribute.

Parameters:

 - The allocated voucher structure,

 - The array voucher attribute name and

 - The array attribute value.

Return:  on success or  on failure.

  VOUCHER_ASSERTION_VERIFIED = 1,
  VOUCHER_ASSERTION_LOGGED = 2,
  VOUCHER_ASSERTION_PROXIMITY = 3
};

Set_attr_str_voucher

int set_attr_str_voucher(struct Voucher *voucher,
                         const enum VoucherAttributes attr,
                         const char *value);

voucher

attr

value

0 -1

Set_attr_array_voucher

int set_attr_array_voucher(struct Voucher *voucher,
                           const enum VoucherAttributes attr,
                           const struct BinaryArray *value);

voucher

attr

value

0 -1

Set_attr_voucher



Page 69 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Sets the value for a voucher attribute.

Parameters:

 - The allocated voucher structure,

 - The array voucher attribute name and

 - The variable list of attribute values:
 => 

 => 

 => 

 => 

 => 

 => 

 => 

 => 

 => 

 => 

 => 

Return:  on success or  on failure.

Clears a voucher attribute.

Parameters:

 - The allocated voucher structure and

 - The attribute name

Return:  on success or  on failure.

int set_attr_voucher(struct Voucher *voucher,
                     const enum VoucherAttributes attr,
                     ...);

voucher

attr

__VA_ARGS__

ATTR_CREATED_ON struct tm *

ATTR_EXPIRES_ON struct tm *

ATTR_LAST_RENEWAL_DATE struct tm *

ATTR_ASSERTION enum VoucherAssertions

ATTR_SERIAL_NUMBER char *

ATTR_IDEVID_ISSUER struct BinaryArray *

ATTR_PINNED_DOMAIN_CERT struct BinaryArray *

ATTR_NONCE struct BinaryArray *

ATTR_PRIOR_SIGNED_VOUCHER_REQUEST struct BinaryArray *

ATTR_PROXIMITY_REGISTRAR_CERT struct BinaryArray *

ATTR_DOMAIN_CERT_REVOCATION_CHECKS bool

0 -1

Clear_attr_voucher

int clear_attr_voucher(struct Voucher *voucher,
                       const enum VoucherAttributes attr);

voucher

attr

0 -1

Is_attr_voucher_nonempty



Page 70 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Checks if a voucher attribute is non empty.

Parameters:

 - The allocated voucher structure and

 - The attribute name.

Return:  if non empty or  otherwise.

Gets the pointer to the value for a voucher bool attribute.

Parameters:

 - The allocated voucher structure and

 - The bool voucher attribute.

Return: Pointer to the  value or  on failure.

Gets the pointer to the value for a voucher time attribute.

Parameters:

 - The allocated voucher structure and

 - The time voucher attribute.

bool is_attr_voucher_nonempty(const struct Voucher *voucher,
                              const enum VoucherAttributes attr);

voucher

attr

true false

Get_attr_bool_voucher

const bool *get_attr_bool_voucher(const struct Voucher *voucher,
                                  const enum VoucherAttributes attr);

voucher

attr

bool NULL

Get_attr_time_voucher

const struct tm *get_attr_time_voucher(struct Voucher *voucher,
                                       const enum VoucherAttributes 
attr);

voucher

attr



Page 71 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Return: Pointer to the time value or  on failure.

Gets the pointer to the value for a voucher enum attribute.

Parameters:

 - The allocated voucher structure and

 - The enum voucher attribute.

Return: Pointer to the enum value or  on failure.

Gets the pointer to the value for a voucher string attribute.

Parameters:

 - The allocated voucher structure and

 - The string voucher attribute name.

Return: Pointer to the string value or  on failure.

Example:

NULL

Get_attr_enum_voucher

const int *get_attr_enum_voucher(struct Voucher *voucher,
                                 const enum VoucherAttributes attr);

voucher

attr

NULL

Get_attr_str_voucher

const char *const *get_attr_str_voucher(struct Voucher *voucher,
                                        const enum VoucherAttributes 
attr);

voucher

attr

NULL

const char *const *serial_number = get_attr_str_voucher(voucher, 
ATTR_SERIAL_NUMBER);
if (strcmp(*serial_number, "12345")) {}

Get_attr_array_voucher



Page 72 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Gets the pointer to the value for a voucher array attribute.

Parameters:

 - The allocated voucher structure and

 - The array voucher attribute name.

Return: Pointer to the array value or  on failure.

Voucher Serialization And
Deserialization API

Serializes a voucher to a string.

Parameters:

 - The allocated voucher structure.

Return: Serialized voucher to string or  on failure.

Example:

const struct BinaryArray * get_attr_array_voucher(struct Voucher 
*voucher,
                                                         const enum 
VoucherAttributes attr);

voucher

attr

NULL

Serialize_voucher

__must_free char *serialize_voucher(const struct Voucher *voucher);

voucher

NULL

struct Voucher *voucher = init_voucher();

set_attr_enum_voucher(voucher, ATTR_ASSERTION, 
VOUCHER_ASSERTION_PROXIMITY);

char *serialized = serialize_voucher(voucher);



Page 73 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Deserializes a json string buffer to a voucher structure.

Paramaters:

 - The json buffer and

 - The json buffer length.

Return: Voucher structure or  on failure.

Example:

Voucher CMS Signing And Verification
API

Signs a voucher using CMS with an Elliptic Curve private key and output to a binary buffer (  format).

/* ... */

free(serialized);
free_voucher(voucher);

Deserialize_voucher

struct Voucher *deserialize_voucher(const uint8_t *json, const size_t 
length);

json

length

NULL

struct Voucher *voucher = deserialize_voucher(json, json_length);

/* ... */

free_voucher(voucher);

Sign_eccms_voucher

DER



Page 74 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Parameters:

 - The allocated voucher structure,

 - The certificate buffer (  format) correspoding to the private key,

 - The Elliptic Curve private key buffer (  format) of the certificate and

 - The  of additional certificate buffers (  format) to be included in the CMS (  if
none).

Return: The signed CMS structure in binary (  format) or  on failure.

Signs a voucher using CMS with a RSA private key and output to a binary buffer (  format).

Parameters:

 - The allocated voucher structure,

 - The certificate buffer (  format) correspoding to the private key,

 - The RSA private key buffer (  format) of the certificate and

 - The  of additional certificate buffers (  format) to be included in the CMS (  if
none)

Return: The signed CMS structure in binary (  format) or  on failure.

__must_free_binary_array struct BinaryArray *sign_eccms_voucher(struct 
Voucher *voucher,
                                     const struct BinaryArray *cert,
                                     const struct BinaryArray *key,
                                     const struct BinaryArrayList 
*certs);

voucher

cert DER

key DER

certs struct BinaryArrayList DER NULL

DER NULL

Sign_rsacms_voucher

DER

__must_free_binary_array struct BinaryArray 
*sign_rsacms_voucher(struct Voucher *voucher,
                                      const struct BinaryArray *cert,
                                      const struct BinaryArray *key,
                                      const struct BinaryArrayList 
*certs);

voucher

cert DER

key DER

certs struct BinaryArrayList DER NULL

DER NULL

Sign_cms_voucher



Page 75 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Signs a voucher using CMS with a private key (detected automatically) and output as binary array (  format).

Parameters:

 - The allocated voucher structure,

 - The certificate buffer (  format) correspoding to the private key,

 - The private key buffer (  format) of the certificate and

 - The list of additional certificate buffers (  format) to be included in the CMS (  if none)

Return: The signed CMS structure as binary array (  format) or  on failure.

Verifies a CMS binary buffer and extracts the voucher structure, and the list of included certificates.

Parameters:

 - The CMS binary buffer string (  format),

 - The list of additional certificate buffers (  format),

 - The list of trusted certificate for store (  format). The list's flags is encoded with the following enum:

DER

__must_free_binary_array struct BinaryArray *sign_cms_voucher(struct 
Voucher *voucher,
                                   const struct BinaryArray *cert,
                                   const struct BinaryArray *key,
                                   const struct BinaryArrayList 
*certs);

voucher

cert DER

key DER

certs DER NULL

DER NULL

Verify_cms_voucher

__must_free_voucher struct Voucher *verify_cms_voucher(const struct 
BinaryArray *cms,
                                   const struct BinaryArrayList 
*certs,
                                   const struct BinaryArrayList 
*store,
                                   struct BinaryArrayList 
**out_certs);

cms DER

certs DER

store DER

enum CRYPTO_CERTIFICATE_TYPE {
  CRYPTO_CERTIFICATE_VALID = 0,
  CRYPTO_CERTIFICATE_CRL,
};



Page 76 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

where  denotes a standard certificate buffer and  denotes a
certificate revocation type buffer, and

 - The output list of certificates (  for empty) from the CMS structure.

Return: The verified voucher structrure or  on failure.

Example:

CRYPTO_CERTIFICATE_VALID CRYPTO_CERTIFICATE_CRL

out_certs NULL

NULL

struct BinaryArrayList *out_certs = NULL;
struct Voucher *voucher = verify_cms_voucher(cms, certs, store, 
&out_certs);
struct BinaryArrayList *cert = NULL;

dl_list_for_each(el, &out_certs->list, struct BinaryArrayList, list) {
  uint8_t cert_array = cert->buf;
  uint8_t cert_length = cert->length;
  /* ... */
}

/* ... */

free_voucher(voucher);
free_buffer_list(out_certs);



Page 77 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

RFC 8995

Bootstrapping Remote
Secure Key Infrastructure
(BRSKI)

Abstract
This document specifies automated bootstrapping of an Autonomic Control Plane. To do this, a Secure Key Infrastructure is
bootstrapped. This is done using manufacturer-installed X.509 certificates, in combination with a manufacturer's authorizing service,
both online and offline. We call this process the Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol. Bootstrapping a
new device can occur when using a routable address and a cloud service, only link-local connectivity, or limited/disconnected
networks. Support for deployment models with less stringent security requirements is included. Bootstrapping is complete when the
cryptographic identity of the new key infrastructure is successfully deployed to the device. The established secure connection can
be used to deploy a locally issued certificate to the device as well.

Status Of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8995.

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as
they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

https://www.rfc-editor.org/rfc/rfc8995.html#abstract
https://www.rfc-editor.org/rfc/rfc8995.html#name-status-of-this-memo
https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/rfc/rfc8995.html#name-copyright-notice
https://trustee.ietf.org/license-info


Page 78 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

▲

Table Of Contents
1. Introduction

1.1. Prior Bootstrapping Approaches

1.2. Terminology

1.3. Scope of Solution
1.3.1. Support Environment

1.3.2. Constrained Environments

1.3.3. Network Access Controls

1.3.4. Bootstrapping is Not Booting

1.4. Leveraging the New Key Infrastructure / Next Steps

1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

2. Architectural Overview
2.1. Behavior of a Pledge

2.2. Secure Imprinting Using Vouchers

2.3. Initial Device Identifier
2.3.1. Identification of the Pledge

2.3.2. MASA URI Extension

2.4. Protocol Flow

2.5. Architectural Components
2.5.1. Pledge

2.5.2. Join Proxy

2.5.3. Domain Registrar

2.5.4. Manufacturer Service

2.5.5. Public Key Infrastructure (PKI)

2.6. Certificate Time Validation
2.6.1. Lack of Real-Time Clock

2.6.2. Infinite Lifetime of IDevID

2.7. Cloud Registrar

2.8. Determining the MASA to Contact

3. Voucher-Request Artifact
3.1. Nonceless Voucher-Requests

3.2. Tree Diagram

3.3. Examples

3.4. YANG Module

4. Proxying Details (Pledge -- Proxy -- Registrar)
4.1. Pledge Discovery of Proxy

4.1.1. Proxy GRASP Announcements

4.2. CoAP Connection to Registrar

4.3. Proxy Discovery and Communication of Registrar

5. Protocol Details (Pledge -- Registrar -- MASA)

https://www.rfc-editor.org/rfc/rfc8995.html#
https://www.rfc-editor.org/rfc/rfc8995.html#name-table-of-contents
https://www.rfc-editor.org/rfc/rfc8995.html#section-1
https://www.rfc-editor.org/rfc/rfc8995.html#name-introduction
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-prior-bootstrapping-approac
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-terminology
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-scope-of-solution
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-support-environment
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-constrained-environments
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-network-access-controls
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-bootstrapping-is-not-bootin
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-leveraging-the-new-key-infr
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-requirements-for-autonomic-
https://www.rfc-editor.org/rfc/rfc8995.html#section-2
https://www.rfc-editor.org/rfc/rfc8995.html#name-architectural-overview
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-behavior-of-a-pledge
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-secure-imprinting-using-vou
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-initial-device-identifier
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-identification-of-the-pledg
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-uri-extension
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-flow
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-architectural-components
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-join-proxy
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-domain-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-service
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-public-key-infrastructure-p
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-certificate-time-validation
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-lack-of-real-time-clock
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-infinite-lifetime-of-idevid
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-cloud-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.8
https://www.rfc-editor.org/rfc/rfc8995.html#name-determining-the-masa-to-con
https://www.rfc-editor.org/rfc/rfc8995.html#section-3
https://www.rfc-editor.org/rfc/rfc8995.html#name-voucher-request-artifact
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-nonceless-voucher-requests
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-tree-diagram
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-examples
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module
https://www.rfc-editor.org/rfc/rfc8995.html#section-4
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxying-details-pledge-pro
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-discovery-of-proxy
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxy-grasp-announcements
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-coap-connection-to-registra
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxy-discovery-and-communi
https://www.rfc-editor.org/rfc/rfc8995.html#section-5
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-details-pledge-reg


Page 79 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

5.1. BRSKI-EST TLS Establishment Details

5.2. Pledge Requests Voucher from the Registrar

5.3. Registrar Authorization of Pledge

5.4. BRSKI-MASA TLS Establishment Details
5.4.1. MASA Authentication of Customer Registrar

5.5. Registrar Requests Voucher from MASA
5.5.1. MASA Renewal of Expired Vouchers

5.5.2. MASA Pinning of Registrar

5.5.3. MASA Check of the Voucher-Request Signature

5.5.4. MASA Verification of the Domain Registrar

5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-request'

5.5.6. MASA Nonce Handling

5.6. MASA and Registrar Voucher Response
5.6.1. Pledge Voucher Verification

5.6.2. Pledge Authentication of Provisional TLS Connection

5.7. Pledge BRSKI Status Telemetry

5.8. Registrar Audit-Log Request
5.8.1. MASA Audit-Log Response

5.8.2. Calculation of domainID

5.8.3. Registrar Audit-Log Verification

5.9. EST Integration for PKI Bootstrapping
5.9.1. EST Distribution of CA Certificates

5.9.2. EST CSR Attributes

5.9.3. EST Client Certificate Request

5.9.4. Enrollment Status Telemetry

5.9.5. Multiple Certificates

5.9.6. EST over CoAP

6. Clarification of Transfer-Encoding

7. Reduced Security Operational Modes
7.1. Trust Model

7.2. Pledge Security Reductions

7.3. Registrar Security Reductions

7.4. MASA Security Reductions
7.4.1. Issuing Nonceless Vouchers

7.4.2. Trusting Owners on First Use

7.4.3. Updating or Extending Voucher Trust Anchors

8. IANA Considerations
8.1. The IETF XML Registry

8.2. YANG Module Names Registry

8.3. BRSKI Well-Known Considerations
8.3.1. BRSKI .well-known Registration

8.3.2. BRSKI .well-known Registry

8.4. PKIX Registry

8.5. Pledge BRSKI Status Telemetry

8.6. DNS Service Names

8.7. GRASP Objective Names

9. Applicability to the Autonomic Control Plane (ACP)
9.1. Operational Requirements

https://www.rfc-editor.org/rfc/rfc8995.html#section-5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-est-tls-establishment
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-requests-voucher-fro
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-authorization-of-
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-masa-tls-establishmen
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-authentication-of-cust
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-requests-voucher-
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-renewal-of-expired-vou
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-pinning-of-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-check-of-the-voucher-r
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-verification-of-the-do
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-verification-of-the-pl
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-nonce-handling
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-and-registrar-voucher-
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-voucher-verification
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-authentication-of-pr
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-brski-status-telemet
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-audit-log-request
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-audit-log-response
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-calculation-of-domainid
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-audit-log-verific
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-integration-for-pki-boo
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-distribution-of-ca-cert
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-csr-attributes
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-client-certificate-requ
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-enrollment-status-telemetry
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-multiple-certificates
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-over-coap
https://www.rfc-editor.org/rfc/rfc8995.html#section-6
https://www.rfc-editor.org/rfc/rfc8995.html#name-clarification-of-transfer-e
https://www.rfc-editor.org/rfc/rfc8995.html#section-7
https://www.rfc-editor.org/rfc/rfc8995.html#name-reduced-security-operationa
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-trust-model
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-security-reductions
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-security-reductio
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-security-reductions
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-issuing-nonceless-vouchers
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-trusting-owners-on-first-us
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-updating-or-extending-vouch
https://www.rfc-editor.org/rfc/rfc8995.html#section-8
https://www.rfc-editor.org/rfc/rfc8995.html#name-iana-considerations
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-the-ietf-xml-registry
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module-names-registry
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-considerat
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-registrati
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-registry
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-pkix-registry
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-brski-status-telemetr
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-dns-service-names
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-grasp-objective-names
https://www.rfc-editor.org/rfc/rfc8995.html#section-9
https://www.rfc-editor.org/rfc/rfc8995.html#name-applicability-to-the-autono
https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-operational-requirements


Page 80 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

9.1.1. MASA Operational Requirements

9.1.2. Domain Owner Operational Requirements

9.1.3. Device Operational Requirements

10. Privacy Considerations
10.1. MASA Audit-Log

10.2. What BRSKI-EST Reveals

10.3. What BRSKI-MASA Reveals to the Manufacturer

10.4. Manufacturers and Used or Stolen Equipment

10.5. Manufacturers and Grey Market Equipment

10.6. Some Mitigations for Meddling by Manufacturers

10.7. Death of a Manufacturer

11. Security Considerations
11.1. Denial of Service (DoS) against MASA

11.2. DomainID Must Be Resistant to Second-Preimage Attacks

11.3. Availability of Good Random Numbers

11.4. Freshness in Voucher-Requests

11.5. Trusting Manufacturers

11.6. Manufacturer Maintenance of Trust Anchors
11.6.1. Compromise of Manufacturer IDevID Signing Keys

11.6.2. Compromise of MASA Signing Keys

11.6.3. Compromise of MASA Web Service

11.7. YANG Module Security Considerations

12. References
12.1. Normative References

12.2. Informative References

Appendix A. IPv4 and Non-ANI Operations
A.1. IPv4 Link-Local Addresses

A.2. Use of DHCPv4

Appendix B. mDNS / DNS-SD Proxy Discovery Options

Appendix C. Example Vouchers
C.1. Keys Involved

C.1.1. Manufacturer Certification Authority for IDevID Signatures

C.1.2. MASA Key Pair for Voucher Signatures

C.1.3. Registrar Certification Authority

C.1.4. Registrar Key Pair

C.1.5. Pledge Key Pair

C.2. Example Process
C.2.1. Pledge to Registrar

C.2.2. Registrar to MASA

C.2.3. MASA to Registrar

Acknowledgements

Authors' Addresses

1. Introduction

https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-operational-requiremen
https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-domain-owner-operational-re
https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-device-operational-requirem
https://www.rfc-editor.org/rfc/rfc8995.html#section-10
https://www.rfc-editor.org/rfc/rfc8995.html#name-privacy-considerations
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-audit-log
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-what-brski-est-reveals
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-what-brski-masa-reveals-to-
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturers-and-used-or-s
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturers-and-grey-mark
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-some-mitigations-for-meddli
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-death-of-a-manufacturer
https://www.rfc-editor.org/rfc/rfc8995.html#section-11
https://www.rfc-editor.org/rfc/rfc8995.html#name-security-considerations
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-denial-of-service-dos-again
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-domainid-must-be-resistant-
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-availability-of-good-random
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-freshness-in-voucher-reques
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-trusting-manufacturers
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-maintenance-of
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-manufacturer-
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-masa-signing-
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-masa-web-serv
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module-security-consid
https://www.rfc-editor.org/rfc/rfc8995.html#section-12
https://www.rfc-editor.org/rfc/rfc8995.html#name-references
https://www.rfc-editor.org/rfc/rfc8995.html#section-12.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-normative-references
https://www.rfc-editor.org/rfc/rfc8995.html#section-12.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-informative-references
https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.a
https://www.rfc-editor.org/rfc/rfc8995.html#name-ipv4-and-non-ani-operations
https://www.rfc-editor.org/rfc/rfc8995.html#section-a.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-ipv4-link-local-addresses
https://www.rfc-editor.org/rfc/rfc8995.html#section-a.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-use-of-dhcpv4
https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.b
https://www.rfc-editor.org/rfc/rfc8995.html#name-mdns-dns-sd-proxy-discovery
https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.c
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-vouchers
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-keys-involved
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-certification-
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-key-pair-for-voucher-s
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-certification-aut
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-key-pair
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-key-pair
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-process
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-to-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-to-masa
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-to-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#name-acknowledgements
https://www.rfc-editor.org/rfc/rfc8995.html#name-authors-addresses
https://www.rfc-editor.org/rfc/rfc8995.html#section-1
https://www.rfc-editor.org/rfc/rfc8995.html#name-introduction


Page 81 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol provides a solution for secure zero-touch (automated)
bootstrap of new (unconfigured) devices that are called "pledges" in this document. Pledges have an Initial Device Identifier
(IDevID) installed in them at the factory.

"BRSKI", pronounced like "brewski", is a colloquial term for beer in Canada and parts of the Midwestern United States [brewski].

This document primarily provides for the needs of the ISP and enterprise-focused Autonomic Networking Integrated Model and
Approach (ANIMA) Autonomic Control Plane (ACP) [RFC8994]. This bootstrap process satisfies the requirement of making all
operations secure by default per Section 3.3 of [RFC7575]. Other users of the BRSKI protocol will need to provide separate
applicability statements that include privacy and security considerations appropriate to that deployment. Section 9 explains the
detailed applicability for this ACP usage.

The BRSKI protocol requires a significant amount of communication between manufacturer and owner: in its default modes, it
provides a cryptographic transfer of control to the initial owner. In its strongest modes, it leverages sales channel information to
identify the owner in advance. Resale of devices is possible, provided that the manufacturer is willing to authorize the transfer.
Mechanisms to enable transfers of ownership without manufacturer authorization are not included in this version of the protocol, but
it could be designed into future versions.

This document describes how a pledge discovers (or are discovered by) an element of the network domain that it will belong to and
that will perform its bootstrap. This element (device) is called the "registrar". Before any other operation, the pledge and registrar
need to establish mutual trust:

1. Registrar authenticating the pledge: "Who is this device? What is its identity?"

2. Registrar authorizing the pledge: "Is it mine? Do I want it? What are the chances it has been compromised?"

3. Pledge authenticating the registrar: "What is this registrar's identity?"

4. Pledge authorizing the registrar: "Should I join this network?"

This document details protocols and messages to answer the above questions. It uses a TLS connection and a PKIX-shaped
(X.509v3) certificate (an IEEE 802.1AR IDevID [IDevID]) of the pledge to answer points 1 and 2. It uses a new artifact called a
"voucher" that the registrar receives from a Manufacturer Authorized Signing Authority (MASA) and passes it to the pledge to
answer points 3 and 4.

A proxy provides very limited connectivity between the pledge and the registrar.

The syntactic details of vouchers are described in detail in [RFC8366]. This document details automated protocol mechanisms to
obtain vouchers, including the definition of a "voucher-request" message that is a minor extension to the voucher format (see
Section 3) as defined by [RFC8366].

BRSKI results in the pledge storing an X.509 root certificate sufficient for verifying the registrar identity. In the process, a TLS
connection is established that can be directly used for Enrollment over Secure Transport (EST). In effect, BRSKI provides an
automated mechanism for "Bootstrap Distribution of CA Certificates" described in [RFC7030], Section 4.1.1, wherein the pledge
"MUST [...] engage a human user to authorize the CA certificate using out-of-band data". With BRSKI, the pledge now can automate
this process using the voucher. Integration with a complete EST enrollment is optional but trivial.

BRSKI is agile enough to support bootstrapping alternative key infrastructures, such as a symmetric key solution, but no such
system is described in this document.

1.1. Prior Bootstrapping Approaches

To literally "pull yourself up by the bootstraps" is an impossible action. Similarly, the secure establishment of a key infrastructure
without external help is also an impossibility. Today, it is commonly accepted that the initial connections between nodes are
insecure, until key distribution is complete, or that domain-specific keying material (often pre-shared keys, including mechanisms

https://www.rfc-editor.org/rfc/rfc8995.html#brewski
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc7575#section-3.3
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7575
https://www.rfc-editor.org/rfc/rfc8995.html#acpapplicability
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-prior-bootstrapping-approac


Page 82 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

like Subscriber Identification Module (SIM) cards) is pre-provisioned on each new device in a costly and non-scalable manner.
Existing automated mechanisms are known as non-secured "Trust on First Use (TOFU)" [RFC7435], "resurrecting duckling"
[Stajano99theresurrecting], or "pre-staging".

Another prior approach has been to try and minimize user actions during bootstrapping, but not eliminate all user actions. The
original EST protocol [RFC7030] does reduce user actions during bootstrapping but does not provide solutions for how the following
protocol steps can be made autonomic (not involving user actions):

using the Implicit Trust Anchor (TA) [RFC7030] database to authenticate an owner-specific service (not an autonomic solution
because the URL must be securely distributed),

engaging a human user to authorize the CA certificate using out-of-band data (not an autonomic solution because the human
user is involved),

using a configured Explicit TA database (not an autonomic solution because the distribution of an explicit TA database is not
autonomic), and

using a certificate-less TLS mutual authentication method (not an autonomic solution because the distribution of symmetric
key material is not autonomic).

These "touch" methods do not meet the requirements for zero-touch.

There are "call home" technologies where the pledge first establishes a connection to a well-known manufacturer service using a
common client-server authentication model. After mutual authentication, appropriate credentials to authenticate the target domain
are transferred to the pledge. This creates several problems and limitations:

the pledge requires real-time connectivity to the manufacturer service,

the domain identity is exposed to the manufacturer service (this is a privacy concern), and

the manufacturer is responsible for making the authorization decisions (this is a liability concern).

BRSKI addresses these issues by defining extensions to the EST protocol for the automated distribution of vouchers.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119]
[RFC8174] when, and only when, they appear in all capitals, as shown here.

The following terms are defined for clarity:

ANI:

The Autonomic Networking Infrastructure as defined by [RFC8993]. Section 9 details specific requirements for pledges,
proxies, and registrars when they are part of an ANI.

Circuit Proxy:

A stateful implementation of the Join Proxy. This is the assumed type of proxy.

drop-ship:

The physical distribution of equipment containing the "factory default" configuration to a final destination. In zero-touch
scenarios, there is no staging or preconfiguration during drop-ship.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC7435
https://www.rfc-editor.org/rfc/rfc8995.html#Stajano99theresurrecting
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-terminology
https://www.rfc-editor.org/rfc/rfc8995.html#RFC2119
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8174
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8993
https://www.rfc-editor.org/rfc/rfc8995.html#acpapplicability


Page 83 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Domain:

The set of entities that share a common local trust anchor. This includes the proxy, registrar, domain CA, management
components, and any existing entity that is already a member of the domain.

Domain CA:

The domain Certification Authority (CA) provides certification functionalities to the domain. At a minimum, it provides
certification functionalities to a registrar and manages the private key that defines the domain. Optionally, it certifies all
elements.

domainID:

The domain IDentity is a unique value based upon the registrar's CA certificate. Section 5.8.2 specifies how it is calculated.

enrollment:

The process where a device presents key material to a network and acquires a network-specific identity. For example, when
a certificate signing request is presented to a CA, and a certificate is obtained in response.

IDevID:

An Initial Device Identifier X.509 certificate installed by the vendor on new equipment. This is a term from 802.1AR [IDevID].

imprint:

The process where a device obtains the cryptographic key material to identify and trust future interactions with a network.
This term is taken from Konrad Lorenz's work in biology with new ducklings: during a critical period, the duckling would
assume that anything that looks like a mother duck is in fact their mother. An equivalent for a device is to obtain the fingerprint
of the network's root CA certificate. A device that imprints on an attacker suffers a similar fate to a duckling that imprints on a
hungry wolf. Securely imprinting is a primary focus of this document [imprinting]. The analogy to Lorenz's work was first noted
in [Stajano99theresurrecting].

IPIP Proxy:

A stateless proxy alternative.

Join Proxy:

A domain entity that helps the pledge join the domain. A Join Proxy facilitates communication for devices that find themselves
in an environment where they are not provided connectivity until after they are validated as members of the domain. For
simplicity, this document sometimes uses the term of "proxy" to indicate the Join Proxy. The pledge is unaware that they are
communicating with a proxy rather than directly with a registrar.

Join Registrar (and Coordinator):

A representative of the domain that is configured, perhaps autonomically, to decide whether a new device is allowed to join
the domain. The administrator of the domain interfaces with a "Join Registrar (and Coordinator)" to control this process.
Typically, a Join Registrar is "inside" its domain. For simplicity, this document often refers to this as just "registrar". Within
[RFC8993], it is referred to as the "Join Registrar Autonomic Service Agent (ASA)". Other communities use the abbreviation
"JRC".

https://www.rfc-editor.org/rfc/rfc8995.html#domainID
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#imprinting
https://www.rfc-editor.org/rfc/rfc8995.html#Stajano99theresurrecting
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8993


Page 84 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

LDevID:

A Local Device Identifier X.509 certificate installed by the owner of the equipment. This is a term from 802.1AR [IDevID].

manufacturer:

The term manufacturer is used throughout this document as the entity that created the device. This is typically the original
equipment manufacturer (OEM), but in more complex situations, it could be a value added retailer (VAR), or possibly even a
systems integrator. In general, a goal of BRSKI is to eliminate small distinctions between different sales channels. The reason
for this is that it permits a single device, with a uniform firmware load, to be shipped directly to all customers. This eliminates
costs for the manufacturer. This also reduces the number of products supported in the field, increasing the chance that
firmware will be more up to date.

MASA Audit-Log:

An anonymized list of previous owners maintained by the MASA on a per-device (per-pledge) basis, as described in Section
5.8.1.

MASA Service:

A third-party MASA service on the global Internet. The MASA signs vouchers. It also provides a repository for audit-log
information of privacy-protected bootstrapping events. It does not track ownership.

nonced:

A voucher (or request) that contains a nonce (the normal case).

nonceless:

A voucher (or request) that does not contain a nonce and either relies upon accurate clocks for expiration or does not expire.

offline:

When an architectural component cannot perform real-time communications with a peer, due to either network connectivity or
the peer being turned off, the operation is said to be occurring offline.

Ownership Tracker:

An Ownership Tracker service on the global Internet. The Ownership Tracker uses business processes to accurately track
ownership of all devices shipped against domains that have purchased them. Although optional, this component allows
vendors to provide additional value in cases where their sales and distribution channels allow for accurate tracking of such
ownership. Tracking information about ownership is indicated in vouchers, as described in [RFC8366].

Pledge:

The prospective (unconfigured) device, which has an identity installed at the factory.

(Public) Key Infrastructure:

The collection of systems and processes that sustains the activities of a public key system. The registrar acts as a
"Registration Authority"; see [RFC5280] and Section 7 of [RFC5272].

https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauditlog
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauditlog
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc5272#section-7
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5272


Page 85 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

TOFU:

Trust on First Use. Used similarly to how it is described in [RFC7435]. This is where a pledge device makes no security
decisions but rather simply trusts the first registrar it is contacted by. This is also known as the "resurrecting duckling" model.

Voucher:

A signed artifact from the MASA that indicates the cryptographic identity of the registrar it should trust to a pledge. There are
different types of vouchers depending on how that trust is asserted. Multiple voucher types are defined in [RFC8366].

1.3. Scope Of Solution

1.3.1. Support Environment

This solution (BRSKI) can support large router platforms with multi-gigabit inter-connections, mounted in controlled access data
centers. But this solution is not exclusive to large equipment: it is intended to scale to thousands of devices located in hostile
environments, such as ISP-provided Customer Premises Equipment (CPE) devices that are drop-shipped to the end user. The
situation where an order is fulfilled from a distributed warehouse from a common stock and shipped directly to the target location at
the request of a domain owner is explicitly supported. That stock ("SKU") could be provided to a number of potential domain owners,
and the eventual domain owner will not know a priori which device will go to which location.

The bootstrapping process can take minutes to complete depending on the network infrastructure and device processing speed.
The network communication itself is not optimized for speed; for privacy reasons, the discovery process allows for the pledge to
avoid announcing its presence through broadcasting.

Nomadic or mobile devices often need to acquire credentials to access the network at the new location. An example of this is mobile
phone roaming among network operators, or even between cell towers. This is usually called "handoff". BRSKI does not provide a
low-latency handoff, which is usually a requirement in such situations. For these solutions, BRSKI can be used to create a
relationship (an LDevID) with the "home" domain owner. The resulting credentials are then used to provide credentials more
appropriate for a low-latency handoff.

1.3.2. Constrained Environments

Questions have been posed as to whether this solution is suitable in general for Internet of Things (IoT) networks. This depends on
the capabilities of the devices in question. The terminology of [RFC7228] is best used to describe the boundaries.

The solution described in this document is aimed in general at non-constrained (i.e., Class 2+ [RFC7228]) devices operating on a
non-challenged network. The entire solution as described here is not intended to be usable as is by constrained devices operating
on challenged networks (such as 802.15.4 Low-Power and Lossy Networks (LLNs)).

Specifically, there are protocol aspects described here that might result in congestion collapse or energy exhaustion of intermediate
battery-powered routers in an LLN. Those types of networks should not use this solution. These limitations are predominately
related to the large credential and key sizes required for device authentication. Defining symmetric key techniques that meet the
operational requirements is out of scope, but the underlying protocol operations (TLS handshake and signing structures) have
sufficient algorithm agility to support such techniques when defined.

The imprint protocol described here could, however, be used by non-energy constrained devices joining a non-constrained network
(for instance, smart light bulbs are usually mains powered and use 802.11 wireless technology). It could also be used by non-
constrained devices across a non-energy constrained, but challenged, network (such as 802.15.4). The certificate contents, and the
process by which the four questions above are resolved, do apply to constrained devices. It is simply the actual on-the-wire imprint
protocol that could be inappropriate.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC7435
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-scope-of-solution
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-support-environment
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-constrained-environments
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7228
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7228


Page 86 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

1.3.3. Network Access Controls

This document presumes that network access control has already occurred, is not required, or is integrated by the proxy and
registrar in such a way that the device itself does not need to be aware of the details. Although the use of an X.509 IDevID is
consistent with IEEE 802.1AR [IDevID], and allows for alignment with 802.1X network access control methods, its use here is for
pledge authentication rather than network access control. Integrating this protocol with network access control, perhaps as an
Extensible Authentication Protocol (EAP) method (see [RFC3748]), is out of scope for this document.

1.3.4. Bootstrapping is Not Booting

This document describes "bootstrapping" as the protocol used to obtain a local trust anchor. It is expected that this trust anchor,
along with any additional configuration information subsequently installed, is persisted on the device across system restarts
("booting"). Bootstrapping occurs only infrequently such as when a device is transferred to a new owner or has been reset to factory
default settings.

1.4. Leveraging The New Key Infrastructure / Next Steps

As a result of the protocol described herein, bootstrapped devices have the domain CA trust anchor in common. An end-entity (EE)
certificate has optionally been issued from the domain CA. This makes it possible to securely deploy functionalities across the
domain; for example:

Device management

Routing authentication

Service discovery

The major intended benefit is the ability to use the credentials deployed by this protocol to secure the Autonomic Control Plane
(ACP) [RFC8994].

1.5. Requirements For Autonomic Networking Infrastructure (ANI)

Devices

The BRSKI protocol can be used in a number of environments. Some of the options in this document are the result of requirements
that are out of the ANI scope. This section defines the base requirements for ANI devices.

For devices that intend to become part of an ANI [RFC8993] that includes an Autonomic Control Plane [RFC8994], the BRSKI
protocol MUST be implemented.

The pledge must perform discovery of the proxy as described in Section 4.1 using the Discovery Unsolicited Link-Local (DULL)
[RFC8990] M_FLOOD announcements of the GeneRic Autonomic Signaling Protocol (GRASP).

Upon successfully validating a voucher artifact, a status telemetry MUST be returned; see Section 5.7.

An ANIMA ANI pledge MUST implement the EST automation extensions described in Section 5.9. They supplement the EST
[RFC7030] to better support automated devices that do not have an end user.

The ANI Join Registrar ASA MUST support all the BRSKI and above-listed EST operations.

https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-network-access-controls
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#RFC3748
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.3.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-bootstrapping-is-not-bootin
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-leveraging-the-new-key-infr
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8995.html#section-1.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-requirements-for-autonomic-
https://www.rfc-editor.org/rfc/rfc8995.html#name-requirements-for-autonomic-
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8993
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8995.html#discovery
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8990
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatus
https://www.rfc-editor.org/rfc/rfc8995.html#ESTintegration
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030


Page 87 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

All ANI devices SHOULD support the BRSKI proxy function, using Circuit Proxies over the Autonomic Control Plane (ACP) (see
Section 4.3).

2. Architectural Overview
The logical elements of the bootstrapping framework are described in this section. Figure 1 provides a simplified overview of the
components.

Figure 1: Architecture Overview

                                           +------------------------+
   +--------------Drop-Ship----------------| Vendor Service         |
   |                                       +------------------------+
   |                                       | M anufacturer|         |
   |                                       | A uthorized  |Ownership|
   |                                       | S igning     |Tracker  |
   |                                       | A uthority   |         |
   |                                       +--------------+---------+
   |                                                      ^
   |                                                      |  BRSKI-
   V                                                      |   MASA
+-------+     ............................................|...
|       |     .                                           |  .
|       |     .  +------------+       +-----------+       |  .
|       |     .  |            |       |           |       |  .
|Pledge |     .  |   Join     |       | Domain    \<-------+  .
|       |     .  |   Proxy    |       | Registrar |          .
|       \<-------->............\<-------> (PKI RA)  |          .
|       |        |        BRSKI-EST   |           |          .
|       |     .  |            |       +-----+-----+          .
|IDevID |     .  +------------+             | e.g., RFC 7030 .
|       |     .           +-----------------+----------+     .
|       |     .           | Key Infrastructure         |     .
|       |     .           | (e.g., PKI CA)             |     .
+-------+     .           |                            |     .
              .           +----------------------------+     .
              .                                              .
              ................................................
                            "Domain" Components

https://www.rfc-editor.org/rfc/rfc8995.html#JRCgrasp
https://www.rfc-editor.org/rfc/rfc8995.html#section-2
https://www.rfc-editor.org/rfc/rfc8995.html#name-architectural-overview
https://www.rfc-editor.org/rfc/rfc8995.html#architecturefigure
https://www.rfc-editor.org/rfc/rfc8995.html#figure-1
https://www.rfc-editor.org/rfc/rfc8995.html#name-architecture-overview


Page 88 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

We assume a multivendor network. In such an environment, there could be a manufacturer service for each manufacturer that
supports devices following this document's specification, or an integrator could provide a generic service authorized by multiple
manufacturers. It is unlikely that an integrator could provide ownership tracking services for multiple manufacturers due to the
required sales channel integrations necessary to track ownership.

The domain is the managed network infrastructure with a key infrastructure that the pledge is joining. The domain provides initial
device connectivity sufficient for bootstrapping through a proxy. The domain registrar authenticates the pledge, makes authorization
decisions, and distributes vouchers obtained from the manufacturer service. Optionally, the registrar also acts as a PKI CA.

2.1. Behavior Of A Pledge

The pledge goes through a series of steps, which are outlined here at a high level.

               ------------
              /  Factory   \
              \  default   /
               -----+------
                    |
             +------v-------+
             | (1) Discover |
+------------>              |
|            +------+-------+
|                   |
|            +------v-------+
|            | (2) Identify |
^------------+              |
| rejected   +------+-------+
|                   |
|            +------v-------+
|            | (3) Request  |
|            |     Join     |
|            +------+-------+
|                   |
|            +------v-------+
|            | (4) Imprint  |
^------------+              |
| Bad MASA   +------+-------+
| response          |  send Voucher Status Telemetry
|            +------v-------+
|            | (5) Enroll   |\<---+ (non-error HTTP codes)
^------------+              |\___/ (e.g., 202 "Retry-After")
| Enroll     +------+-------+
| failure           |

https://www.rfc-editor.org/rfc/rfc8995.html#section-2.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-behavior-of-a-pledge


Page 89 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 2: Pledge State Diagram

State descriptions for the pledge are as follows:

1. Discover a communication channel to a registrar.

2. Identify itself. This is done by presenting an X.509 IDevID credential to the discovered registrar (via the proxy) in a TLS
handshake. (The registrar credentials are only provisionally accepted at this time.)

3. Request to join the discovered registrar. A unique nonce is included, ensuring that any responses can be associated with this
particular bootstrapping attempt.

4. Imprint on the registrar. This requires verification of the manufacturer-service-provided voucher. A voucher contains sufficient
information for the pledge to complete authentication of a registrar. This document details this step in depth.

5. Enroll. After imprint, an authenticated TLS (HTTPS) connection exists between the pledge and registrar. EST [RFC7030] can
then be used to obtain a domain certificate from a registrar.

The pledge is now a member of, and can be managed by, the domain and will only repeat the discovery aspects of bootstrapping if
it is returned to factory default settings.

This specification details integration with EST enrollment so that pledges can optionally obtain a locally issued certificate, although
any Representational State Transfer (REST) (see [REST]) interface could be integrated in future work.

2.2. Secure Imprinting Using Vouchers

A voucher is a cryptographically protected artifact (using a digital signature) to the pledge device authorizing a zero-touch imprint on
the registrar domain.

The format and cryptographic mechanism of vouchers is described in detail in [RFC8366].

Vouchers provide a flexible mechanism to secure imprinting: the pledge device only imprints when a voucher can be validated. At
the lowest security levels, the MASA can indiscriminately issue vouchers and log claims of ownership by domains. At the highest
security levels, issuance of vouchers can be integrated with complex sales channel integrations that are beyond the scope of this
document. The sales channel integration would verify actual (legal) ownership of the pledge by the domain. This provides the
flexibility for a number of use cases via a single common protocol mechanism on the pledge and registrar devices that are to be
widely deployed in the field. The MASA services have the flexibility to either leverage the currently defined claim mechanisms or
experiment with higher or lower security levels.

Vouchers provide a signed but non-encrypted communication channel among the pledge, the MASA, and the registrar. The registrar
maintains control over the transport and policy decisions, allowing the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

|              -----v------
|             /  Enrolled  \
^------------+             |
 Factory      \------------/
 reset

https://www.rfc-editor.org/rfc/rfc8995.html#figure-2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-state-diagram
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#REST
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-secure-imprinting-using-vou
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-initial-device-identifier


Page 90 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Pledge authentication and pledge voucher-request signing is via a PKIX-shaped certificate installed during the manufacturing
process. This is the 802.1AR IDevID, and it provides a basis for authenticating the pledge during the protocol exchanges described
here. There is no requirement for a common root PKI hierarchy. Each device manufacturer can generate its own root certificate.
Specifically, the IDevID enables:

Uniquely identifying the pledge by the Distinguished Name (DN) and subjectAltName (SAN) parameters in the IDevID. The
unique identification of a pledge in the voucher objects are derived from those parameters as described below. Section 10.3
discusses privacy implications of the identifier.

Providing a cryptographic authentication of the pledge to the registrar (see Section 5.3).

Securing auto-discovery of the pledge's MASA by the registrar (see Section 2.8).

Signing of a voucher-request by the pledge's IDevID (see Section 3).

Providing a cryptographic authentication of the pledge to the MASA (see Section 5.5.5).

Sections 7.2.13 (2009 edition) and 8.10.3 (2018 edition) of [IDevID] discuss keyUsage and extendedKeyUsage extensions in the
IDevID certificate. [IDevID] acknowledges that adding restrictions in the certificate limits applicability of these long-lived certificates.
This specification emphasizes this point and therefore RECOMMENDS that no key usage restrictions be included. This is consistent
with [RFC5280], Section 4.2.1.3, which does not require key usage restrictions for end-entity certificates.

2.3.1. Identification of the Pledge

In the context of BRSKI, pledges have a 1:1 relationship with a "serial-number". This serial-number is used both in the serial-number
field of a voucher or voucher-requests (see Section 3) and in local policies on the registrar or MASA (see Section 5).

There is a (certificate) serialNumber field defined in [RFC5280], Section 4.1.2.2. In ASN.1, this is referred to as the
CertificateSerialNumber. This field is NOT relevant to this specification. Do not confuse this field with the serial-number defined by
this document, or by [IDevID] and [RFC4519], Section 2.31.

The device serial number is defined in Appendix A.1 of [RFC5280] as the X520SerialNumber, with the OID tag id-at-serialNumber.

The device serialNumber field (X520SerialNumber) is used as follows by the pledge to build the serial-number that is placed in the
voucher-request. In order to build it, the fields need to be converted into a serial-number of "type string".

An example of a printable form of the serialNumber field is provided in [RFC4519], Section 2.31 ("WI-3005"). That section further
provides equality and syntax attributes.

Due to the reality of existing device identity provisioning processes, some manufacturers have stored serial-numbers in other fields.
Registrars SHOULD be configurable, on a per-manufacturer basis, to look for serial-number equivalents in other fields.

As explained in Section 5.5, the registrar MUST again extract the serialNumber itself from the pledge's TLS certificate. It can consult
the serial-number in the pledge request if there is any possible confusion about the source of the serial-number.

2.3.2. MASA URI Extension

This document defines a new PKIX non-critical certificate extension to carry the MASA URI. This extension is intended to be used in
the IDevID certificate. The URI is represented as described in Section 7.4 of [RFC5280].

The URI provides the authority information. The BRSKI "/.well-known" tree [RFC8615] is described in Section 5.

A complete URI MAY be in this extension, including the "scheme", "authority", and "path". The complete URI will typically be used in
diagnostic or experimental situations. Typically (and in consideration to constrained systems), this SHOULD be reduced to only the

https://www.rfc-editor.org/rfc/rfc8995.html#idevidprivacy
https://www.rfc-editor.org/rfc/rfc8995.html#pledgeauthorization
https://www.rfc-editor.org/rfc/rfc8995.html#obtainmasaurl
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request
https://www.rfc-editor.org/rfc/rfc8995.html#MASAassertion
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-identification-of-the-pledg
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request
https://www.rfc-editor.org/rfc/rfc8995.html#ProtocolDetails
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#IDevID
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4519
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc5280#appendix-A.1
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4519
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-uri-extension
https://www.rfc-editor.org/rfc/rfc5280#section-7.4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8615
https://www.rfc-editor.org/rfc/rfc8995.html#ProtocolDetails


Page 91 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

"authority", in which case a scheme of "https://" (see [RFC7230], Section 2.7.3) and a "path" of "/.well-known/brski" is to be
assumed.

The registrar can assume that only the "authority" is present in the extension, if there are no slash ("/") characters in the extension.

Section 7.4 of [RFC5280] calls out various schemes that MUST be supported, including the Lightweight Directory Access Protocol
(LDAP), HTTP, and FTP. However, the registrar MUST use HTTPS for the BRSKI-MASA connection.

The new extension is identified as follows:

\<CODE BEGINS>
MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
id-mod(0) id-mod-MASAURLExtn2016(96) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS ALL --

IMPORTS
EXTENSION
FROM PKIX-CommonTypes-2009
  { iso(1) identified-organization(3) dod(6) internet(1)
    security(5) mechanisms(5) pkix(7) id-mod(0)
    id-mod-pkixCommon-02(57) }

id-pe FROM PKIX1Explicit-2009
  { iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-pkix1-explicit-02(51) } ;

MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
IDENTIFIED BY id-pe-masa-url }

id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe 32 }

MASAURLSyntax ::= IA5String

END

https://www.rfc-editor.org/rfc/rfc8995.html#RFC7230
https://www.rfc-editor.org/rfc/rfc7230#section-2.7.3
https://www.rfc-editor.org/rfc/rfc5280#section-7.4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280


Page 92 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 3: MASAURL ASN.1 Module

The choice of id-pe is based on guidance found in Section 4.2.2 of [RFC5280]: "These extensions may be used to direct
applications to on-line information about the issuer or the subject". The MASA URL is precisely that: online information about the
particular subject.

2.4. Protocol Flow

A representative flow is shown in Figure 4.

\<CODE ENDS>

+--------+         +---------+    +------------+     +------------+
| Pledge |         | Circuit |    | Domain     |     | Vendor     |
|        |         | Join    |    | Registrar  |     | Service    |
|        |         | Proxy   |    |  (JRC)     |     | (MASA)     |
+--------+         +---------+    +------------+     +------------+
  |                     |                   |           Internet |
[discover]              |                   |                    |
  |\<-RFC 4862 IPv6 addr |                   |                    |
  |\<-RFC 3927 IPv4 addr | Appendix A        |  Legend            |
  |-++++++++++++++++++->|                   | C - Circuit        |
  | optional: mDNS query| Appendix B        |     Join Proxy     |
  | RFCs 6763/6762 (+)  |                   | P - Provisional TLS|
  |\<-++++++++++++++++++-|                   |     Connection     |
  | GRASP M_FLOOD       |                   |                    |
  |   periodic broadcast|                   |                    |
[identity]              |                   |                    |
  |\<------------------->C\<----------------->|                    |
  |         TLS via the Join Proxy          |                    |
  |\<--Registrar TLS server authentication---|                    |
[PROVISIONAL accept of server cert]         |                    |
  P---X.509 client authentication---------->|                    |
[request join]                              |                    |
  P---Voucher-Request(w/nonce for voucher)->|                    |
  P                  /-------------------   |                    |
  P                  |                 [accept device?]          |
  P                  |                 [contact vendor]          |
  P                  |                      |--Pledge ID-------->|
  P                  |                      |--Domain ID-------->|

https://www.rfc-editor.org/rfc/rfc8995.html#figure-3
https://www.rfc-editor.org/rfc/rfc8995.html#name-masaurl-asn1-module
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-flow
https://www.rfc-editor.org/rfc/rfc8995.html#protocoltimesequencefigure


Page 93 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 4: Protocol Time Sequence Diagram

On initial bootstrap, a new device (the pledge) uses a local service auto-discovery (the GeneRic Autonomic Signaling Protocol
(GRASP) or Multicast DNS (mDNS)) to locate a Join Proxy. The Join Proxy connects the pledge to a local registrar (the JRC).

Having found a candidate registrar, the fledgling pledge sends some information about itself to the registrar, including its serial
number in the form of a voucher-request and its IDevID certificate as part of the TLS session.

The registrar can determine whether it expected such a device to appear and locates a MASA. The location of the MASA is usually
found in an extension in the IDevID. Having determined that the MASA is suitable, the entire information from the initial voucher-
request (including the device's serial number) is transmitted over the Internet in a TLS-protected channel to the manufacturer, along
with information about the registrar/owner.

The manufacturer can then apply policy based on the provided information, as well as other sources of information (such as sales
records), to decide whether to approve the claim by the registrar to own the device; if the claim is accepted, a voucher is issued that
directs the device to accept its new owner.

The voucher is returned to the registrar, but not immediately to the device -- the registrar has an opportunity to examine the voucher,
the MASA's audit-logs, and other sources of information to determine whether the device has been tampered with and whether the
bootstrap should be accepted.

No filtering of information is possible in the signed voucher, so this is a binary yes-or-no decision. After the registrar has applied any
local policy to the voucher, if it accepts the voucher, then the voucher is returned to the pledge for imprinting.

The voucher also includes a trust anchor that the pledge uses to represent the owner. This is used to successfully bootstrap from an
environment where only the manufacturer has built-in trust by the device to an environment where the owner now has a PKI
footprint on the device.

When BRSKI is followed with EST, this single footprint is further leveraged into the full owner's PKI and an LDevID for the device.
Subsequent reporting steps provide flows of information to indicate success/failure of the process.

  P                  |                      |--optional:nonce--->|
  P              optional:                  |     [extract DomainID]
  P        can occur in advance             |     [update audit-log]
  P            if nonceless                 |                    |
  P                  |                      |\<- voucher ---------|
  P                  \-------------------   | w/nonce if provided|
  P\<------voucher---------------------------|                    |
[imprint]                                   |                    |
  |-------voucher status telemetry--------->|                    |
  |                                         |\<-device audit-log--|
  |                             [verify audit-log and voucher]   |
  |\<--------------------------------------->|                    |
[enroll]                                    |                    |
  | Continue with enrollment using now      |                    |
  | bidirectionally authenticated TLS       |                    |
  | session per RFC 7030.                   |                    |
[enrolled]                                  |                    |

https://www.rfc-editor.org/rfc/rfc8995.html#figure-4
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-time-sequence-diag


Page 94 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

2.5. Architectural Components

2.5.1. Pledge

The pledge is the device that is attempting to join. It is assumed that the pledge talks to the Join Proxy using link-local network
connectivity. In most cases, the pledge has no other connectivity until the pledge completes the enrollment process and receives
some kind of network credential.

2.5.2. Join Proxy

The Join Proxy provides HTTPS connectivity between the pledge and the registrar. A Circuit Proxy mechanism is described in
Section 4. Additional mechanisms, including a Constrained Application Protocol (CoAP) mechanism and a stateless IP in IP (IPIP)
mechanism, are the subject of future work.

2.5.3. Domain Registrar

The domain's registrar operates as the BRSKI-MASA client when requesting vouchers from the MASA (see Section 5.4). The
registrar operates as the BRSKI-EST server when pledges request vouchers (see Section 5.1). The registrar operates as the
BRSKI-EST server "Registration Authority" if the pledge requests an end-entity certificate over the BRSKI-EST connection (see
Section 5.9).

The registrar uses an Implicit Trust Anchor database for authenticating the BRSKI-MASA connection's MASA TLS server certificate.
Configuration or distribution of trust anchors is out of scope for this specification.

The registrar uses a different Implicit Trust Anchor database for authenticating the BRSKI-EST connection's pledge TLS Client
Certificate. Configuration or distribution of the BRSKI-EST client trust anchors is out of scope of this specification. Note that the trust
anchors in / excluded from the database will affect which manufacturers' devices are acceptable to the registrar as pledges, and
they can also be used to limit the set of MASAs that are trusted for enrollment.

2.5.4. Manufacturer Service

The manufacturer service provides two logically separate functions: the MASA as described in Sections 5.5 and 5.6 and an
ownership tracking/auditing function as described in Sections 5.7 and 5.8.

2.5.5. Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) administers certificates for the domain of concern, providing the trust anchor(s) for it and
allowing enrollment of pledges with domain certificates.

The voucher provides a method for the distribution of a single PKI trust anchor (as the "pinned-domain-cert"). A distribution of the full
set of current trust anchors is possible using the optional EST integration.

The domain's registrar acts as a Registration Authority [RFC5272], requesting certificates for pledges from the PKI.

The expectations of the PKI are unchanged from EST [RFC7030]. This document does not place any additional architectural
requirements on the PKI.

https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-architectural-components
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-join-proxy
https://www.rfc-editor.org/rfc/rfc8995.html#proxydetails
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-domain-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#brskimasatls
https://www.rfc-editor.org/rfc/rfc8995.html#brskiesttls
https://www.rfc-editor.org/rfc/rfc8995.html#ESTintegration
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-service
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#VoucherResponse
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatus
https://www.rfc-editor.org/rfc/rfc8995.html#authzLogRequest
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-public-key-infrastructure-p
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5272
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030


Page 95 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

2.6. Certificate Time Validation

2.6.1. Lack of Real-Time Clock

When bootstrapping, many devices do not have knowledge of the current time. Mechanisms such as Network Time Protocols
cannot be secured until bootstrapping is complete. Therefore, bootstrapping is defined with a framework that does not require
knowledge of the current time. A pledge MAY ignore all time stamps in the voucher and in the certificate validity periods if it does not
know the current time.

The pledge is exposed to dates in the following five places: registrar certificate notBefore, registrar certificate notAfter, voucher
created-on, and voucher expires-on. Additionally, Cryptographic Message Syntax (CMS) signatures contain a signingTime.

A pledge with a real-time clock in which it has confidence MUST check the above time fields in all certificates and signatures that it
processes.

If the voucher contains a nonce, then the pledge MUST confirm the nonce matches the original pledge voucher-request. This
ensures the voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

Long-lived pledge certificates "SHOULD be assigned the GeneralizedTime value of 99991231235959Z" for the notAfter field as
explained in [RFC5280].

Some deployed IDevID management systems are not compliant with the 802.1AR requirement for infinite lifetimes and are put in
typical <= 3 year certificate lifetimes. Registrars SHOULD be configurable on a per-manufacturer basis to ignore pledge lifetimes
when the pledge does not follow the recommendations in [RFC5280].

2.7. Cloud Registrar

There exist operationally open networks wherein devices gain unauthenticated access to the Internet at large. In these use cases,
the management domain for the device needs to be discovered within the larger Internet. The case where a device can boot and get
access to a larger Internet is less likely within the ANIMA ACP scope but may be more important in the future. In the ANIMA ACP
scope, new devices will be quarantined behind a Join Proxy.

Additionally, there are some greenfield situations involving an entirely new installation where a device may have some kind of
management uplink that it can use (such as via a 3G network, for instance). In such a future situation, the device might use this
management interface to learn that it should configure itself to become the local registrar.

In order to support these scenarios, the pledge MAY contact a well-known URI of a cloud registrar if a local registrar cannot be
discovered or if the pledge's target use cases do not include a local registrar.

If the pledge uses a well-known URI for contacting a cloud registrar, a manufacturer-assigned Implicit Trust Anchor database (see
[RFC7030]) MUST be used to authenticate that service as described in [RFC6125]. The use of a DNS-ID for validation is
appropriate, and it may include wildcard components on the left-mode side. This is consistent with the human-user configuration of
an EST server URI in [RFC7030], which also depends on [RFC6125].

2.8. Determining The MASA To Contact

https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-certificate-time-validation
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-lack-of-real-time-clock
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-infinite-lifetime-of-idevid
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-cloud-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6125
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6125
https://www.rfc-editor.org/rfc/rfc8995.html#section-2.8
https://www.rfc-editor.org/rfc/rfc8995.html#name-determining-the-masa-to-con


Page 96 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The registrar needs to be able to contact a MASA that is trusted by the pledge in order to obtain vouchers.

The device's IDevID will normally contain the MASA URL as detailed in Section 2.3. This is the RECOMMENDED mechanism.

In some cases, it can be operationally difficult to ensure the necessary X.509 extensions are in the pledge's IDevID due to the
difficulty of aligning current pledge manufacturing with software releases and development; thus, as a final fallback, the registrar
MAY be manually configured or distributed with a MASA URL for each manufacturer. Note that the registrar can only select the
configured MASA URL based on the trust anchor -- so manufacturers can only leverage this approach if they ensure a single MASA
URL works for all pledges associated with each trust anchor.

3. Voucher-Request Artifact
Voucher-requests are how vouchers are requested. The semantics of the voucher-request are described below, in the YANG
module.

A pledge forms the "pledge voucher-request", signs it with its IDevID, and submits it to the registrar.

In turn, the registrar forms the "registrar voucher-request", signs it with its registrar key pair, and submits it to the MASA.

The "proximity-registrar-cert" leaf is used in the pledge voucher-requests. This provides a method for the pledge to assert the
registrar's proximity.

This network proximity results from the following properties in the ACP context: the pledge is connected to the Join Proxy (Section
4) using a link-local IPv6 connection. While the Join Proxy does not participate in any meaningful sense in the cryptography of the
TLS connection (such as via a Channel Binding), the registrar can observe that the connection is via the private ACP (ULA) address
of the Join Proxy, and it cannot come from outside the ACP. The pledge must therefore be at most one IPv6 link-local hop away from
an existing node on the ACP.

Other users of BRSKI will need to define other kinds of assertions if the network proximity described above does not match their
needs.

The "prior-signed-voucher-request" leaf is used in registrar voucher-requests. If present, it is the signed pledge voucher-request
artifact. This provides a method for the registrar to forward the pledge's signed request to the MASA. This completes transmission of
the signed proximity-registrar-cert leaf.

Unless otherwise signaled (outside the voucher-request artifact), the signing structure is as defined for vouchers; see [RFC8366].

3.1. Nonceless Voucher-Requests

A registrar MAY also retrieve nonceless vouchers by sending nonceless voucher-requests to the MASA in order to obtain vouchers
for use when the registrar does not have connectivity to the MASA. No prior-signed-voucher-request leaf would be included. The
registrar will also need to know the serial number of the pledge. This document does not provide a mechanism for the registrar to
learn that in an automated fashion. Typically, this will be done via the scanning of a bar code or QR code on packaging, or via some
sales channel integration.

3.2. Tree Diagram

https://www.rfc-editor.org/rfc/rfc8995.html#IDevIDextension
https://www.rfc-editor.org/rfc/rfc8995.html#section-3
https://www.rfc-editor.org/rfc/rfc8995.html#name-voucher-request-artifact
https://www.rfc-editor.org/rfc/rfc8995.html#proxydetails
https://www.rfc-editor.org/rfc/rfc8995.html#proxydetails
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-nonceless-voucher-requests
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-tree-diagram


Page 97 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The following tree diagram illustrates a high-level view of a voucher-request document. The voucher-request builds upon the
voucher artifact described in [RFC8366]. The tree diagram is described in [RFC8340]. Each node in the diagram is fully described
by the YANG module in Section 3.4. Please review the YANG module for a detailed description of the voucher-request format.

Figure 5: YANG Tree Diagram for a Voucher-Request

3.3. Examples

This section provides voucher-request examples for illustration purposes. These examples show JSON prior to CMS wrapping.
JSON encoding rules specify that any binary content be base64 encoded ([RFC4648], Section 4). The contents of the (base64)
encoded certificates have been elided to save space. For detailed examples, see Appendix C.2. These examples conform to the
encoding rules defined in [RFC7951].

Example (1):

The following example illustrates a pledge voucher-request. The assertion leaf is indicated as "proximity", and the registrar's
TLS server certificate is included in the proximity-registrar-cert leaf. See Section 5.2.

module: ietf-voucher-request

 grouping voucher-request-grouping
  +-- voucher
     +-- created-on?                      yang:date-and-time
     +-- expires-on?                      yang:date-and-time
     +-- assertion?                       enumeration
     +-- serial-number                    string
     +-- idevid-issuer?                   binary
     +-- pinned-domain-cert?              binary
     +-- domain-cert-revocation-checks?   boolean
     +-- nonce?                           binary
     +-- last-renewal-date?               yang:date-and-time
     +-- prior-signed-voucher-request?    binary
     +-- proximity-registrar-cert?        binary

{
    "ietf-voucher-request:voucher": {
        "assertion": "proximity",
        "nonce": "62a2e7693d82fcda2624de58fb6722e5",
        "serial-number" : "JADA123456789",
        "created-on": "2017-01-01T00:00:00.000Z",
        "proximity-registrar-cert": "base64encodedvalue=="

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8340
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request-yang-module
https://www.rfc-editor.org/rfc/rfc8995.html#figure-5
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-tree-diagram-for-a-vou
https://www.rfc-editor.org/rfc/rfc8995.html#section-3.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-examples
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4648
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc8995.html#exampleprocess
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7951
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar


Page 98 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 6: JSON Representation of an Example Voucher-Request

Example (2):

The following example illustrates a registrar voucher-request. The prior-signed-voucher-request leaf is populated with the
pledge's voucher-request (such as the prior example). The pledge's voucher-request is a binary CMS-signed object. In the
JSON encoding used here, it must be base64 encoded. The nonce and assertion have been carried forward from the pledge
request to the registrar request. The serial-number is extracted from the pledge's Client Certificate from the TLS connection.
See Section 5.5.

Figure 7: JSON Representation of an Example Prior-Signed Voucher-Request

Example (3):

The following example illustrates a registrar voucher-request. The prior-signed-voucher-request leaf is not populated with the
pledge's voucher-request nor is the nonce leaf. This form might be used by a registrar requesting a voucher when the pledge
cannot communicate with the registrar (such as when it is powered down or still in packaging) and therefore cannot submit a
nonce. This scenario is most useful when the registrar is aware that it will not be able to reach the MASA during deployment.
See Section 5.5.

Figure 8: JSON Representation of an Offline Voucher-Request

    }
}

{
    "ietf-voucher-request:voucher": {
        "assertion" : "proximity",
        "nonce": "62a2e7693d82fcda2624de58fb6722e5",
        "created-on": "2017-01-01T00:00:02.000Z",
        "idevid-issuer": "base64encodedvalue==",
        "serial-number": "JADA123456789",
        "prior-signed-voucher-request": "base64encodedvalue=="
    }
}

{
    "ietf-voucher-request:voucher": {
        "created-on":    "2017-01-01T00:00:02.000Z",
        "idevid-issuer": "base64encodedvalue==",
        "serial-number": "JADA123456789"
    }
}

https://www.rfc-editor.org/rfc/rfc8995.html#figure-6
https://www.rfc-editor.org/rfc/rfc8995.html#name-json-representation-of-an-e
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#figure-7
https://www.rfc-editor.org/rfc/rfc8995.html#name-json-representation-of-an-ex
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#figure-8
https://www.rfc-editor.org/rfc/rfc8995.html#name-json-representation-of-an-o


Page 99 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

3.4. YANG Module

Following is a YANG module [RFC7950] that formally extends a voucher [RFC8366] into a voucher-request. This YANG module
references [ITU.X690].

\<CODE BEGINS> file "ietf-voucher-request@2021-05-20.yang"

module ietf-voucher-request {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
  prefix vcr;

  import ietf-restconf {
    prefix rc;
    description
      "This import statement is only present to access
       the yang-data extension defined in RFC 8040.";
    reference
      "RFC 8040: RESTCONF Protocol";
  }
  import ietf-voucher {
    prefix vch;
    description
      "This module defines the format for a voucher,
       which is produced by a pledge's manufacturer or
       delegate (MASA) to securely assign a pledge to
       an 'owner', so that the pledge may establish a secure
       connection to the owner's network infrastructure.";
    reference
      "RFC 8366: A Voucher Artifact for
       Bootstrapping Protocols";
  }

  organization
    "IETF ANIMA Working Group";
  contact
    "WG Web:   \<https://datatracker.ietf.org/wg/anima/>
     WG List:  \<mailto:anima@ietf.org>
     Author:   Kent Watsen
               \<mailto:kent+ietf@watsen.net>
     Author:   Michael H. Behringer
               \<mailto:Michael.H.Behringer@gmail.com>

https://www.rfc-editor.org/rfc/rfc8995.html#section-3.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7950
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#ITU.X690


Page 100 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

     Author:   Toerless Eckert
               \<mailto:tte+ietf@cs.fau.de>
     Author:   Max Pritikin
               \<mailto:pritikin@cisco.com>
     Author:   Michael Richardson
               \<mailto:mcr+ietf@sandelman.ca>";
  description
    "This module defines the format for a voucher-request.
     It is a superset of the voucher itself.
     It provides content to the MASA for consideration
     during a voucher-request.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons identified as
     authors of the code. All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 8995; see the
     RFC itself for full legal notices.";

  revision 2021-05-20 {
    description
      "Initial version";
    reference
      "RFC 8995: Bootstrapping Remote Secure Key Infrastructure
       (BRSKI)";
  }

  // Top-level statement
  rc:yang-data voucher-request-artifact {
    uses voucher-request-grouping;



Page 101 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

  }

  // Grouping defined for future usage

  grouping voucher-request-grouping {
    description
      "Grouping to allow reuse/extensions in future work.";
    uses vch:voucher-artifact-grouping {
      refine "voucher/created-on" {
        mandatory false;
      }
      refine "voucher/pinned-domain-cert" {
        mandatory false;
        description
          "A pinned-domain-cert field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/last-renewal-date" {
        description
          "A last-renewal-date field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/domain-cert-revocation-checks" {
        description
          "The domain-cert-revocation-checks field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/assertion" {
        mandatory false;
        description
          "Any assertion included in registrar voucher-requests
           SHOULD be ignored by the MASA.";
      }
      augment "voucher" {
        description
          "Adds leaf nodes appropriate for requesting vouchers.";
        leaf prior-signed-voucher-request {
          type binary;
          description
            "If it is necessary to change a voucher, or re-sign and
             forward a voucher that was previously provided along a
             protocol path, then the previously signed voucher SHOULD



Page 102 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

             be included in this field.

             For example, a pledge might sign a voucher-request
             with a proximity-registrar-cert, and the registrar
             then includes it as the prior-signed-voucher-request
             field.  This is a simple mechanism for a chain of
             trusted parties to change a voucher-request, while
             maintaining the prior signature information.

             The registrar and MASA MAY examine the prior-signed
             voucher information for the
             purposes of policy decisions.  For example, this
             information could be useful to a MASA to determine
             that both the pledge and registrar agree on proximity
             assertions.  The MASA SHOULD remove all
             prior-signed-voucher-request information when
             signing a voucher for imprinting so as to minimize
             the final voucher size.";
        }
        leaf proximity-registrar-cert {
          type binary;
          description
            "An X.509 v3 certificate structure, as specified by
             RFC 5280, Section 4, encoded using the ASN.1
             distinguished encoding rules (DER), as specified
             in ITU X.690.

             The first certificate in the registrar TLS server
             certificate_list sequence (the end-entity TLS
             certificate; see RFC 8446) presented by the registrar
             to the pledge.  This MUST be populated in a pledge's
             voucher-request when a proximity assertion is
             requested.";
          reference
            "ITU X.690: Information Technology - ASN.1 encoding
             rules: Specification of Basic Encoding Rules (BER),
             Canonical Encoding Rules (CER) and Distinguished
             Encoding Rules (DER)
             RFC 5280: Internet X.509 Public Key Infrastructure
             Certificate and Certificate Revocation List (CRL)
             Profile
             RFC 8446: The Transport Layer Security (TLS)



Page 103 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 9: YANG Module for Voucher-Request

4. Proxying Details (Pledge -- Proxy --
Registrar)
This section is normative for uses with an ANIMA ACP. The use of the GRASP mechanism is part of the ACP. Other users of BRSKI
will need to define an equivalent proxy mechanism and an equivalent mechanism to configure the proxy.

The role of the proxy is to facilitate communications. The proxy forwards packets between the pledge and a registrar that has been
provisioned to the proxy via full GRASP ACP discovery.

This section defines a stateful proxy mechanism that is referred to as a "circuit" proxy. This is a form of Application Level Gateway
(see [RFC2663], Section 2.9).

The proxy does not terminate the TLS handshake: it passes streams of bytes onward without examination. A proxy MUST NOT
assume any specific TLS version. Please see [RFC8446], Section 9.3 for details on TLS invariants.

A registrar can directly provide the proxy announcements described below, in which case the announced port can point directly to
the registrar itself. In this scenario, the pledge is unaware that there is no proxying occurring. This is useful for registrars that are
servicing pledges on directly connected networks.

As a result of the proxy discovery process in Section 4.1.1, the port number exposed by the proxy does not need to be well known
or require an IANA allocation.

During the discovery of the registrar by the Join Proxy, the Join Proxy will also learn which kinds of proxy mechanisms are available.
This will allow the Join Proxy to use the lowest impact mechanism that the Join Proxy and registrar have in common.

In order to permit the proxy functionality to be implemented on the maximum variety of devices, the chosen mechanism should use
the minimum amount of state on the proxy device. While many devices in the ANIMA target space will be rather large routers, the
proxy function is likely to be implemented in the control-plane CPU of such a device, with available capabilities for the proxy function
similar to many class 2 IoT devices.

The document [ANIMA-STATE] provides a more extensive analysis and background of the alternative proxy methods.

             Protocol Version 1.3";
        }
      }
    }
  }
}

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#figure-9
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module-for-voucher-req
https://www.rfc-editor.org/rfc/rfc8995.html#section-4
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxying-details-pledge-pro
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxying-details-pledge-pro
https://www.rfc-editor.org/rfc/rfc8995.html#RFC2663
https://www.rfc-editor.org/rfc/rfc2663#section-2.9
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8446
https://www.rfc-editor.org/rfc/rfc8446#section-9.3
https://www.rfc-editor.org/rfc/rfc8995.html#brskigrasp
https://www.rfc-editor.org/rfc/rfc8995.html#I-D.richardson-anima-state-for-joinrouter


Page 104 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

4.1. Pledge Discovery Of Proxy

The result of discovery is a logical communication with a registrar, through a proxy. The proxy is transparent to the pledge. The
communication between the pledge and Join Proxy is over IPv6 link-local addresses.

To discover the proxy, the pledge performs the following actions:

1. MUST: Obtain a local address using IPv6 methods as described in "IPv6 Stateless Address Autoconfiguration" [RFC4862].
Use of temporary addresses [RFC8981] is encouraged. To limit pervasive monitoring [RFC7258], a new temporary address
MAY use a short lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short). Pledges will generally prefer use of IPv6
link-local addresses, and discovery of the proxy will be by link-local mechanisms. IPv4 methods are described in Appendix A.

2. MUST: Listen for GRASP M_FLOOD [RFC8990] announcements of the objective: "AN_Proxy". See Section 4.1.1 for the
details of the objective. The pledge MAY listen concurrently for other sources of information; see Appendix B.

Once a proxy is discovered, the pledge communicates with a registrar through the proxy using the bootstrapping protocol defined in
Section 5.

While the GRASP M_FLOOD mechanism is passive for the pledge, the non-normative other methods (mDNS and IPv4 methods)
described in Appendix B are active. The pledge SHOULD run those methods in parallel with listening for the M_FLOOD. The active
methods SHOULD back off by doubling to a maximum of one hour to avoid overloading the network with discovery attempts.
Detection of physical link status change (Ethernet carrier, for instance) SHOULD reset the back-off timers.

The pledge could discover more than one proxy on a given physical interface. The pledge can have a multitude of physical
interfaces as well: a Layer 2/3 Ethernet switch may have hundreds of physical ports.

Each possible proxy offer SHOULD be attempted up to the point where a valid voucher is received: while there are many ways in
which the attempt may fail, it does not succeed until the voucher has been validated.

The connection attempts via a single proxy SHOULD exponentially back off to a maximum of one hour to avoid overloading the
network infrastructure. The back-off timer for each MUST be independent of other connection attempts.

Connection attempts SHOULD be run in parallel to avoid head-of-queue problems wherein an attacker running a fake proxy or
registrar could intentionally perform protocol actions slowly. Connection attempts to different proxies SHOULD be sent with an
interval of 3 to 5s. The pledge SHOULD continue to listen for additional GRASP M_FLOOD messages during the connection
attempts.

Each connection attempt through a distinct Join Proxy MUST have a unique nonce in the voucher-request.

Once a connection to a registrar is established (e.g., establishment of a TLS session key), there are expectations of more timely
responses; see Section 5.2.

Once all discovered services are attempted (assuming that none succeeded), the device MUST return to listening for GRASP
M_FLOOD. It SHOULD periodically retry any manufacturer-specific mechanisms. The pledge MAY prioritize selection order as
appropriate for the anticipated environment.

4.1.1. Proxy GRASP Announcements

A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself. This announcement can be within the same message as
the ACP announcement detailed in [RFC8994].

The formal Concise Data Definition Language (CDDL) [RFC8610] definition is:

https://www.rfc-editor.org/rfc/rfc8995.html#section-4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-discovery-of-proxy
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4862
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8981
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7258
https://www.rfc-editor.org/rfc/rfc8995.html#IPv4operations
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8990
https://www.rfc-editor.org/rfc/rfc8995.html#brskigrasp
https://www.rfc-editor.org/rfc/rfc8995.html#mdnsmethods
https://www.rfc-editor.org/rfc/rfc8995.html#ProtocolDetails
https://www.rfc-editor.org/rfc/rfc8995.html#mdnsmethods
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxy-grasp-announcements
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8610


Page 105 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 10: CDDL Definition of Proxy Discovery Message

Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP port 4443.

Figure 11: Example of Proxy Discovery Message

On a small network, the registrar MAY include the GRASP M_FLOOD announcements to locally connected networks.

\<CODE BEGINS> file "proxygrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,
                 +[objective, (locator-option / [])]]

objective = ["AN_Proxy", objective-flags, loop-count,
                                       objective-value]

ttl             = 180000     ; 180,000 ms (3 minutes)
initiator = ACP address to contact registrar
objective-flags   = sync-only  ; as in the GRASP spec
sync-only         =  4         ; M_FLOOD only requires
                               ; synchronization
loop-count        =  1         ; one hop only
objective-value   =  any       ; none

locator-option    = [ O_IPv6_LOCATOR, ipv6-address,
                    transport-proto, port-number ]
ipv6-address      = the v6 LL of the Proxy
$transport-proto /= IPPROTO_TCP   ; note that this can be any value
                                 ; from the IANA protocol registry,
                                 ; as per RFC 8990, Section 2.9.5.1,
                                 ; Note 3.
port-number      = selected by Proxy

\<CODE ENDS>

[M_FLOOD, 12340815, h'fe800000000000000000000000000001', 180000,
            [["AN_Proxy", 4, 1, ""],
             [O_IPv6_LOCATOR,
              h'fe800000000000000000000000000001', IPPROTO_TCP, 
4443]]]

https://www.rfc-editor.org/rfc/rfc8995.html#figure-10
https://www.rfc-editor.org/rfc/rfc8995.html#name-cddl-definition-of-proxy-di
https://www.rfc-editor.org/rfc/rfc8995.html#figure-11
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-of-proxy-discovery-


Page 106 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The $transport-proto above indicates the method that the pledge-proxy-registrar will use. The TCP method described here is
mandatory, and other proxy methods, such as CoAP methods not defined in this document, are optional. Other methods MUST
NOT be enabled unless the Join Registrar ASA indicates support for them in its own announcement.

4.2. CoAP Connection To Registrar

The use of CoAP to connect from pledge to registrar is out of scope for this document and is described in future work. See [ANIMA-
CONSTRAINED-VOUCHER].

4.3. Proxy Discovery And Communication Of Registrar

The registrar SHOULD announce itself so that proxies can find it and determine what kind of connections can be terminated.

The registrar announces itself using GRASP M_FLOOD messages, with the "AN_join_registrar" objective, within the ACP instance.
A registrar may announce any convenient port number, including use of stock port 443. ANI proxies MUST support GRASP
discovery of registrars.

The M_FLOOD is formatted as follows:

Figure 12: An Example of a Registrar Announcement Message

The formal CDDL definition is:

[M_FLOOD, 51804321, h'fda379a6f6ee00000200000064000001', 180000,
            [["AN_join_registrar", 4, 255, "EST-TLS"],
             [O_IPv6_LOCATOR,
              h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 
8443]]]

\<CODE BEGINS> file "jrcgrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,
                 +[objective, (locator-option / [])]]

objective = ["AN_join_registrar", objective-flags, loop-count,
                                       objective-value]

initiator = ACP address to contact registrar
objective-flags = sync-only  ; as in the GRASP spec
sync-only =  4               ; M_FLOOD only requires
                             ; synchronization

https://www.rfc-editor.org/rfc/rfc8995.html#section-4.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-coap-connection-to-registra
https://www.rfc-editor.org/rfc/rfc8995.html#I-D.ietf-anima-constrained-voucher
https://www.rfc-editor.org/rfc/rfc8995.html#I-D.ietf-anima-constrained-voucher
https://www.rfc-editor.org/rfc/rfc8995.html#section-4.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-proxy-discovery-and-communi
https://www.rfc-editor.org/rfc/rfc8995.html#figure-12
https://www.rfc-editor.org/rfc/rfc8995.html#name-an-example-of-a-registrar-a


Page 107 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 13: CDDL Definition for Registrar Announcement Message

The M_FLOOD message MUST be sent periodically. The default period SHOULD be 60 seconds, and the value SHOULD be
operator configurable but SHOULD NOT be smaller than 60 seconds. The frequency of sending MUST be such that the aggregate
amount of periodic M_FLOODs from all flooding sources causes only negligible traffic across the ACP.

Here are some examples of locators for illustrative purposes. Only the first one ($transport-protocol = 6, TCP) is defined in this
document and is mandatory to implement.

A protocol of 6 indicates that TCP proxying on the indicated port is desired.

Registrars MUST announce the set of protocols that they support, and they MUST support TCP traffic.

Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

Registrars MUST support the ANI TLS Circuit Proxy and therefore BRSKI across HTTPS/TLS native across the ACP.

In the ANI, the ACP-secured instance of GRASP [RFC8990] MUST be used for discovery of ANI registrar ACP addresses and ports
by ANI proxies. Therefore, the TCP leg of the proxy connection between the ANI proxy and ANI registrar also runs across the ACP.

5. Protocol Details (Pledge -- Registrar
-- MASA)
The pledge MUST initiate BRSKI after boot if it is unconfigured. The pledge MUST NOT automatically initiate BRSKI if it has been
configured or is in the process of being configured.

BRSKI is described as extensions to EST [RFC7030]. The goal of these extensions is to reduce the number of TLS connections and
crypto operations required on the pledge. The registrar implements the BRSKI REST interface within the "/.well-known/brski" URI
tree and implements the existing EST URIs as described in EST [RFC7030], Section 3.2.2. The communication channel between
the pledge and the registrar is referred to as "BRSKI-EST" (see Figure 1).

The communication channel between the registrar and MASA is a new communication channel, similar to EST, within the newly
registered "/.well-known/brski" tree. For clarity, this channel is referred to as "BRSKI-MASA" (see Figure 1).

loop-count      = 255        ; mandatory maximum
objective-value = text       ; name of the (list of) supported
                             ; protocols: "EST-TLS" for RFC 7030.

\<CODE ENDS>

locator1  = [O_IPv6_LOCATOR, fd45:1345::6789, 6,  443]
locator2  = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
locator3  = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

https://www.rfc-editor.org/rfc/rfc8995.html#figure-13
https://www.rfc-editor.org/rfc/rfc8995.html#name-cddl-definition-for-registr
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8990
https://www.rfc-editor.org/rfc/rfc8995.html#section-5
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-details-pledge-reg
https://www.rfc-editor.org/rfc/rfc8995.html#name-protocol-details-pledge-reg
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#architecturefigure
https://www.rfc-editor.org/rfc/rfc8995.html#architecturefigure


Page 108 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The MASA URI is "https://" authority "/.well-known/brski".

BRSKI uses existing CMS message formats for existing EST operations. BRSKI uses JSON [RFC8259] for all new operations
defined here and for voucher formats. In all places where a binary value must be carried in a JSON string, a base64 format
([RFC4648], Section 4) is to be used, as per [RFC7951], Section 6.6.

While EST ([RFC7030], Section 3.2) does not insist upon use of HTTP persistent connections ([RFC7230], Section 6.3), BRSKI-
EST connections SHOULD use persistent connections. The intention of this guidance is to ensure the provisional TLS state occurs
only once, and that the subsequent resolution of the provision state is not subject to a Man-in-the-Middle (MITM) attack during a
critical phase.

If non-persistent connections are used, then both the pledge and the registrar MUST remember the certificates that have been seen
and also sent for the first connection. They MUST check each subsequent connection for the same certificates, and each end
MUST use the same certificates as well. This places a difficult restriction on rolling certificates on the registrar.

Summarized automation extensions for the BRSKI-EST flow are:

The pledge either attempts concurrent connections via each discovered proxy or times out quickly and tries connections in
series, as explained at the end of Section 5.1.

The pledge provisionally accepts the registrar certificate during the TLS handshake as detailed in Section 5.1.

The pledge requests a voucher using the new REST calls described below. This voucher is then validated.

The pledge completes authentication of the server certificate as detailed in Section 5.6.1. This moves the BRSKI-EST TLS
connection out of the provisional state.

Mandatory bootstrap steps conclude with voucher status telemetry (see Section 5.7).

The BRSKI-EST TLS connection can now be used for EST enrollment.

The extensions for a registrar (equivalent to an EST server) are:

Client authentication is automated using IDevID as per the EST certificate-based client authentication. The subject field's DN
encoding MUST include the "serialNumber" attribute with the device's unique serial number as explained in Section 2.3.1.

The registrar requests and validates the voucher from the MASA.

The registrar forwards the voucher to the pledge when requested.

The registrar performs log verifications (described in Section 5.8.3) in addition to local authorization checks before accepting
optional pledge device enrollment requests.

5.1. BRSKI-EST TLS Establishment Details

The pledge establishes the TLS connection with the registrar through the Circuit Proxy (see Section 4), but the TLS handshake is
with the registrar. The BRSKI-EST pledge is the TLS client, and the BRSKI-EST registrar is the TLS server. All security associations
established are between the pledge and the registrar regardless of proxy operations.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is REQUIRED on the pledge side. TLS 1.3 (or newer) SHOULD be
available on the registrar server interface, and the registrar client interface, but TLS 1.2 MAY be used. TLS 1.3 (or newer) SHOULD
be available on the MASA server interface, but TLS 1.2 MAY be used.

Establishment of the BRSKI-EST TLS connection is as specified in "Bootstrap Distribution of CA Certificates" (Section 4.1.1) of
[RFC7030], wherein the client is authenticated with the IDevID certificate, and the EST server (the registrar) is provisionally
authenticated with an unverified server certificate. Configuration or distribution of the trust anchor database used for validating the
IDevID certificate is out of scope of this specification. Note that the trust anchors in / excluded from the database will affect which

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8259
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4648
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7951
https://www.rfc-editor.org/rfc/rfc7951#section-6.6
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7230
https://www.rfc-editor.org/rfc/rfc7230#section-6.3
https://www.rfc-editor.org/rfc/rfc8995.html#brskiesttls
https://www.rfc-editor.org/rfc/rfc8995.html#brskiesttls
https://www.rfc-editor.org/rfc/rfc8995.html#CompletingAuthenticationBootstrapping
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatus
https://www.rfc-editor.org/rfc/rfc8995.html#PledgeIdentification
https://www.rfc-editor.org/rfc/rfc8995.html#auditLogVerification
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-est-tls-establishment
https://www.rfc-editor.org/rfc/rfc8995.html#proxydetails
https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030


Page 109 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

manufacturers' devices are acceptable to the registrar as pledges and can also be used to limit the set of MASAs that are trusted for
enrollment.

The signature in the certificate MUST be validated even if a signing key cannot (yet) be validated. The certificate (or chain) MUST
be retained for later validation.

A self-signed certificate for the registrar is acceptable as the voucher can validate it upon successful enrollment.

The pledge performs input validation of all data received until a voucher is verified as specified in Section 5.6.1 and the TLS
connection leaves the provisional state. Until these operations are complete, the pledge could be communicating with an attacker.

The pledge code needs to be written with the assumption that all data is being transmitted at this point to an unauthenticated peer,
and that received data, while inside a TLS connection, MUST be considered untrusted. This particularly applies to HTTP headers
and CMS structures that make up the voucher.

A pledge that can connect to multiple registrars concurrently SHOULD do so. Some devices may be unable to do so for lack of
threading, or resource issues. Concurrent connections defeat attempts by a malicious proxy from causing a TCP Slowloris-like
attack (see [slowloris]).

A pledge that cannot maintain as many connections as there are eligible proxies will need to rotate among the various choices,
terminating connections that do not appear to be making progress. If no connection is making progress after 5 seconds, then the
pledge SHOULD drop the oldest connection and go on to a different proxy: the proxy that has been communicated with least
recently. If there were no other proxies discovered, the pledge MAY continue to wait, as long as it is concurrently listening for new
proxy announcements.

5.2. Pledge Requests Voucher From The Registrar

When the pledge bootstraps, it makes a request for a voucher from a registrar.

This is done with an HTTPS POST using the operation path value of "/.well-known/brski/requestvoucher".

The pledge voucher-request Content-Type is as follows.

application/voucher-cms+json:

[RFC8366] defines a "YANG-defined JSON document that has been signed using a Cryptographic Message Syntax (CMS)
structure", and the voucher-request described in Section 3 is created in the same way. The media type is the same as defined
in [RFC8366]. This is also used for the pledge voucher-request. The pledge MUST sign the request using the credentials in
Section 2.3.

Registrar implementations SHOULD anticipate future media types but, of course, will simply fail the request if those types are not
yet known.

The pledge SHOULD include an "Accept" header field (see [RFC7231], Section 5.3.2) indicating the acceptable media type for the
voucher response. The "application/voucher-cms+json" media type is defined in [RFC8366], but constrained voucher formats are
expected in the future. Registrars and MASA are expected to be flexible in what they accept.

The pledge populates the voucher-request fields as follows:

created-on:

https://www.rfc-editor.org/rfc/rfc8995.html#CompletingAuthenticationBootstrapping
https://www.rfc-editor.org/rfc/rfc8995.html#slowloris
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-requests-voucher-fro
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#IDevIDextension
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7231
https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366


Page 110 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Pledges that have a real-time clock are RECOMMENDED to populate this field with the current date and time in yang:date-
and-time format. This provides additional information to the MASA. Pledges that have no real-time clocks MAY omit this field.

nonce:

The pledge voucher-request MUST contain a cryptographically strong random or pseudo-random number nonce (see
[RFC4086], Section 6.2). As the nonce is usually generated very early in the boot sequence, there is a concern that the same
nonce might be generated across multiple boots, or after a factory reset. Different nonces MUST be generated for each
bootstrapping attempt, whether in series or concurrently. The freshness of this nonce mitigates against the lack of a real-time
clock as explained in Section 2.6.1.

assertion:

The pledge indicates support for the mechanism described in this document, by putting the value "proximity" in the voucher-
request, and MUST include the proximity-registrar-cert field (below).

proximity-registrar-cert:

In a pledge voucher-request, this is the first certificate in the TLS server "certificate_list" sequence (see [RFC8446], Section
4.4.2) presented by the registrar to the pledge. That is, it is the end-entity certificate. This MUST be populated in a pledge
voucher-request.

serial-number:

The serial number of the pledge is included in the voucher-request from the pledge. This value is included as a sanity check
only, but it is not to be forwarded by the registrar as described in Section 5.5.

All other fields MAY be omitted in the pledge voucher-request.

See an example JSON payload of a pledge voucher-request in Section 3.3, Example 1.

The registrar confirms that the assertion is "proximity" and that pinned proximity-registrar-cert is the registrar's certificate. If this
validation fails, then there is an on-path attacker (MITM), and the connection MUST be closed after the returning of an HTTP 401
error code.

5.3. Registrar Authorization Of Pledge

In a fully automated network, all devices must be securely identified and authorized to join the domain.

A registrar accepts or declines a request to join the domain, based on the authenticated identity presented. For different networks,
examples of automated acceptance may include the allowance of:

any device of a specific type (as determined by the X.509 IDevID),

any device from a specific vendor (as determined by the X.509 IDevID),

a specific device from a vendor (as determined by the X.509 IDevID) against a domain acceptlist. (The mechanism for
checking a shared acceptlist potentially used by multiple registrars is out of scope.)

If validation fails, the registrar SHOULD respond with the HTTP 404 error code. If the voucher-request is in an unknown format, then
an HTTP 406 error code is more appropriate. A situation that could be resolved with administrative action (such as adding a vendor
to an acceptlist) MAY be responded to with a 403 HTTP error code.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC4086
https://www.rfc-editor.org/rfc/rfc4086#section-6.2
https://www.rfc-editor.org/rfc/rfc8995.html#timeunknown
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8446
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request-examples
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-authorization-of-


Page 111 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

If authorization is successful, the registrar obtains a voucher from the MASA service (see Section 5.5) and returns that MASA-
signed voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS Establishment Details

The BRSKI-MASA TLS connection is a "normal" TLS connection appropriate for HTTPS REST interfaces. The registrar initiates the
connection and uses the MASA URL that is obtained as described in Section 2.8. The mechanisms in [RFC6125] SHOULD be used
in authentication of the MASA using a DNS-ID that matches that which is found in the IDevID. Registrars MAY include a mechanism
to override the MASA URL on a manufacturer-by-manufacturer basis, and within that override, it is appropriate to provide alternate
anchors. This will typically be used by some vendors to establish explicit (or private) trust anchors for validating their MASA that is
part of a sales channel integration.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is REQUIRED. TLS 1.3 (or newer) SHOULD be available.

As described in [RFC7030], the MASA and the registrars SHOULD be prepared to support TLS Client Certificate authentication
and/or HTTP Basic, Digest, or Salted Challenge Response Authentication Mechanism (SCRAM) authentication. This connection
MAY also have no client authentication at all.

Registrars SHOULD permit trust anchors to be preconfigured on a per-vendor (MASA) basis. Registrars SHOULD include the ability
to configure a TLS Client Certificate on a per-MASA basis, or to use no Client Certificate. Registrars SHOULD also permit HTTP
Basic and Digest authentication to be configured.

The authentication of the BRSKI-MASA connection does not change the voucher-request process, as voucher-requests are already
signed by the registrar. Instead, this authentication provides access control to the audit-log as described in Section 5.8.

Implementers are advised that contacting the MASA establishes a secured API connection with a web service, and that there are a
number of authentication models being explored within the industry. Registrars are RECOMMENDED to fail gracefully and generate
useful administrative notifications or logs in the advent of unexpected HTTP 401 (Unauthorized) responses from the MASA.

5.4.1. MASA Authentication of Customer Registrar

Providing per-customer options requires the customer's registrar to be uniquely identified. This can be done by any stateless
method that HTTPS supports such as HTTP Basic or Digest authentication (that is using a password), but the use of TLS Client
Certificate authentication is RECOMMENDED.

Stateful methods involving API tokens, or HTTP Cookies, are not recommended.

It is expected that the setup and configuration of per-customer Client Certificates is done as part of a sales ordering process.

The use of public PKI (i.e., WebPKI) end-entity certificates to identify the registrar is reasonable, and if done universally, this would
permit a MASA to identify a customer's registrar simply by a Fully Qualified Domain Name (FQDN).

The use of DANE records in DNSSEC-signed zones would also permit use of a FQDN to identify customer registrars.

A third (and simplest, but least flexible) mechanism would be for the MASA to simply store the registrar's certificate pinned in a
database.

A MASA without any supply-chain integration can simply accept registrars without any authentication or on a blind TOFU basis as
described in Section 7.4.2.

https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#VoucherResponse
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-masa-tls-establishmen
https://www.rfc-editor.org/rfc/rfc8995.html#obtainmasaurl
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6125
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#authzLogRequest
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-authentication-of-cust
https://www.rfc-editor.org/rfc/rfc8995.html#masasecurityreduction_tofu


Page 112 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

This document does not make a specific recommendation on how the MASA authenticates the registrar as there are likely different
tradeoffs in different environments and product values. Even within the ANIMA ACP applicability, there is a significant difference
between supply-chain logistics for $100 CPE devices and $100,000 core routers.

5.5. Registrar Requests Voucher From MASA

When a registrar receives a pledge voucher-request, it in turn submits a registrar voucher-request to the MASA service via an
HTTPS interface [RFC7231].

This is done with an HTTP POST using the operation path value of "/.well-known/brski/requestvoucher".

The voucher media type "application/voucher-cms+json" is defined in [RFC8366] and is also used for the registrar voucher-request.
It is a JSON document that has been signed using a CMS structure. The registrar MUST sign the registrar voucher-request.

MASA implementations SHOULD anticipate future media ntypes but, of course, will simply fail the request if those types are not yet
known.

The voucher-request CMS object includes some number of certificates that are input to the MASA as it populates the pinned-
domain-cert. As [RFC8366] is quite flexible in what may be put into the pinned-domain-cert, the MASA needs some signal as to
what certificate would be effective to populate the field with: it may range from the end-entity certificate that the registrar uses to the
entire private Enterprise CA certificate. More-specific certificates result in a tighter binding of the voucher to the domain, while less-
specific certificates result in more flexibility in how the domain is represented by certificates.

A registrar that is seeking a nonceless voucher for later offline use benefits from a less-specific certificate, as it permits the actual
key pair used by a future registrar to be determined by the pinned CA.

In some cases, a less-specific certificate, such as a public WebPKI CA, could be too open and could permit any entity issued a
certificate by that authority to assume ownership of a device that has a voucher pinned. Future work may provide a solution to pin
both a certificate and a name that would reduce such risk of malicious ownership assertions.

The registrar SHOULD request a voucher with the most specificity consistent with the mode that it is operating in. In order to do this,
when the registrar prepares the CMS structure for the signed voucher-request, it SHOULD include only certificates that are a part of
the chain that it wishes the MASA to pin. This MAY be as small as only the end-entity certificate (with id-kp-cmcRA set) that it uses
as its TLS server certificate, or it MAY be the entire chain, including the domain CA.

The registrar SHOULD include an "Accept" header field (see [RFC7231], Section 5.3.2) indicating the response media types that
are acceptable. This list SHOULD be the entire list presented to the registrar in the pledge's original request (see Section 5.2), but it
MAY be a subset. The MASA is expected to be flexible in what it accepts.

The registrar populates the voucher-request fields as follows:

created-on:

The registrar SHOULD populate this field with the current date and time when the voucher-request is formed. This field
provides additional information to the MASA.

nonce:

This value, if present, is copied from the pledge voucher-request. The registrar voucher-request MAY omit the nonce as per
Section 3.1.

https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-requests-voucher-
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7231
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7231
https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#noncelessVoucherRequest


Page 113 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

serial-number:

The serial number of the pledge the registrar would like a voucher for. The registrar determines this value by parsing the
authenticated pledge IDevID certificate; see Section 2.3. The registrar MUST verify that the serial-number field it parsed
matches the serial-number field the pledge provided in its voucher-request. This provides a sanity check useful for detecting
error conditions and logging. The registrar MUST NOT simply copy the serial-number field from a pledge voucher-request as
that field is claimed but not certified.

idevid-issuer:

The Issuer value from the pledge IDevID certificate is included to ensure unique interpretation of the serial-number. In the
case of a nonceless (offline) voucher-request, an appropriate value needs to be configured from the same out-of-band source
as the serial-number.

prior-signed-voucher-request:

The signed pledge voucher-request SHOULD be included in the registrar voucher-request. The entire CMS-signed structure
is to be included and base64 encoded for transport in the JSON structure.

A nonceless registrar voucher-request MAY be submitted to the MASA. Doing so allows the registrar to request a voucher when the
pledge is offline, or when the registrar anticipates not being able to connect to the MASA while the pledge is being deployed. Some
use cases require the registrar to learn the appropriate IDevID serialNumber field and appropriate "Accept" header field values from
the physical device labeling or from the sales channel (which is out of scope for this document).

All other fields MAY be omitted in the registrar voucher-request.

The proximity-registrar-cert field MUST NOT be present in the registrar voucher-request.

See example JSON payloads of registrar voucher-requests in Section 3.3, Examples 2 through 4.

The MASA verifies that the registrar voucher-request is internally consistent but does not necessarily authenticate the registrar
certificate since the registrar MAY be unknown to the MASA in advance. The MASA performs the actions and validation checks
described in the following subsections before issuing a voucher.

5.5.1. MASA Renewal of Expired Vouchers

As described in [RFC8366], vouchers are normally short lived to avoid revocation issues. If the request is for a previous (expired)
voucher using the same registrar (that is, a registrar with the same domain CA), then the request for a renewed voucher SHOULD
be automatically authorized. The MASA has sufficient information to determine this by examining the request, the registrar
authentication, and the existing audit-log. The issuance of a renewed voucher is logged as detailed in Section 5.6.

To inform the MASA that existing vouchers are not to be renewed, one can update or revoke the registrar credentials used to
authorize the request (see Sections 5.5.4 and 5.5.3). More flexible methods will likely involve sales channel integration and
authorizations (details are out of scope of this document).

5.5.2. MASA Pinning of Registrar

A certificate chain is extracted from the registrar's signed CMS container. This chain may be as short as a single end-entity
certificate, up to the entire registrar certificate chain, including the domain CA certificate, as specified in Section 5.5.

https://www.rfc-editor.org/rfc/rfc8995.html#IDevIDextension
https://www.rfc-editor.org/rfc/rfc8995.html#voucher-request-examples
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-renewal-of-expired-vou
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#VoucherResponse
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauthenticationOfRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#revocationcheck
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-pinning-of-registrar
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA


Page 114 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

If the domain's CA is unknown to the MASA, then it is considered a temporary trust anchor for the rest of the steps in this section.
The intention is not to authenticate the message as having come from a fully validated origin but to establish the consistency of the
domain PKI.

The MASA MAY use the certificate in the chain that is farthest from the end-entity certificate of the registrar, as determined by MASA
policy. A MASA MAY have a local policy in which it only pins the end-entity certificate. This is consistent with [RFC8366]. Details of
the policy will typically depend upon the degree of supply-chain integration and the mechanism used by the registrar to authenticate.
Such a policy would also determine how the MASA will respond to a request for a nonceless voucher.

5.5.3. MASA Check of the Voucher-Request Signature

As described in Section 5.5.2, the MASA has extracted the registrar's domain CA. This is used to validate the CMS signature
[RFC5652] on the voucher-request.

Normal PKIX revocation checking is assumed during voucher-request signature validation. This CA certificate MAY have Certificate
Revocation List (CRL) distribution points or Online Certificate Status Protocol (OCSP) information [RFC6960]. If they are present,
the MASA MUST be able to reach the relevant servers belonging to the registrar's domain CA to perform the revocation checks.

The use of OCSP Stapling is preferred.

5.5.4. MASA Verification of the Domain Registrar

The MASA MUST verify that the registrar voucher-request is signed by a registrar. This is confirmed by verifying that the id-kp-
cmcRA extended key usage extension field (as detailed in EST [RFC7030], Section 3.6.1) exists in the certificate of the entity that
signed the registrar voucher-request. This verification is only a consistency check to ensure that the unauthenticated domain CA
intended the voucher-request signer to be a registrar. Performing this check provides value to the domain PKI by assuring the
domain administrator that the MASA service will only respect claims from authorized registration authorities of the domain.

Even when a domain CA is authenticated to the MASA, and there is strong sales channel integration to understand who the
legitimate owner is, the above id-kp-cmcRA check prevents arbitrary end-entity certificates (such as an LDevID certificate) from
having vouchers issued against them.

Other cases of inappropriate voucher issuance are detected by examination of the audit-log.

If a nonceless voucher-request is submitted, the MASA MUST authenticate the registrar either as described in EST (see Sections
3.2.3 and 3.3.2 of [RFC7030]) or by validating the registrar's certificate used to sign the registrar voucher-request using a configured
trust anchor. Any of these methods reduce the risk of DDoS attacks and provide an authenticated identity as an input to sales
channel integration and authorizations (details are out of scope of this document).

In the nonced case, validation of the registrar's identity (via TLS Client Certificate or HTTP authentication) MAY be omitted if the
MASA knows that the device policy is to accept audit-only vouchers.

5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-

request'

The MASA MAY verify that the registrar voucher-request includes the prior-signed-voucher-request field. If so, the prior-signed-
voucher-request MUST include a proximity-registrar-cert that is consistent with the certificate used to sign the registrar voucher-
request. Additionally, the voucher-request serial-number leaf MUST match the pledge serial-number that the MASA extracts from the
signing certificate of the prior-signed-voucher-request. The consistency check described above entails checking that the proximity-
registrar-cert Subject Public Key Info (SPKI) Fingerprint exists within the registrar voucher-request CMS signature's certificate chain.
This is substantially the same as the pin validation described in [RFC7469], Section 2.6.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-check-of-the-voucher-r
https://www.rfc-editor.org/rfc/rfc8995.html#MASApinned
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5652
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6960
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-verification-of-the-do
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.6.1
https://www.rfc-editor.org/rfc/rfc7030#section-3.2.3
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-verification-of-the-pl
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-verification-of-the-pl
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7469
https://www.rfc-editor.org/rfc/rfc7469#section-2.6


Page 115 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

If these checks succeed, the MASA updates the voucher and audit-log assertion leafs with the "proximity" assertion, as defined by
[RFC8366], Section 5.3.

5.5.6. MASA Nonce Handling

The MASA does not verify the nonce itself. If the registrar voucher-request contains a nonce, and the prior-signed-voucher-request
exists, then the MASA MUST verify that the nonce is consistent. (Recall from above that the voucher-request might not contain a
nonce; see Sections 5.5 and 5.5.4.)

The MASA populates the audit-log with the nonce that was verified. If a nonceless voucher is issued, then the audit-log is to be
populated with the JSON value "null".

5.6. MASA And Registrar Voucher Response

The MASA voucher response to the registrar is forwarded without changes to the pledge; therefore, this section applies to both the
MASA and the registrar. The HTTP signaling described applies to both the MASA and registrar responses.

When a voucher-request arrives at the registrar, if it has a cached response from the MASA for the corresponding registrar voucher-
request, that cached response can be used according to local policy; otherwise, the registrar constructs a new registrar voucher-
request and sends it to the MASA.

Registrar evaluation of the voucher itself is purely for transparency and audit purposes to further inform log verification (see Section
5.8.3); therefore, a registrar could accept future voucher formats that are opaque to the registrar.

If the voucher-request is successful, the server (a MASA responding to a registrar or a registrar responding to a pledge) response
MUST contain an HTTP 200 response code. The server MUST answer with a suitable 4xx or 5xx HTTP [RFC7230] error code when
a problem occurs. In this case, the response data from the MASA MUST be a plain text human-readable (UTF-8) error message
containing explanatory information describing why the request was rejected.

The registrar MAY respond with an HTTP 202 ("the request has been accepted for processing, but the processing has not been
completed") as described in EST [RFC7030], Section 4.2.3, wherein the client "MUST wait at least the specified "retry-after" time
before repeating the same request" (also see [RFC7231], Section 6.6.4). The pledge is RECOMMENDED to provide local feedback
(blinked LED, etc.) during this wait cycle if mechanisms for this are available. To prevent an attacker registrar from significantly
delaying bootstrapping, the pledge MUST limit the Retry-After time to 60 seconds. Ideally, the pledge would keep track of the
appropriate Retry-After header field values for any number of outstanding registrars, but this would involve a state table on the
pledge. Instead, the pledge MAY ignore the exact Retry-After value in favor of a single hard-coded value (a registrar that is unable
to complete the transaction after the first 60 seconds has another chance a minute later). A pledge SHOULD be willing to maintain a
202 retry-state for up to 4 days, which is longer than a long weekend, after which time the enrollment attempt fails, and the pledge
returns to Discovery state. This allows time for an alert to get from the registrar to a human operator who can make a decision as to
whether or not to proceed with the enrollment.

A pledge that retries a request after receiving a 202 message MUST resend the same voucher-request. It MUST NOT sign a new
voucher-request each time, and in particular, it MUST NOT change the nonce value.

In order to avoid infinite redirect loops, which a malicious registrar might do in order to keep the pledge from discovering the correct
registrar, the pledge MUST NOT follow more than one redirection (3xx code) to another web origin. EST supports redirection but
requires user input; this change allows the pledge to follow a single redirection without a user interaction.

A 403 (Forbidden) response is appropriate if the voucher-request is not signed correctly or is stale or if the pledge has another
outstanding voucher that cannot be overridden.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8366#section-5.3
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.5.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-nonce-handling
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauthenticationOfRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-and-registrar-voucher-
https://www.rfc-editor.org/rfc/rfc8995.html#auditLogVerification
https://www.rfc-editor.org/rfc/rfc8995.html#auditLogVerification
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7230
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.2.3
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7231
https://www.rfc-editor.org/rfc/rfc7231#section-6.6.4


Page 116 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

A 404 (Not Found) response is appropriate when the request is for a device that is not known to the MASA.

A 406 (Not Acceptable) response is appropriate if a voucher of the desired type or that uses the desired algorithms (as indicated by
the "Accept" header fields and algorithms used in the signature) cannot be issued as such because the MASA knows the pledge
cannot process that type. The registrar SHOULD use this response if it determines the pledge is unacceptable due to inventory
control, MASA audit-logs, or any other reason.

A 415 (Unsupported Media Type) response is appropriate for a request that has a voucher-request or "Accept" value that is not
understood.

The voucher response format is as indicated in the submitted "Accept" header fields or based on the MASA's prior understanding of
proper format for this pledge. Only the "application/voucher-cms+json" media type [RFC8366] is defined at this time. The syntactic
details of vouchers are described in detail in [RFC8366]. Figure 14 shows a sample of the contents of a voucher.

Figure 14: An Example Voucher

The MASA populates the voucher fields as follows:

nonce:

The nonce from the pledge if available. See Section 5.5.6.

assertion:

The method used to verify the relationship between the pledge and registrar. See Section 5.5.5.

pinned-domain-cert:

A certificate; see Section 5.5.2. This figure is illustrative; for an example, see Appendix C.2 where an end-entity certificate is
used.

serial-number:

The serial-number as provided in the voucher-request. Also see Section 5.5.5.

domain-cert-revocation-checks:

Set as appropriate for the pledge's capabilities and as documented in [RFC8366]. The MASA MAY set this field to "false"
since setting it to "true" would require that revocation information be available to the pledge, and this document does not

{
  "ietf-voucher:voucher": {
    "nonce": "62a2e7693d82fcda2624de58fb6722e5",
    "assertion": "logged",
    "pinned-domain-cert": "base64encodedvalue==",
    "serial-number": "JADA123456789"
  }
}

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#voucherjsonexample
https://www.rfc-editor.org/rfc/rfc8995.html#figure-14
https://www.rfc-editor.org/rfc/rfc8995.html#name-an-example-voucher
https://www.rfc-editor.org/rfc/rfc8995.html#MASAnoncehandling
https://www.rfc-editor.org/rfc/rfc8995.html#MASAassertion
https://www.rfc-editor.org/rfc/rfc8995.html#MASApinned
https://www.rfc-editor.org/rfc/rfc8995.html#exampleprocess
https://www.rfc-editor.org/rfc/rfc8995.html#MASAassertion
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366


Page 117 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

make normative requirements for [RFC6961], Section 4.4.2.1 of [RFC8446], or equivalent integrations.

expires-on:

This is set for nonceless vouchers. The MASA ensures the voucher lifetime is consistent with any revocation or pinned-
domain-cert consistency checks the pledge might perform. See Section 2.6.1. There are three times to consider: (a) a
configured voucher lifetime in the MASA, (b) the expiry time for the registrar's certificate, and (c) any CRL lifetime. The
expires-on field SHOULD be before the earliest of these three values. Typically, (b) will be some significant time in the future,
but (c) will typically be short (on the order of a week or less). The RECOMMENDED period for (a) is on the order of 20
minutes, so it will typically determine the life span of the resulting voucher. 20 minutes is sufficient time to reach the post-
provisional state in the pledge, at which point there is an established trust relationship between the pledge and registrar. The
subsequent operations can take as long as required from that point onwards. The lifetime of the voucher has no impact on
the life span of the ownership relationship.

Whenever a voucher is issued, the MASA MUST update the audit-log sufficiently to generate the response as described in Section
5.8.1. The internal state requirements to maintain the audit-log are out of scope.

5.6.1. Pledge Voucher Verification

The pledge MUST verify the voucher signature using the manufacturer-installed trust anchor(s) associated with the manufacturer's
MASA (this is likely included in the pledge's firmware). Management of the manufacturer-installed trust anchor(s) is out of scope of
this document; this protocol does not update this trust anchor(s).

The pledge MUST verify that the serial-number field of the signed voucher matches the pledge's own serial-number.

The pledge MUST verify the nonce information in the voucher. If present, the nonce in the voucher must match the nonce the
pledge submitted to the registrar; vouchers with no nonce can also be accepted (according to local policy; see Section 7.2).

The pledge MUST be prepared to parse and fail gracefully from a voucher response that does not contain a pinned-domain-cert
field. Such a thing indicates a failure to enroll in this domain, and the pledge MUST attempt joining with other available Join Proxies.

The pledge MUST be prepared to ignore additional fields that it does not recognize.

5.6.2. Pledge Authentication of Provisional TLS Connection

Following the process described in [RFC8366], the pledge should consider the public key from the pinned-domain-cert as the sole
temporary trust anchor.

The pledge then evaluates the TLS server certificate chain that it received when the TLS connection was formed using this trust
anchor. It is possible that the public key in the pinned-domain-cert directly matches the public key in the end-entity certificate
provided by the TLS server.

If a registrar's credentials cannot be verified using the pinned-domain-cert trust anchor from the voucher, then the TLS connection is
discarded, and the pledge abandons attempts to bootstrap with this discovered registrar. The pledge SHOULD send voucher status
telemetry (described below) before closing the TLS connection. The pledge MUST attempt to enroll using any other proxies it has
found. It SHOULD return to the same proxy again after unsuccessful attempts with other proxies. Attempts should be made at
repeated intervals according to the back-off timer described earlier. Attempts SHOULD be repeated as failure may be the result of a
temporary inconsistency (an inconsistently rolled registrar key, or some other misconfiguration). The inconsistency could also be the
result of an active MITM attack on the EST connection.

The registrar MUST use a certificate that chains to the pinned-domain-cert as its TLS server certificate.

https://www.rfc-editor.org/rfc/rfc8995.html#RFC6961
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2.1
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8446
https://www.rfc-editor.org/rfc/rfc8995.html#timeunknown
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauditlog
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauditlog
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-voucher-verification
https://www.rfc-editor.org/rfc/rfc8995.html#pledgeReductions
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-authentication-of-pr
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366


Page 118 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The pledge's PKIX path validation of a registrar certificate's validity period information is as described in Section 2.6.1. Once the
PKIX path validation is successful, the TLS connection is no longer provisional.

The pinned-domain-cert MAY be installed as a trust anchor for future operations such as enrollment (e.g., as recommended per
[RFC7030]) or trust anchor management or raw protocols that do not need full PKI-based key management. It can be used to
authenticate any dynamically discovered EST server that contains the id-kp-cmcRA extended key usage extension as detailed in
EST (see [RFC7030], Section 3.6.1); but to reduce system complexity, the pledge SHOULD avoid additional discovery operations.
Instead, the pledge SHOULD communicate directly with the registrar as the EST server. The pinned-domain-cert is not a complete
distribution of the CA certificate response, as described in [RFC7030], Section 4.1.3, which is an additional justification for the
recommendation to proceed with EST key management operations. Once a full CA certificate response is obtained, it is more
authoritative for the domain than the limited pinned-domain-cert response.

5.7. Pledge BRSKI Status Telemetry

The domain is expected to provide indications to the system administrators concerning device life-cycle status. To facilitate this, it
needs telemetry information concerning the device's status.

The pledge MUST indicate its pledge status regarding the voucher. It does this by sending a status message to the registrar.

The posted data media type: application/json

The client sends an HTTP POST to the server at the URI ".well-known/brski/voucher_status".

The format and semantics described below are for version 1. A version field is included to permit significant changes to this
feedback in the future. A registrar that receives a status message with a version larger than it knows about SHOULD log the
contents and alert a human.

The status field indicates if the voucher was acceptable. Boolean values are acceptable, where "true" indicates the voucher was
acceptable.

If the voucher was not acceptable, the Reason string indicates why. In a failure case, this message may be sent to an
unauthenticated, potentially malicious registrar; therefore, the Reason string SHOULD NOT provide information beneficial to an
attacker. The operational benefit of this telemetry information is balanced against the operational costs of not recording that a
voucher was ignored by a client that the registrar expected was going to continue joining the domain.

The reason-context attribute is an arbitrary JSON object (literal value or hash of values) that provides additional information specific
to this pledge. The contents of this field are not subject to standardization.

The version and status fields MUST be present. The Reason field SHOULD be present whenever the status field is false. The
Reason-Context field is optional. In the case of a SUCCESS, the Reason string MAY be omitted.

The keys to this JSON object are case sensitive and MUST be lowercase. Figure 16 shows an example JSON.

\<CODE BEGINS> file "voucherstatus.cddl"

voucherstatus-post = {
    "version": uint,
    "status": bool,
    ? "reason": text,

https://www.rfc-editor.org/rfc/rfc8995.html#timeunknown
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-brski-status-telemet
https://www.rfc-editor.org/rfc/rfc8995.html#telemetryexample


Page 119 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 15: CDDL for Voucher Status POST

Figure 16: Example Status Telemetry

The server SHOULD respond with an HTTP 200 but MAY simply fail with an HTTP 404 error. The client ignores any response. The
server SHOULD capture this telemetry information within the server logs.

Additional standard JSON fields in this POST MAY be added; see Section 8.5. A server that sees unknown fields should log them,
but otherwise ignore them.

5.8. Registrar Audit-Log Request

After receiving the pledge status telemetry (see Section 5.7), the registrar SHOULD request the MASA audit-log from the MASA
service.

This is done with an HTTP POST using the operation path value of "/.well-known/brski/requestauditlog".

The registrar SHOULD HTTP POST the same registrar voucher-request as it did when requesting a voucher (using the same
Content-Type). It is posted to the /requestauditlog URI instead. The idevid-issuer and serial-number informs the MASA which log is
requested, so the appropriate log can be prepared for the response. Using the same media type and message minimizes
cryptographic and message operations, although it results in additional network traffic. The relying MASA implementation MAY
leverage internal state to associate this request with the original, and by now already validated, voucher-request so as to avoid an
extra crypto validation.

A registrar MAY request logs at future times. If the registrar generates a new request, then the MASA is forced to perform the
additional cryptographic operations to verify the new request.

A MASA that receives a request for a device that does not exist, or for which the requesting owner was never an owner, returns an
HTTP 404 ("Not found") code.

It is reasonable for a registrar, that the MASA does not believe to be the current owner, to request the audit-log. There are probably
reasons for this, which are hard to predict in advance. For instance, such a registrar may not be aware that the device has been

    ? "reason-context" : { $$arbitrary-map }
  }
}

\<CODE ENDS>

{
    "version": 1,
    "status":false,
    "reason":"Informative human-readable message",
    "reason-context": { "additional" : "JSON" }
}

https://www.rfc-editor.org/rfc/rfc8995.html#figure-15
https://www.rfc-editor.org/rfc/rfc8995.html#name-cddl-for-voucher-status-pos
https://www.rfc-editor.org/rfc/rfc8995.html#figure-16
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-status-telemetry
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatustelemetryregistry
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-audit-log-request
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatus


Page 120 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

resold; it may be that the device has been resold inappropriately, and this is how the original owner will learn of the occurrence. It is
also possible that the device legitimately spends time in two different networks.

Rather than returning the audit-log as a response to the POST (with a return code 200), the MASA MAY instead return a 201
("Created") response ([RFC7231], Sections 6.3.2 and 7.1), with the URL to the prepared (and idempotent, therefore cachable) audit
response in the "Location" header field.

In order to avoid enumeration of device audit-logs, a MASA that returns URLs SHOULD take care to make the returned URL
unguessable. [W3C.capability-urls] provides very good additional guidance. For instance, rather than returning URLs containing a
database number such as https://example.com/auditlog/1234 or the Extended Unique Identifier (EUI) of the device such
https://example.com/auditlog/10-00-00-11-22-33, the MASA SHOULD return a randomly generated value (a "slug" in web parlance).
The value is used to find the relevant database entry.

A MASA that returns a code 200 MAY also include a "Location" header for future reference by the registrar.

5.8.1. MASA Audit-Log Response

A log data file is returned consisting of all log entries associated with the device selected by the IDevID presented in the request.
The audit-log may be abridged by removal of old or repeated values as explained below. The returned data is in JSON format
[RFC8259], and the Content-Type SHOULD be "application/json".

The following CDDL [RFC8610] explains the structure of the JSON format audit-log response:

\<CODE BEGINS> file "auditlog.cddl"

audit-log-response = {
  "version": uint,
  "events": [ + event ]
  "truncation": {
    ? "nonced duplicates": uint,
    ? "nonceless duplicates": uint,
    ? "arbitrary": uint,
  }
}

event = {
  "date": text,
  "domainID": text,
  "nonce": text / null,
  "assertion": "verified" / "logged" / "proximity",
  ? "truncated": uint,
}

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#RFC7231
https://www.rfc-editor.org/rfc/rfc7231#section-6.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-7.1
https://www.rfc-editor.org/rfc/rfc8995.html#W3C.capability-urls
https://example.com/auditlog/1234
https://example.com/auditlog/10-00-00-11-22-33
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-audit-log-response
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8259
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8610


Page 121 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 17: CDDL for Audit-Log Response

An example:

Figure 18: Example of an Audit-Log Response

The domainID is a binary SubjectKeyIdentifier value calculated according to Section 5.8.2. It is encoded once in base64 in order to
be transported in this JSON container.

The date is formatted per [RFC3339], which is consistent with typical JavaScript usage of JSON.

The truncation structure MAY be omitted if all values are zero. Any counter missing from the truncation structure is assumed to be
zero.

The nonce is a string, as provided in the voucher-request, and is used in the voucher. If no nonce was placed in the resulting
voucher, then a value of null SHOULD be used in preference to omitting the entry. While the nonce is often created as a base64-
encoded random series of bytes, this should not be assumed.

Distribution of a large log is less than ideal. This structure can be optimized as follows: nonced or nonceless entries for the same
domainID MAY be abridged from the log leaving only the single most recent nonced or nonceless entry for that domainID. In the
case of truncation, the "event" truncation value SHOULD contain a count of the number of events for this domainID that were

{
  "version":"1",
  "events":[
    {
        "date":"2019-05-15T17:25:55.644-04:00",
        "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
        "nonce":"VOUFT-WwrEv0NuAQEHoV7Q",
        "assertion":"proximity",
        "truncated":"0"
    },
    {
        "date":"2017-05-15T17:25:55.644-04:00",
        "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
        "nonce":"f4G6Vi1t8nKo/FieCVgpBg==",
        "assertion":"proximity"
    }
  ],
    "truncation": {
        "nonced duplicates": "0",
        "nonceless duplicates": "1",
        "arbitrary": "2"
     }
}

https://www.rfc-editor.org/rfc/rfc8995.html#figure-17
https://www.rfc-editor.org/rfc/rfc8995.html#name-cddl-for-audit-log-response
https://www.rfc-editor.org/rfc/rfc8995.html#figure-18
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-of-an-audit-log-res
https://www.rfc-editor.org/rfc/rfc8995.html#domainID
https://www.rfc-editor.org/rfc/rfc8995.html#RFC3339


Page 122 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

omitted. The log SHOULD NOT be further reduced, but an operational situation could exist where maintaining the full log is not
possible. In such situations, the log MAY be arbitrarily abridged for length, with the number of removed entries indicated as
"arbitrary".

If the truncation count exceeds 1024, then the MASA MAY use this value without further incrementing it.

A log where duplicate entries for the same domain have been omitted ("nonced duplicates" and/or "nonceless duplicates") could still
be acceptable for informed decisions. A log that has had "arbitrary" truncations is less acceptable, but manufacturer transparency is
better than hidden truncations.

A registrar that sees a version value greater than 1 indicates an audit-log format that has been enhanced with additional information.
No information will be removed in future versions; should an incompatible change be desired in the future, then a new HTTP
endpoint will be used.

This document specifies a simple log format as provided by the MASA service to the registrar. This format could be improved by
distributed consensus technologies that integrate vouchers with technologies such as block-chain or hash trees or optimized logging
approaches. Doing so is out of the scope of this document but is an anticipated improvement for future work. As such, the registrar
SHOULD anticipate new kinds of responses and SHOULD provide operator controls to indicate how to process unknown
responses.

5.8.2. Calculation of domainID

The domainID is a binary value (a BIT STRING) that uniquely identifies a registrar by the pinned-domain-cert.

If the pinned-domain-cert certificate includes the SubjectKeyIdentifier ([RFC5280], Section 4.2.1.2), then it is used as the domainID.
If not, the SPKI Fingerprint as described in [RFC7469], Section 2.4 is used. This value needs to be calculated by both the MASA (to
populate the audit-log) and the registrar (to recognize itself in the audit-log).

[RFC5280], Section 4.2.1.2 does not mandate that the SubjectKeyIdentifier extension be present in non-CA certificates. It is
RECOMMENDED that registrar certificates (even if self-signed) always include the SubjectKeyIdentifier to be used as a domainID.

The domainID is determined from the certificate chain associated with the pinned-domain-cert and is used to update the audit-log.

5.8.3. Registrar Audit-Log Verification

Each time the MASA issues a voucher, it appends details of the assignment to an internal audit-log for that device. The internal
audit-log is processed when responding to requests for details as described in Section 5.8. The contents of the audit-log can
express a variety of trust levels, and this section explains what kind of trust a registrar can derive from the entries.

While the audit-log provides a list of vouchers that were issued by the MASA, the vouchers are issued in response to voucher-
requests, and it is the content of the voucher-requests that determines how meaningful the audit-log entries are.

A registrar SHOULD use the log information to make an informed decision regarding the continued bootstrapping of the pledge. The
exact policy is out of scope of this document as it depends on the security requirements within the registrar domain. Equipment that
is purchased preowned can be expected to have an extensive history. The following discussion is provided to help explain the value
of each log element:

date:

The date field provides the registrar an opportunity to divide the log around known events such as the purchase date.
Depending on the context known to the registrar or administrator, events before/after certain dates can have different levels of

https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-calculation-of-domainid
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7469
https://www.rfc-editor.org/rfc/rfc7469#section-2.4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5280
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.8.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-audit-log-verific
https://www.rfc-editor.org/rfc/rfc8995.html#authzLogRequest


Page 123 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

importance. For example, for equipment that is expected to be new, and thus has no history, it would be a surprise to find
prior entries.

domainID:

If the log includes an unexpected domainID, then the pledge could have imprinted on an unexpected domain. The registrar
can be expected to use a variety of techniques to define "unexpected" ranging from acceptlists of prior domains to anomaly
detection (e.g., "this device was previously bound to a different domain than any other device deployed"). Log entries can
also be compared against local history logs in search of discrepancies (e.g., "this device was re-deployed some number of
times internally, but the external audit-log shows additional re-deployments our internal logs are unaware of").

nonce:

Nonceless entries mean the logged domainID could theoretically trigger a reset of the pledge and then take over
management by using the existing nonceless voucher.

assertion:

The assertion leaf in the voucher and audit-log indicates why the MASA issued the voucher. A "verified" entry means that the
MASA issued the associated voucher as a result of positive verification of ownership. However, this entry does not indicate
whether or not the pledge was actually deployed in the prior domain. A "logged" assertion informs the registrar that the prior
vouchers were issued with minimal verification. A "proximity" assertion assures the registrar that the pledge was truly
communicating with the prior domain and thus provides assurance that the prior domain really has deployed the pledge.

A relatively simple policy is to acceptlist known (internal or external) domainIDs and require all vouchers to have a nonce. An
alternative is to require that all nonceless vouchers be from a subset (e.g., only internal) of domainIDs. If the policy is violated, a
simple action is to revoke any locally issued credentials for the pledge in question or to refuse to forward the voucher. The registrar
MUST then refuse any EST actions and SHOULD inform a human via a log. A registrar MAY be configured to ignore (i.e., override
the above policy) the history of the device, but it is RECOMMENDED that this only be configured if hardware-assisted (i.e.,
Transport Performance Metrics (TPM) anchored) Network Endpoint Assessment (NEA) [RFC5209] is supported.

5.9. EST Integration For PKI Bootstrapping

The pledge SHOULD follow the BRSKI operations with EST enrollment operations including "CA Certificates Request", "CSR
Attributes Request", and "Client Certificate Request" or "Server-Side Key Generation", etc. This is a relatively seamless integration
since BRSKI API calls provide an automated alternative to the manual bootstrapping method described in [RFC7030]. As noted
above, use of HTTP-persistent connections simplifies the pledge state machine.

Although EST allows clients to obtain multiple certificates by sending multiple Certificate Signing Requests (CSRs), BRSKI does not
support this mechanism directly. This is because BRSKI pledges MUST use the CSR Attributes request ([RFC7030], Section 4.5).
The registrar MUST validate the CSR against the expected attributes. This implies that client requests will "look the same" and
therefore result in a single logical certificate being issued even if the client were to make multiple requests. Registrars MAY contain
more complex logic, but doing so is out of scope of this specification. BRSKI does not signal any enhancement or restriction to this
capability.

5.9.1. EST Distribution of CA Certificates

The pledge SHOULD request the full EST Distribution of CA certificate messages; see [RFC7030], Section 4.1.

This ensures that the pledge has the complete set of current CA certificates beyond the pinned-domain-cert (see Section 5.6.2 for a
discussion of the limitations inherent in having a single certificate instead of a full CA certificate response). Although these limitations

https://www.rfc-editor.org/rfc/rfc8995.html#RFC5209
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-integration-for-pki-boo
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.5
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-distribution-of-ca-cert
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.1
https://www.rfc-editor.org/rfc/rfc8995.html#PledgeAuthenticationOfProvisionalTLS


Page 124 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

are acceptable during initial bootstrapping, they are not appropriate for ongoing PKIX end-entity certificate validation.

5.9.2. EST CSR Attributes

Automated bootstrapping occurs without local administrative configuration of the pledge. In some deployments, it is plausible that
the pledge generates a certificate request containing only identity information known to the pledge (essentially the X.509 IDevID
information) and ultimately receives a certificate containing domain-specific identity information. Conceptually, the CA has complete
control over all fields issued in the end-entity certificate. Realistically, this is operationally difficult with the current status of PKI CA
deployments, where the CSR is submitted to the CA via a number of non-standard protocols. Even with all standardized protocols
used, it could operationally be problematic to expect that service-specific certificate fields can be created by a CA that is likely
operated by a group that has no insight into different network services/protocols used. For example, the CA could even be
outsourced.

To alleviate these operational difficulties, the pledge MUST request the EST "CSR Attributes" from the EST server, and the EST
server needs to be able to reply with the attributes necessary for use of the certificate in its intended protocols/services. This
approach allows for minimal CA integrations, and instead, the local infrastructure (EST server) informs the pledge of the proper
fields to include in the generated CSR (such as rfc822Name). This approach is beneficial to automated bootstrapping in the widest
number of environments.

In networks using the BRSKI enrolled certificate to authenticate the ACP, the EST CSR Attributes MUST include the ACP domain
information fields defined in [RFC8994], Section 6.2.2.

The registrar MUST also confirm that the resulting CSR is formatted as indicated before forwarding the request to a CA. If the
registrar is communicating with the CA using a protocol such as full Certificate Management over CMS (CMC), which provides
mechanisms to override the CSR Attributes, then these mechanisms MAY be used even if the client ignores the guidance for the
CSR Attributes.

5.9.3. EST Client Certificate Request

The pledge MUST request a new Client Certificate; see [RFC7030], Section 4.2.

5.9.4. Enrollment Status Telemetry

For automated bootstrapping of devices, the administrative elements that provide bootstrapping also provide indications to the
system administrators concerning device life-cycle status. This might include information concerning attempted bootstrapping
messages seen by the client. The MASA provides logs and the status of credential enrollment. Since an end user is assumed per
[RFC7030], a final success indication back to the server is not included. This is insufficient for automated use cases.

The client MUST send an indicator to the registrar about its enrollment status. It does this by using an HTTP POST of a JSON
dictionary with the attributes described below to the new EST endpoint at "/.well-known/brski/enrollstatus".

When indicating a successful enrollment, the client SHOULD first re-establish the EST TLS session using the newly obtained
credentials. TLS 1.3 supports doing this in-band, but TLS 1.2 does not. The client SHOULD therefore always close the existing TLS
connection and start a new one, using the same Join Proxy.

In the case of a failed enrollment, the client MUST send the telemetry information over the same TLS connection that was used for
the enrollment attempt, with a Reason string indicating why the most recent enrollment failed. (For failed attempts, the TLS
connection is the most reliable way to correlate server-side information with what the client provides.)

The version and status fields MUST be present. The Reason field SHOULD be present whenever the status field is false. In the
case of a SUCCESS, the Reason string MAY be omitted.

https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-csr-attributes
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8994#section-6.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-client-certificate-requ
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-4.2
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-enrollment-status-telemetry
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030


Page 125 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The reason-context attribute is an arbitrary JSON object (literal value or hash of values) that provides additional information specific
to the failure to unroll from this pledge. The contents of this field are not subject to standardization. This is represented by the group-
socket "$$arbitrary-map" in the CDDL.

Figure 19: CDDL for Enrollment Status POST

An example status report can be seen below. It is sent with the media type: application/json

Figure 20: Example of Enrollment Status POST

The server SHOULD respond with an HTTP 200 but MAY simply fail with an HTTP 404 error.

Within the server logs, the server MUST capture if this message was received over a TLS session with a matching Client Certificate.

5.9.5. Multiple Certificates

Pledges that require multiple certificates could establish direct EST connections to the registrar.

5.9.6. EST over CoAP

This document describes extensions to EST for the purpose of bootstrapping remote key infrastructures. Bootstrapping is relevant
for CoAP enrollment discussions as well. The definition of EST and BRSKI over CoAP is not discussed within this document beyond
ensuring proxy support for CoAP operations. Instead, it is anticipated that a definition of CoAP mappings will occur in subsequent
documents such as [ACE-COAP-EST] and that CoAP mappings for BRSKI will be discussed either there or in future work.

\<CODE BEGINS> file "enrollstatus.cddl"

enrollstatus-post = {
    "version": uint,
    "status": bool,
    ? "reason": text,
    ? "reason-context" : { $$arbitrary-map }
  }
}

\<CODE ENDS>

{
    "version": 1,
    "status":true,
    "reason":"Informative human readable message",
    "reason-context": { "additional" : "JSON" }
}

https://www.rfc-editor.org/rfc/rfc8995.html#figure-19
https://www.rfc-editor.org/rfc/rfc8995.html#name-cddl-for-enrollment-status-
https://www.rfc-editor.org/rfc/rfc8995.html#figure-20
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-of-enrollment-statu
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-multiple-certificates
https://www.rfc-editor.org/rfc/rfc8995.html#section-5.9.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-est-over-coap
https://www.rfc-editor.org/rfc/rfc8995.html#I-D.ietf-ace-coap-est


Page 126 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

6. Clarification Of Transfer-Encoding
[RFC7030] defines endpoints to include a "Content-Transfer-Encoding" heading and payloads to be base64-encoded DER
[RFC4648].

When used within BRSKI, the original EST endpoints remain base64 encoded [RFC7030] (as clarified by [RFC8951]), but the new
BRSKI endpoints that send and receive binary artifacts (specifically, "/.well-known/brski/requestvoucher") are binary. That is, no
encoding is used.

In the BRSKI context, the EST "Content-Transfer-Encoding" header field SHOULD be ignored if present. This header field does not
need to be included.

7. Reduced Security Operational
Modes
A common requirement of bootstrapping is to support less secure operational modes for support-specific use cases. This section
suggests a range of mechanisms that would alter the security assurance of BRSKI to accommodate alternative deployment
architectures and mitigate life-cycle management issues identified in Section 10. They are presented here as informative (non-
normative) design guidance for future standardization activities. Section 9 provides standardization applicability statements for the
ANIMA ACP. Other users would expect that subsets of these mechanisms could be profiled with accompanying applicability
statements similar to the one described in Section 9.

This section is considered non-normative in the generality of the protocol. Use of the suggested mechanisms here MUST be
detailed in specific profiles of BRSKI, such as in Section 9.

7.1. Trust Model

This section explains the trust relationships detailed in Section 2.4:

Figure 21: Elements of BRSKI Trust Model

Pledge:

The pledge could be compromised and provide an attack vector for malware. The entity is trusted to only imprint using secure
methods described in this document. Additional endpoint assessment techniques are RECOMMENDED but are out of scope
of this document.

+--------+         +---------+    +------------+     +------------+
| Pledge |         | Join    |    | Domain     |     |Manufacturer|
|        |         | Proxy   |    | Registrar  |     | Service    |
|        |         |         |    |            |     | (Internet) |
+--------+         +---------+    +------------+     +------------+

https://www.rfc-editor.org/rfc/rfc8995.html#section-6
https://www.rfc-editor.org/rfc/rfc8995.html#name-clarification-of-transfer-e
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4648
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8951
https://www.rfc-editor.org/rfc/rfc8995.html#section-7
https://www.rfc-editor.org/rfc/rfc8995.html#name-reduced-security-operationa
https://www.rfc-editor.org/rfc/rfc8995.html#name-reduced-security-operationa
https://www.rfc-editor.org/rfc/rfc8995.html#privacyconsiderations
https://www.rfc-editor.org/rfc/rfc8995.html#acpapplicability
https://www.rfc-editor.org/rfc/rfc8995.html#acpapplicability
https://www.rfc-editor.org/rfc/rfc8995.html#acpapplicability
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-trust-model
https://www.rfc-editor.org/rfc/rfc8995.html#flow
https://www.rfc-editor.org/rfc/rfc8995.html#figure-21
https://www.rfc-editor.org/rfc/rfc8995.html#name-elements-of-brski-trust-mod


Page 127 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Join Proxy:

Provides proxy functionalities but is not involved in security considerations.

Registrar:

When interacting with a MASA, a registrar makes all decisions. For Ownership Audit Vouchers (see [RFC8366]), the registrar
is provided an opportunity to accept MASA decisions.

Vendor Service, MASA:

This form of manufacturer service is trusted to accurately log all claim attempts and to provide authoritative log information to
registrars. The MASA does not know which devices are associated with which domains. These claims could be strengthened
by using cryptographic log techniques to provide append only, cryptographic assured, publicly auditable logs.

Vendor Service, Ownership Validation:

This form of manufacturer service is trusted to accurately know which device is owned by which domain.

7.2. Pledge Security Reductions

The following is a list of alternative behaviors that the pledge can be programmed to implement. These behaviors are not mutually
exclusive, nor are they dependent upon each other. Some of these methods enable offline and emergency (touch-based)
deployment use cases. Normative language is used as these behaviors are referenced in later sections in a normative fashion.

1. The pledge MUST accept nonceless vouchers. This allows for a use case where the registrar cannot connect to the MASA at
the deployment time. Logging and validity periods address the security considerations of supporting these use cases.

2. Many devices already support "trust on first use" for physical interfaces such as console ports. This document does not
change that reality. Devices supporting this protocol MUST NOT support "trust on first use" on network interfaces. This is
because "trust on first use" over network interfaces would undermine the logging based security protections provided by this
specification.

3. The pledge MAY have an operational mode where it skips voucher validation one time, for example, if a physical button is
depressed during the bootstrapping operation. This can be useful if the manufacturer service is unavailable. This behavior
SHOULD be available via local configuration or physical presence methods (such as use of a serial/craft console) to ensure
new entities can always be deployed even when autonomic methods fail. This allows for unsecured imprint.

4. A craft/serial console could include a command such as "est-enroll [2001:db8:0:1]:443" that begins the EST process from the
point after the voucher is validated. This process SHOULD include server certificate verification using an on-screen
fingerprint.

It is RECOMMENDED that "trust on first use" or any method of skipping voucher validation (including use of a craft serial console)
only be available if hardware-assisted Network Endpoint Assessment (NEA) [RFC5209] is supported. This recommendation ensures
that domain network monitoring can detect inappropriate use of offline or emergency deployment procedures when voucher-based
bootstrapping is not used.

7.3. Registrar Security Reductions

A registrar can choose to accept devices using less secure methods. They MUST NOT be the default behavior. These methods may
be acceptable in situations where threat models indicate that low security is adequate. This includes situations where security
decisions are being made by the local administrator:

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-security-reductions
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5209
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-security-reductio


Page 128 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

1. A registrar MAY choose to accept all devices, or all devices of a particular type. The administrator could make this choice in
cases where it is operationally difficult to configure the registrar with the unique identifier of each new device expected.

2. A registrar MAY choose to accept devices that claim a unique identity without the benefit of authenticating that claimed
identity. This could occur when the pledge does not include an X.509 IDevID factory-installed credential. New entities without
an X.509 IDevID credential MAY form the request per Section 5.2 using the format per Section 5.5 to ensure the pledge's
serial number information is provided to the registrar (this includes the IDevID AuthorityKeyIdentifier value, which would be
statically configured on the pledge). The pledge MAY refuse to provide a TLS Client Certificate (as one is not available). The
pledge SHOULD support HTTP-based or certificate-less TLS authentication as described in EST [RFC7030], Section 3.3.2. A
registrar MUST NOT accept unauthenticated new entities unless it has been configured to do so by an administrator that has
verified that only expected new entities can communicate with a registrar (presumably via a physically secured perimeter.)

3. A registrar MAY submit a nonceless voucher-request to the MASA service (by not including a nonce in the voucher-request).
The resulting vouchers can then be stored by the registrar until they are needed during bootstrapping operations. This is for
use cases where the target network is protected by an air gap and therefore cannot contact the MASA service during pledge
deployment.

4. A registrar MAY ignore unrecognized nonceless log entries. This could occur when used equipment is purchased with a valid
history of being deployed in air gap networks that required offline vouchers.

5. A registrar MAY accept voucher formats of future types that cannot be parsed by the registrar. This reduces the registrar's
visibility into the exact voucher contents but does not change the protocol operations.

7.4. MASA Security Reductions

Lower security modes chosen by the MASA service affect all device deployments unless the lower security behavior is tied to
specific device identities. The modes described below can be applied to specific devices via knowledge of what devices were sold.
They can also be bound to specific customers (independent of the device identity) by authenticating the customer's registrar.

7.4.1. Issuing Nonceless Vouchers

A MASA has the option of not including a nonce in the voucher and/or not requiring one to be present in the voucher-request. This
results in distribution of a voucher that may never expire and, in effect, makes the specified domain an always trusted entity to the
pledge during any subsequent bootstrapping attempts. The log information captures when a nonceless voucher is issued so that the
registrar can make appropriate security decisions when a pledge joins the domain. Nonceless vouchers are useful to support use
cases where registrars might not be online during actual device deployment.

While a nonceless voucher may include an expiry date, a typical use for a nonceless voucher is for it to be long lived. If the device
can be trusted to have an accurate clock (the MASA will know), then a nonceless voucher CAN be issued with a limited lifetime.

A more typical case for a nonceless voucher is for use with offline onboarding scenarios where it is not possible to pass a fresh
voucher-request to the MASA. The use of a long-lived voucher also eliminates concern about the availability of the MASA many
years in the future. Thus, many nonceless vouchers will have no expiry dates.

Thus, the long-lived nonceless voucher does not require proof that the device is online. Issuing such a thing is only accepted when
the registrar is authenticated by the MASA and the MASA is authorized to provide this functionality to this customer. The MASA is
RECOMMENDED to use this functionality only in concert with an enhanced level of ownership tracking, the details of which are out
of scope for this document.

If the pledge device is known to have a real-time clock that is set from the factory, use of a voucher validity period is
RECOMMENDED.

7.4.2. Trusting Owners on First Use

https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-security-reductions
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-issuing-nonceless-vouchers
https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-trusting-owners-on-first-us


Page 129 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

A MASA has the option of not verifying ownership before responding with a voucher. This is expected to be a common operational
model because doing so relieves the manufacturer providing MASA services from having to track ownership during shipping and
throughout the supply chain, and it allows for a very low overhead MASA service. A registrar uses the audit-log information as an in-
depth defense strategy to ensure that this does not occur unexpectedly (for example, when purchasing new equipment, the registrar
would throw an error if any audit-log information is reported). The MASA SHOULD verify the prior-signed-voucher-request
information for pledges that support that functionality. This provides a proof-of-proximity check that reduces the need for ownership
verification. The proof-of-proximity comes from the assumption that the pledge and Join Proxy are on the same link-local
connection.

A MASA that practices TOFU for registrar identity may wish to annotate the origin of the connection by IP address or netblock and
restrict future use of that identity from other locations. A MASA that does this SHOULD take care to not create nuisance situations
for itself when a customer has multiple registrars or uses outgoing IPv4-to-IPv4 NAT (NAT44) connections that change frequently.

7.4.3. Updating or Extending Voucher Trust Anchors

This section deals with two problems: A MASA that is no longer available due to a failed business and a MASA that is uncooperative
to a secondary sale.

A manufacturer could offer a management mechanism that allows the list of voucher verification trust anchors to be extended.
[YANG-KEYSTORE] describes one such interface that could be implemented using YANG. Pretty much any configuration
mechanism used today could be extended to provide the needed additional update. A manufacturer could even decide to install the
domain CA trust anchors received during the EST "cacerts" step as voucher verification anchors. Some additional signals will be
needed to clearly identify which keys have voucher validation authority from among those signed by the domain CA. This is future
work.

With the above change to the list of anchors, vouchers can be issued by an alternate MASA. This could be the previous owner (the
seller) or some other trusted third party who is mediating the sale. If it is a third party, the seller would need to take steps to
introduce the third-party configuration to the device prior to disconnection. The third party (e.g., a wholesaler of used equipment)
could, however, use a mechanism described in Section 7.2 to take control of the device after receiving it physically. This would
permit the third party to act as the MASA for future onboarding actions. As the IDevID certificate probably cannot be replaced, the
new owner's registrar would have to support an override of the MASA URL.

To be useful for resale or other transfers of ownership, one of two situations will need to occur. The simplest is that the device is not
put through any kind of factory default/reset before going through onboarding again. Some other secure, physical signal would be
needed to initiate it. This is most suitable for redeploying a device within the same enterprise. This would entail having previous
configuration in the system until entirely replaced by the new owner, and it represents some level of risk.

For the second scenario, there would need to be two levels of factory reset. One would take the system back entirely to
manufacturer state, including removing any added trust anchors, and the other (more commonly used) one would just restore the
configuration back to a known default without erasing trust anchors. This weaker factory reset might leave valuable credentials on
the device, and this may be unacceptable to some owners.

As a third option, the manufacturer's trust anchors could be entirely overwritten with local trust anchors. A factory default would
never restore those anchors. This option comes with a lot of power but is also a lot of responsibility: if access to the private part of
the new anchors are lost, the manufacturer may be unable to help.

8. IANA Considerations
Per this document, IANA has completed the following actions.

https://www.rfc-editor.org/rfc/rfc8995.html#section-7.4.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-updating-or-extending-vouch
https://www.rfc-editor.org/rfc/rfc8995.html#I-D.ietf-netconf-keystore
https://www.rfc-editor.org/rfc/rfc8995.html#pledgeReductions
https://www.rfc-editor.org/rfc/rfc8995.html#section-8
https://www.rfc-editor.org/rfc/rfc8995.html#name-iana-considerations


Page 130 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

8.1. The IETF XML Registry

This document registers a URI in the "IETF XML Registry" [RFC3688]. IANA has registered the following:

URI:

urn:ietf:params:xml:ns:yang:ietf-voucher-request

Registrant Contact:

The ANIMA WG of the IETF.

XML:

N/A; the requested URI is an XML namespace.

8.2. YANG Module Names Registry

This document registers a YANG module in the "YANG Module Names" registry [RFC6020]. IANA has registered the following:

Name:

ietf-voucher-request

Namespace:

urn:ietf:params:xml:ns:yang:ietf-voucher-request

Prefix:

vch

Reference:

RFC 8995

8.3. BRSKI Well-Known Considerations

8.3.1. BRSKI .well-known Registration

To the "Well-Known URIs" registry at https://www.iana.org/assignments/well-known-uris/, this document registers the well-known
name "brski" with the following filled-in template from [RFC8615]:

URI Suffix:

brski

https://www.rfc-editor.org/rfc/rfc8995.html#section-8.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-the-ietf-xml-registry
https://www.rfc-editor.org/rfc/rfc8995.html#RFC3688
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module-names-registry
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6020
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-considerat
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-registrati
https://www.iana.org/assignments/well-known-uris/
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8615


Page 131 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Change Controller:

IETF

IANA has changed the registration of "est" to now only include [RFC7030] and no longer this document. Earlier draft versions of this
document used "/.well-known/est" rather than "/.well-known/brski".

8.3.2. BRSKI .well-known Registry

IANA has created a new registry entitled: "BRSKI Well-Known URIs". The registry has three columns: URI, Description, and
Reference. New items can be added using the Specification Required [RFC8126] process. The initial contents of this registry are:

URI Description Reference

requestvoucher pledge to registrar, and from registrar to MASA RFC 8995

voucher_status pledge to registrar RFC 8995

requestauditlog registrar to MASA RFC 8995

enrollstatus pledge to registrar RFC 8995

8.4. PKIX Registry

IANA has registered the following:

a number for id-mod-MASAURLExtn2016(96) from the pkix(7) id-mod(0) Registry.

IANA has assigned a number from the id-pe registry (Structure of Management Information (SMI) Security for PKIX Certificate
Extension) for id-pe-masa-url with the value 32, resulting in an OID of 1.3.6.1.5.5.7.1.32.

8.5. Pledge BRSKI Status Telemetry

IANA has created a new registry entitled "BRSKI Parameters" and has created, within that registry, a table called: "Pledge BRSKI
Status Telemetry Attributes". New items can be added using the Specification Required process. The following items are in the initial
registration, with this document (see Section 5.7) as the reference:

version

Status

Reason

https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-brski-well-known-registry
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8126
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-pkix-registry
https://www.rfc-editor.org/rfc/rfc8995.html#section-8.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-brski-status-telemetr
https://www.rfc-editor.org/rfc/rfc8995.html#pledgestatus


Page 132 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

reason-context

8.6. DNS Service Names

IANA has registered the following service names:

Service Name:

brski-proxy

Transport Protocol(s):

tcp

Assignee:

IESG <iesg@ietf.org>

Contact:

IESG <iesg@ietf.org>

Description:

The Bootstrapping Remote Secure Key Infrastructure Proxy

Reference:

RFC 8995

Service Name:

brski-registrar

Transport Protocol(s):

tcp

Assignee:

IESG <iesg@ietf.org>

Contact:

IESG <iesg@ietf.org>

Description:

The Bootstrapping Remote Secure Key Infrastructure Registrar

https://www.rfc-editor.org/rfc/rfc8995.html#section-8.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-dns-service-names
mailto:iesg@ietf.org
mailto:iesg@ietf.org
mailto:iesg@ietf.org
mailto:iesg@ietf.org


Page 133 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Reference:

RFC 8995

8.7. GRASP Objective Names

IANA has registered the following GRASP Objective Names:

IANA has registered the value "AN_Proxy" (without quotes) to the "GRASP Objective Names" table in the GRASP Parameter
registry. The specification for this value is Section 4.1.1 of this document.

The IANA has registered the value "AN_join_registrar" (without quotes) to the "GRASP Objective Names" table in the GRASP
Parameter registry. The specification for this value is Section 4.3 of this document.

9. Applicability To The Autonomic
Control Plane (ACP)
This document provides a solution to the requirements for secure bootstrapping as defined in "Using an Autonomic Control Plane for
Stable Connectivity of Network Operations, Administration, and Maintenance (OAM)" [RFC8368], "A Reference Model for Autonomic
Networking" [RFC8993], and specifically "An Autonomic Control Plane (ACP)" [RFC8994]; see Sections 3.2 ("Secure Bootstrap over
an Unconfigured Network") and 6.2 ("ACP Domain, Certificate, and Network").

The protocol described in this document has appeal in a number of other non-ANIMA use cases. Such uses of the protocol will be
deployed into other environments with different tradeoffs of privacy, security, reliability, and autonomy from manufacturers. As such,
those use cases will need to provide their own applicability statements and will need to address unique privacy and security
considerations for the environments in which they are used.

The ACP that is bootstrapped by the BRSKI protocol is typically used in medium to large Internet service provider organizations.
Equivalent enterprises that have significant Layer 3 router connectivity also will find significant benefit, particularly if the enterprise
has many sites. (A network consisting of primarily Layer 2 is not excluded, but the adjacencies that the ACP will create and maintain
will not reflect the topology until all devices participate in the ACP.)

In the ACP, the Join Proxy is found to be proximal because communication between the pledge and the Join Proxy is exclusively on
IPv6 link-local addresses. The proximity of the Join Proxy to the registrar is validated by the registrar using ANI ACP IPv6 ULAs.
ULAs are not routable over the Internet, so as long as the Join Proxy is operating correctly, the proximity assertion is satisfied. Other
uses of BRSKI will need similar analysis if they use proximity assertions.

As specified in the ANIMA charter, this work "focuses on professionally-managed networks." Such a network has an operator and
can do things like install, configure, and operate the registrar function. The operator makes purchasing decisions and is aware of
what manufacturers it expects to see on its network.

Such an operator is also capable of performing bootstrapping of a device using a serial console (craft console). The zero-touch
mechanism presented in this and the ACP document [RFC8994] represents a significant efficiency: in particular, it reduces the need
to put senior experts on airplanes to configure devices in person.

As the technology evolves, there is recognition that not every situation may work out, and occasionally a human may still have to
visit. Given this, some mechanisms are presented in Section 7.2. The manufacturer MUST provide at least one of the one-touch

https://www.rfc-editor.org/rfc/rfc8995.html#section-8.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-grasp-objective-names
https://www.rfc-editor.org/rfc/rfc8995.html#brskigrasp
https://www.rfc-editor.org/rfc/rfc8995.html#JRCgrasp
https://www.rfc-editor.org/rfc/rfc8995.html#section-9
https://www.rfc-editor.org/rfc/rfc8995.html#name-applicability-to-the-autono
https://www.rfc-editor.org/rfc/rfc8995.html#name-applicability-to-the-autono
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8368
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8368
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8368
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8993
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8994#section-3.2
https://www.rfc-editor.org/rfc/rfc8994#section-6.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8995.html#pledgeReductions


Page 134 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

mechanisms described that permit enrollment to proceed without the availability of any manufacturer server (such as the MASA).

The BRSKI protocol is going into environments where there have already been quite a number of vendor proprietary management
systems. Those are not expected to go away quickly but rather to leverage the secure credentials that are provisioned by BRSKI.
The connectivity requirements of the said management systems are provided by the ACP.

9.1. Operational Requirements

This section collects operational requirements based upon the three roles involved in BRSKI: the MASA, the (domain) owner, and
the device. It should be recognized that the manufacturer may be involved in two roles, as it creates the software/firmware for the
device and may also be the operator of the MASA.

The requirements in this section are presented using BCP 14 language [RFC2119] [RFC8174]. These do not represent new
normative statements, just a review of a few such things in one place by role. They also apply specifically to the ANIMA ACP use
case. Other use cases likely have similar, but MAY have different, requirements.

9.1.1. MASA Operational Requirements

The manufacturer MUST arrange for an online service called the MASA to be available. It MUST be available at the URL that is
encoded in the IDevID certificate extensions described in Section 2.3.2.

The online service MUST have access to a private key with which to sign voucher artifacts [RFC8366]. The public key, certificate, or
certificate chain MUST be built into the device as part of the firmware.

It is RECOMMENDED that the manufacturer arrange for this signing key (or keys) to be escrowed according to typical software
source code escrow practices [softwareescrow].

The MASA accepts voucher-requests from domain owners according to an operational practice appropriate for the device. This can
range from any domain owner (first-come first-served, on a TOFU-like basis), to full sales channel integration where domain owners
need to be positively identified by TLS pinned Client Certificates or an HTTP authentication process. The MASA creates signed
voucher artifacts according to its internally defined policies.

The MASA MUST operate an audit-log for devices that is accessible. The audit-log is designed to be easily cacheable, and the
MASA MAY find it useful to put this content on a Content Delivery Network (CDN).

9.1.2. Domain Owner Operational Requirements

The domain owner MUST operate an EST [RFC7030] server with the extensions described in this document. This is the JRC or
registrar. This JRC/EST server MUST announce itself using GRASP within the ACP. This EST server will typically reside with the
Network Operations Center for the organization.

The domain owner MAY operate an internal CA that is separate from the EST server, or it MAY combine all activities into a single
device. The determination of the architecture depends upon the scale and resiliency requirements of the organization. Multiple JRC
instances MAY be announced into the ACP from multiple locations to achieve an appropriate level of redundancy.

In order to recognize which devices and which manufacturers are welcome on the domain owner's network, the domain owner
SHOULD maintain an acceptlist of manufacturers. This MAY extend to integration with purchasing departments to know the serial
numbers of devices.

The domain owner SHOULD use the resulting overlay ACP network to manage devices, replacing legacy out-of-band mechanisms.

https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-operational-requirements
https://www.rfc-editor.org/rfc/rfc8995.html#RFC2119
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8174
https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-operational-requiremen
https://www.rfc-editor.org/rfc/rfc8995.html#MASAURL
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8995.html#softwareescrow
https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-domain-owner-operational-re
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030


Page 135 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The domain owner SHOULD operate one or more EST servers that can be used to renew the domain certificates (LDevIDs), which
are deployed to devices. These servers MAY be the same as the JRC or MAY be a distinct set of devices, as appropriate for
resiliency.

The organization MUST take appropriate precautions against loss of access to the CA private key. Hardware security modules
and/or secret splitting are appropriate.

9.1.3. Device Operational Requirements

Devices MUST come with built-in trust anchors that permit the device to validate vouchers from the MASA.

Devices MUST come with (unique, per-device) IDevID certificates that include their serial numbers and the MASA URL extension.

Devices are expected to find Join Proxies using GRASP, and then connect to the JRC using the protocol described in this
document.

Once a domain owner has been validated with the voucher, devices are expected to enroll into the domain using EST. Devices are
then expected to form ACPs using IPsec over IPv6 link-local addresses as described in [RFC8994].

Once a device has been enrolled, it SHOULD listen for the address of the JRC using GRASP, and it SHOULD enable itself as a
Join Proxy and announce itself on all links/interfaces using GRASP DULL.

Devices are expected to renew their certificates before they expire.

10. Privacy Considerations

10.1. MASA Audit-Log

The MASA audit-log includes the domainID for each domain a voucher has been issued to. This information is closely related to the
actual domain identity. A MASA may need additional defenses against Denial-of-Service attacks (Section 11.1), and this may involve
collecting additional (unspecified here) information. This could provide sufficient information for the MASA service to build a detailed
understanding of the devices that have been provisioned within a domain.

There are a number of design choices that mitigate this risk. The domain can maintain some privacy since it has not necessarily
been authenticated and is not authoritatively bound to the supply chain.

Additionally, the domainID captures only the unauthenticated subject key identifier of the domain. A privacy-sensitive domain could
theoretically generate a new domainID for each device being deployed. Similarly, a privacy-sensitive domain would likely purchase
devices that support proximity assertions from a manufacturer that does not require sales channel integrations. This would result in
a significant level of privacy while maintaining the security characteristics provided by the registrar-based audit-log inspection.

10.2. What BRSKI-EST Reveals

During the provisional phase of the BRSKI-EST connection between the pledge and the registrar, each party reveals its certificates
to each other. For the pledge, this includes the serialNumber attribute, the MASA URL, and the identity that signed the IDevID
certificate.

https://www.rfc-editor.org/rfc/rfc8995.html#section-9.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-device-operational-requirem
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8994
https://www.rfc-editor.org/rfc/rfc8995.html#section-10
https://www.rfc-editor.org/rfc/rfc8995.html#name-privacy-considerations
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-audit-log
https://www.rfc-editor.org/rfc/rfc8995.html#dosmasa
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-what-brski-est-reveals


Page 136 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

TLS 1.2 reveals the certificate identities to on-path observers, including the Join Proxy.

TLS 1.3 reveals the certificate identities only to the end parties, but as the connection is provisional; an on-path attacker (MITM) can
see the certificates. This includes not just malicious attackers but also registrars that are visible to the pledge but are not part of the
intended domain.

The certificate of the registrar is rather arbitrary from the point of view of the BRSKI protocol. As no validations [RFC6125] are
expected to be done, the contents could be easily pseudonymized. Any device that can see a Join Proxy would be able to connect
to the registrar and learn the identity of the network in question. Even if the contents of the certificate are pseudonymized, it would
be possible to correlate different connections in different locations that belong to the same entity. This is unlikely to present a
significant privacy concern to ANIMA ACP uses of BRSKI, but it may be a concern to other users of BRSKI.

The certificate of the pledge could be revealed by a malicious Join Proxy that performed a MITM attack on the provisional TLS
connection. Such an attacker would be able to reveal the identity of the pledge to third parties if it chose to do so.

Research into a mechanism to do multistep, multiparty authenticated key agreement, incorporating some kind of zero-knowledge
proof, would be valuable. Such a mechanism would ideally avoid disclosing identities until the pledge, registrar, and MASA agree to
the transaction. Such a mechanism would need to discover the location of the MASA without knowing the identity of the pledge or
the identity of the MASA. This part of the problem may be unsolvable.

10.3. What BRSKI-MASA Reveals To The Manufacturer

With consumer-oriented devices, the "call-home" mechanism in IoT devices raises significant privacy concerns. See [livingwithIoT]
and [IoTstrangeThings] for exemplars. The ACP usage of BRSKI is not targeted at individual usage of IoT devices but rather at the
enterprise and ISP creation of networks in a zero-touch fashion where the "call-home" represents a different class of privacy and
life-cycle management concerns.

It needs to be reiterated that the BRSKI-MASA mechanism only occurs once during the commissioning of the device. It is well
defined, and although encrypted with TLS, it could in theory be made auditable as the contents are well defined. This connection
does not occur when the device powers on or is restarted for normal routines. (It is conceivable, but remarkably unusual, that a
device could be forced to go through a full factory reset during an exceptional firmware update situation, after which enrollment
would have to be repeated, and a new connection would occur.)

The BRSKI call-home mechanism is mediated via the owner's registrar, and the information that is transmitted is directly auditable
by the device owner. This is in stark contrast to many "call-home" protocols where the device autonomously calls home and uses an
undocumented protocol.

While the contents of the signed part of the pledge voucher-request cannot be changed, they are not encrypted at the registrar. The
ability to audit the messages by the owner of the network is a mechanism to defend against exfiltration of data by a nefarious
pledge. Both are, to reiterate, encrypted by TLS while in transit.

The BRSKI-MASA exchange reveals the following information to the manufacturer:

the identity of the device being enrolled. This is revealed by transmission of a signed voucher-request containing the serial-
number. The manufacturer can usually link the serial number to a device model.

an identity of the domain owner in the form of the domain trust anchor. However, this is not a global PKI-anchored name
within the WebPKI, so this identity could be pseudonymous. If there is sales channel integration, then the MASA will have
authenticated the domain owner, via either a pinned certificate or perhaps another HTTP authentication method, as per
Section 5.5.4.

the time the device is activated.

the IP address of the domain owner's registrar. For ISPs and enterprises, the IP address provides very clear geolocation of
the owner. No amount of IP address privacy extensions [RFC8981] can do anything about this, as a simple whois lookup

https://www.rfc-editor.org/rfc/rfc8995.html#RFC6125
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-what-brski-masa-reveals-to-
https://www.rfc-editor.org/rfc/rfc8995.html#livingwithIoT
https://www.rfc-editor.org/rfc/rfc8995.html#IoTstrangeThings
https://www.rfc-editor.org/rfc/rfc8995.html#MASAauthenticationOfRegistrar
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8981


Page 137 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

likely identifies the ISP or enterprise from the upper bits anyway. A passive attacker who observes the connection definitely
may conclude that the given enterprise/ISP is a customer of the particular equipment vendor. The precise model that is being
enrolled will remain private.

Based upon the above information, the manufacturer is able to track a specific device from pseudonymous domain identity to the
next pseudonymous domain identity. If there is sales-channel integration, then the identities are not pseudonymous.

The manufacturer knows the IP address of the registrar, but it cannot see the IP address of the device itself. The manufacturer
cannot track the device to a detailed physical or network location, only to the location of the registrar. That is likely to be at the
enterprise or ISP's headquarters.

The above situation is to be distinguished from a residential/individual person who registers a device from a manufacturer.
Individuals do not tend to have multiple offices, and their registrar is likely on the same network as the device. A manufacturer that
sells switching/routing products to enterprises should hardly be surprised if additional purchases of switching/routing products are
made. Deviations from a historical trend or an established baseline would, however, be notable.

The situation is not improved by the enterprise/ISP using anonymization services such as Tor [Dingledine], as a TLS 1.2 connection
will reveal the ClientCertificate used, clearly identifying the enterprise/ISP involved. TLS 1.3 is better in this regard, but an active
attacker can still discover the parties involved by performing a MITM attack on the first attempt (breaking/killing it with a TCP reset
(RST)), and then letting subsequent connection pass through.

A manufacturer could attempt to mix the BRSKI-MASA traffic in with general traffic on their site by hosting the MASA behind the
same (set) of load balancers that the company's normal marketing site is hosted behind. This makes a lot of sense from a straight
capacity planning point of view as the same set of services (and the same set of Distributed Denial-of-Service mitigations) may be
used. Unfortunately, as the BRSKI-MASA connections include TLS ClientCertificate exchanges, this may easily be observed in TLS
1.2, and a traffic analysis may reveal it even in TLS 1.3. This does not make such a plan irrelevant. There may be other
organizational reasons to keep the marketing site (which is often subject to frequent redesigns, outsourcing, etc.) separate from the
MASA, which may need to operate reliably for decades.

10.4. Manufacturers And Used Or Stolen Equipment

As explained above, the manufacturer receives information each time a device that is in factory-default mode does a zero-touch
bootstrap and attempts to enroll into a domain owner's registrar.

The manufacturer is therefore in a position to decline to issue a voucher if it detects that the new owner is not the same as the
previous owner.

1. This can be seen as a feature if the equipment is believed to have been stolen. If the legitimate owner notifies the
manufacturer of the theft, then when the new owner brings the device up, if they use the zero-touch mechanism, the new
(illegitimate) owner reveals their location and identity.

2. In the case of used equipment, the initial owner could inform the manufacturer of the sale, or the manufacturer may just
permit resales unless told otherwise. In which case, the transfer of ownership simply occurs.

3. A manufacturer could, however, decide not to issue a new voucher in response to a transfer of ownership. This is essentially
the same as the stolen case, with the manufacturer having decided that the sale was not legitimate.

4. There is a fourth case, if the manufacturer is providing protection against stolen devices. The manufacturer then has a
responsibility to protect the legitimate owner against fraudulent claims that the equipment was stolen. In the absence of such
manufacturer protection, such a claim would cause the manufacturer to refuse to issue a new voucher. Should the device go
through a deep factory reset (for instance, replacement of a damaged main board component), the device would not
bootstrap.

5. Finally, there is a fifth case: the manufacturer has decided to end-of-line the device, or the owner has not paid a yearly
support amount, and the manufacturer refuses to issue new vouchers at that point. This last case is not new to the industry:
many license systems are already deployed that have a significantly worse effect.

https://www.rfc-editor.org/rfc/rfc8995.html#Dingledine
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturers-and-used-or-s


Page 138 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

This section has outlined five situations in which a manufacturer could use the voucher system to enforce what are clearly license
terms. A manufacturer that attempted to enforce license terms via vouchers would find it rather ineffective as the terms would only
be enforced when the device is enrolled, and this is not (to repeat) a daily or even monthly occurrence.

10.5. Manufacturers And Grey Market Equipment

Manufacturers of devices often sell different products into different regional markets. Which product is available in which market can
be driven by price differentials, support issues (some markets may require manuals and tech support to be done in the local
language), and government export regulation (such as whether strong crypto is permitted to be exported or permitted to be used in
a particular market). When a domain owner obtains a device from a different market (they can be new) and transfers it to a different
location, this is called a Grey Market.

A manufacturer could decide not to issue a voucher to an enterprise/ISP based upon their location. There are a number of ways that
this could be determined: from the geolocation of the registrar, from sales channel knowledge about the customer, and from what
products are available or unavailable in that market. If the device has a GPS, the coordinates of the device could even be placed
into an extension of the voucher.

The above actions are not illegal, and not new. Many manufacturers have shipped crypto-weak (exportable) versions of firmware as
the default on equipment for decades. The first task of an enterprise/ISP has always been to login to a manufacturer system, show
one's "entitlement" (country information, proof that support payments have been made), and receive either a new updated firmware
or a license key that will activate the correct firmware.

BRSKI permits the above process to be automated (in an autonomic fashion) and therefore perhaps encourages this kind of
differentiation by reducing the cost of doing it.

An issue that manufacturers will need to deal with in the above automated process is when a device is shipped to one country with
one set of rules (or laws or entitlements), but the domain registry is in another one. Which rules apply is something that will have to
be worked out: the manufacturer could believe they are dealing with Grey Market equipment when they are simply dealing with a
global enterprise.

10.6. Some Mitigations For Meddling By Manufacturers

The most obvious mitigation is not to buy the product. Pick manufacturers that are up front about their policies and who do not
change them gratuitously.

Section 7.4.3 describes some ways in which a manufacturer could provide a mechanism to manage the trust anchors and built-in
certificates (IDevID) as an extension. There are a variety of mechanisms, and some may take a substantial amount of work to get
exactly correct. These mechanisms do not change the flow of the protocol described here but rather allow the starting trust
assumptions to be changed. This is an area for future standardization work.

Replacement of the voucher validation anchors (usually pointing to the original manufacturer's MASA) with those of the new owner
permits the new owner to issue vouchers to subsequent owners. This would be done by having the selling (old) owner run a MASA.

The BRSKI protocol depends upon a trust anchor and an identity on the device. Management of these entities facilitates a few new
operational modes without making any changes to the BRSKI protocol. Those modes include: offline modes where the domain
owner operates an internal MASA for all devices, resell modes where the first domain owner becomes the MASA for the next
(resold-to) domain owner, and services where an aggregator acquires a large variety of devices and then acts as a pseudonymized
MASA for a variety of devices from a variety of manufacturers.

https://www.rfc-editor.org/rfc/rfc8995.html#section-10.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturers-and-grey-mark
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-some-mitigations-for-meddli
https://www.rfc-editor.org/rfc/rfc8995.html#masasecurityreduction_newanchor


Page 139 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Although replacement of the IDevID is not required for all modes described above, a manufacturer could support such a thing.
Some may wish to consider replacement of the IDevID as an indication that the device's warranty is terminated. For others, the
privacy requirements of some deployments might consider this a standard operating practice.

As discussed at the end of Section 5.8.1, new work could be done to use a distributed consensus technology for the audit-log. This
would permit the audit-log to continue to be useful, even when there is a chain of MASA due to changes of ownership.

10.7. Death Of A Manufacturer

A common concern has been that a manufacturer could go out of business, leaving owners of devices unable to get new vouchers
for existing products. Said products might have been previously deployed but need to be reinitialized, used, or kept in a warehouse
as long-term spares.

The MASA was named the Manufacturer Authorized Signing Authority to emphasize that it need not be the manufacturer itself that
performs this. It is anticipated that specialist service providers will come to exist that deal with the creation of vouchers in much the
same way that many companies have outsourced email, advertising, and janitorial services.

Further, it is expected that as part of any service agreement, the manufacturer would arrange to escrow appropriate private keys
such that a MASA service could be provided by a third party. This has routinely been done for source code for decades.

11. Security Considerations
This document details a protocol for bootstrapping that balances operational concerns against security concerns. As detailed in the
introduction, and touched on again in Section 7, the protocol allows for reduced security modes. These attempt to deliver additional
control to the local administrator and owner in cases where less security provides operational benefits. This section goes into more
detail about a variety of specific considerations.

To facilitate logging and administrative oversight, in addition to triggering registrar verification of MASA logs, the pledge reports on
the voucher parsing status to the registrar. In the case of a failure, this information is informative to a potentially malicious registrar.
This is mandated anyway because of the operational benefits of an informed administrator in cases where the failure is indicative of
a problem. The registrar is RECOMMENDED to verify MASA logs if voucher status telemetry is not received.

To facilitate truly limited clients, EST requires that the client MUST support a client authentication model (see [RFC7030], Section
3.3.2); Section 7 updates these requirements by stating that the registrar MAY choose to accept devices that fail cryptographic
authentication. This reflects current (poor) practices in shipping devices without a cryptographic identity that are NOT
RECOMMENDED.

During the provisional period of the connection, the pledge MUST treat all HTTP header and content data as untrusted data. HTTP
libraries are regularly exposed to non-secured HTTP traffic: mature libraries should not have any problems.

Pledges might chose to engage in protocol operations with multiple discovered registrars in parallel. As noted above, they will only
do so with distinct nonce values, but the end result could be multiple vouchers issued from the MASA if all registrars attempt to
claim the device. This is not a failure, and the pledge chooses whichever voucher to accept based on internal logic. The registrars
verifying log information will see multiple entries and take this into account for their analytic purposes.

11.1. Denial Of Service (DoS) Against MASA

https://www.rfc-editor.org/rfc/rfc8995.html#MASAauditlog
https://www.rfc-editor.org/rfc/rfc8995.html#section-10.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-death-of-a-manufacturer
https://www.rfc-editor.org/rfc/rfc8995.html#section-11
https://www.rfc-editor.org/rfc/rfc8995.html#name-security-considerations
https://www.rfc-editor.org/rfc/rfc8995.html#reducedsecuritymodes
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2
https://www.rfc-editor.org/rfc/rfc8995.html#reducedsecuritymodes
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-denial-of-service-dos-again


Page 140 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

There are use cases where the MASA could be unavailable or uncooperative to the registrar. They include active DoS attacks,
planned and unplanned network partitions, changes to MASA policy, or other instances where MASA policy rejects a claim. These
introduce an operational risk to the registrar owner in that MASA behavior might limit the ability to bootstrap a pledge device. For
example, this might be an issue during disaster recovery. This risk can be mitigated by registrars that request and maintain long-
term copies of "nonceless" vouchers. In that way, they are guaranteed to be able to bootstrap their devices.

The issuance of nonceless vouchers themselves creates a security concern. If the registrar of a previous domain can intercept
protocol communications, then it can use a previously issued nonceless voucher to establish management control of a pledge
device even after having sold it. This risk is mitigated by recording the issuance of such vouchers in the MASA audit-log that is
verified by the subsequent registrar and by pledges only bootstrapping when in a factory default state. This reflects a balance
between enabling MASA independence during future bootstrapping and the security of bootstrapping itself. Registrar control over
requesting and auditing nonceless vouchers allows device owners to choose an appropriate balance.

The MASA is exposed to DoS attacks wherein attackers claim an unbounded number of devices. Ensuring a registrar is
representative of a valid manufacturer customer, even without validating ownership of specific pledge devices, helps to mitigate this.
Pledge signatures on the pledge voucher-request, as forwarded by the registrar in the prior-signed-voucher-request field of the
registrar voucher-request, significantly reduce this risk by ensuring the MASA can confirm proximity between the pledge and the
registrar making the request. Supply-chain integration ("know your customer") is an additional step that MASA providers and device
vendors can explore.

11.2. DomainID Must Be Resistant To Second-Preimage Attacks

The domainID is used as the reference in the audit-log to the domain. The domainID is expected to be calculated by a hash that is
resistant to a second-preimage attack. Such an attack would allow a second registrar to create audit-log entries that are fake.

11.3. Availability Of Good Random Numbers

The nonce used by the pledge in the voucher-request SHOULD be generated by a Strong Cryptographic Sequence ([RFC4086],
Section 6.2). TLS has a similar requirement.

In particular, implementations should pay attention to the advance in [RFC4086]; see Sections 3 and, in particular, 3.4. The random
seed used by a device at boot MUST be unique across all devices and all bootstraps. Resetting a device to factory default state
does not obviate this requirement.

11.4. Freshness In Voucher-Requests

A concern has been raised that the pledge voucher-request should contain some content (a nonce) provided by the registrar and/or
MASA in order for those actors to verify that the pledge voucher-request is fresh.

There are a number of operational problems with getting a nonce from the MASA to the pledge. It is somewhat easier to collect a
random value from the registrar, but as the registrar is not yet vouched for, such a registrar nonce has little value. There are privacy
and logistical challenges to addressing these operational issues, so if such a thing were to be considered, it would have to provide
some clear value. This section examines the impacts of not having a fresh pledge voucher-request.

Because the registrar authenticates the pledge, a full MITM attack is not possible, despite the provisional TLS authentication by the
pledge (see Section 5.) Instead, we examine the case of a fake registrar (Rm) that communicates with the pledge in parallel or in
close-time proximity with the intended registrar. (This scenario is intentionally supported as described in Section 4.1.)

https://www.rfc-editor.org/rfc/rfc8995.html#section-11.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-domainid-must-be-resistant-
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-availability-of-good-random
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4086
https://www.rfc-editor.org/rfc/rfc4086#section-6.2
https://www.rfc-editor.org/rfc/rfc8995.html#RFC4086
https://www.rfc-editor.org/rfc/rfc4086#section-3
https://www.rfc-editor.org/rfc/rfc4086#section-3.4
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-freshness-in-voucher-reques
https://www.rfc-editor.org/rfc/rfc8995.html#ProtocolDetails
https://www.rfc-editor.org/rfc/rfc8995.html#discovery


Page 141 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The fake registrar (Rm) can obtain a voucher signed by the MASA either directly or through arbitrary intermediaries. Assuming that
the MASA accepts the registrar voucher-request (because either the Rm is collaborating with a legitimate registrar according to
supply-chain information or the MASA is in audit-log only mode), then a voucher linking the pledge to the registrar Rm is issued.

Such a voucher, when passed back to the pledge, would link the pledge to registrar Rm and permit the pledge to end the provisional
state. It now trusts the Rm and, if it has any security vulnerabilities leverageable by an Rm with full administrative control, can be
assumed to be a threat against the intended registrar.

This flow is mitigated by the intended registrar verifying the audit-logs available from the MASA as described in Section 5.8. The Rm
might chose to collect a voucher-request but wait until after the intended registrar completes the authorization process before
submitting it. This pledge voucher-request would be "stale" in that it has a nonce that no longer matches the internal state of the
pledge. In order to successfully use any resulting voucher, the Rm would need to remove the stale nonce or anticipate the pledge's
future nonce state. Reducing the possibility of this is why the pledge is mandated to generate a strong random or pseudo-random
number nonce.

Additionally, in order to successfully use the resulting voucher, the Rm would have to attack the pledge and return it to a
bootstrapping-enabled state. This would require wiping the pledge of current configuration and triggering a rebootstrapping of the
pledge. This is no more likely than simply taking control of the pledge directly, but if this is a consideration, it is RECOMMENDED
that the target network take the following steps:

Ongoing network monitoring for unexpected bootstrapping attempts by pledges.

Retrieval and examination of MASA log information upon the occurrence of any such unexpected events. The Rm will be
listed in the logs along with nonce information for analysis.

11.5. Trusting Manufacturers

The BRSKI extensions to EST permit a new pledge to be completely configured with domain-specific trust anchors. The link from
built-in manufacturer-provided trust anchors to domain-specific trust anchors is mediated by the signed voucher artifact.

If the manufacturer's IDevID signing key is not properly validated, then there is a risk that the network will accept a pledge that
should not be a member of the network. As the address of the manufacturer's MASA is provided in the IDevID using the extension
from Section 2.3, the malicious pledge will have no problem collaborating with its MASA to produce a completely valid voucher.

BRSKI does not, however, fundamentally change the trust model from domain owner to manufacturer. Assuming that the pledge
used its IDevID with EST [RFC7030] and BRSKI, the domain (registrar) still needs to trust the manufacturer.

Establishing this trust between domain and manufacturer is outside the scope of BRSKI. There are a number of mechanisms that
can be adopted including:

Manually configuring each manufacturer's trust anchor.

A TOFU mechanism. A human would be queried upon seeing a manufacturer's trust anchor for the first time, and then the
trust anchor would be installed to the trusted store. There are risks with this; even if the key to name mapping is validated
using something like the WebPKI, there remains the possibility that the name is a look alike: e.g., dem0.example. vs.
demO.example.

scanning the trust anchor from a QR code that came with the packaging (this is really a manual TOFU mechanism).

some sales integration processing where trust anchors are provided as part of the sales process, probably included in a
digital packing "slip", or a sales invoice.

consortium membership, where all manufacturers of a particular device category (e.g, a light bulb or a cable modem) are
signed by a CA specifically for this. This is done by CableLabs today. It is used for authentication and authorization as part of
[docsisroot] and [TR069].

https://www.rfc-editor.org/rfc/rfc8995.html#authzLogRequest
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-trusting-manufacturers
https://www.rfc-editor.org/rfc/rfc8995.html#IDevIDextension
https://www.rfc-editor.org/rfc/rfc8995.html#RFC7030
https://www.rfc-editor.org/rfc/rfc8995.html#docsisroot
https://www.rfc-editor.org/rfc/rfc8995.html#TR069


Page 142 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The existing WebPKI provides a reasonable anchor between manufacturer name and public key. It authenticates the key. It does not
provide a reasonable authorization for the manufacturer, so it is not directly usable on its own.

11.6. Manufacturer Maintenance Of Trust Anchors

BRSKI depends upon the manufacturer building in trust anchors to the pledge device. The voucher artifact that is signed by the
MASA will be validated by the pledge using that anchor. This implies that the manufacturer needs to maintain access to a signing
key that the pledge can validate.

The manufacturer will need to maintain the ability to make signatures that can be validated for the lifetime that the device could be
onboarded. Whether this onboarding lifetime is less than the device lifetime depends upon how the device is used. An inventory of
devices kept in a warehouse as spares might not be onboarded for many decades.

There are good cryptographic hygiene reasons why a manufacturer would not want to maintain access to a private key for many
decades. A manufacturer in that situation can leverage a long-term CA anchor, built-in to the pledge, and then a certificate chain
may be incorporated using the normal CMS certificate set. This may increase the size of the voucher artifacts, but that is not a
significant issue in non-constrained environments.

There are a few other operational variations that manufacturers could consider. For instance, there is no reason that every device
need have the same set of trust anchors preinstalled. Devices built in different factories, or on different days, or in any other
consideration, could have different trust anchors built in, and the record of which batch the device is in would be recorded in the
asset database. The manufacturer would then know which anchor to sign an artifact against.

Aside from the concern about long-term access to private keys, a major limiting factor for the shelf life of many devices will be the
age of the cryptographic algorithms included. A device produced in 2019 will have hardware and software capable of validating
algorithms common in 2019 and will have no defense against attacks (both quantum and von Neumann brute-force attacks) that
have not yet been invented. This concern is orthogonal to the concern about access to private keys, but this concern likely
dominates and limits the life span of a device in a warehouse. If any update to the firmware to support new cryptographic
mechanisms were possible (while the device was in a warehouse), updates to trust anchors would also be done at the same time.

The set of standard operating procedures for maintaining high-value private keys is well documented. For instance, the WebPKI
provides a number of options for audits in [cabforumaudit], and the DNSSEC root operations are well documented in [dnssecroot].

It is not clear if manufacturers will take this level of precaution, or how strong the economic incentives are to maintain an appropriate
level of security.

The next section examines the risk due to a compromised manufacturer IDevID signing key. This is followed by examination of the
risk due to a compromised MASA key. The third section below examines the situation where a MASA web server itself is under
attacker control, but the MASA signing key itself is safe in a not-directly connected hardware module.

11.6.1. Compromise of Manufacturer IDevID Signing Keys

An attacker that has access to the key that the manufacturer uses to sign IDevID certificates can create counterfeit devices. Such
devices can claim to be from a particular manufacturer but can be entirely different devices: Trojan horses in effect.

As the attacker controls the MASA URL in the certificate, the registrar can be convinced to talk to the attacker's MASA. The registrar
does not need to be in any kind of promiscuous mode to be vulnerable.

In addition to creating fake devices, the attacker may also be able to issue revocations for existing certificates if the IDevID
certificate process relies upon CRL lists that are distributed.

https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-maintenance-of
https://www.rfc-editor.org/rfc/rfc8995.html#cabforumaudit
https://www.rfc-editor.org/rfc/rfc8995.html#dnssecroot
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-manufacturer-


Page 143 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

There does not otherwise seem to be any risk from this compromise to devices that are already deployed or that are sitting locally in
boxes waiting for deployment (local spares). The issue is that operators will be unable to trust devices that have been in an
uncontrolled warehouse as they do not know if those are real devices.

11.6.2. Compromise of MASA Signing Keys

There are two periods of time in which to consider: when the MASA key has fallen into the hands of an attacker and after the MASA
recognizes that the key has been compromised.

11.6.2.1. Attacker Opportunities with a Compromised MASA Key

An attacker that has access to the MASA signing key could create vouchers. These vouchers could be for existing deployed devices
or for devices that are still in a warehouse. In order to exploit these vouchers, two things need to occur: the device has to go through
a factory default boot cycle, and the registrar has to be convinced to contact the attacker's MASA.

If the attacker controls a registrar that is visible to the device, then there is no difficulty in delivery of the false voucher. A possible
practical example of an attack like this would be in a data center, at an ISP peering point (whether a public IX or a private peering
point). In such a situation, there are already cables attached to the equipment that lead to other devices (the peers at the IX), and
through those links, the false voucher could be delivered. The difficult part would be to put the device through a factory reset. This
might be accomplished through social engineering of data center staff. Most locked cages have ventilation holes, and possibly a
long "paperclip" could reach through to depress a factory reset button. Once such a piece of ISP equipment has been compromised,
it could be used to compromise equipment that it was connected to (through long haul links even), assuming that those pieces of
equipment could also be forced through a factory reset.

The above scenario seems rather unlikely as it requires some element of physical access; but if there was a remote exploit that did
not cause a direct breach, but rather a fault that resulted in a factory reset, this could provide a reasonable path.

The above deals with ANI uses of BRSKI. For cases where IEEE 802.11 or 802.15.4 is involved, the need to connect directly to the
device is eliminated, but the need to do a factory reset is not. Physical possession of the device is not required as above, provided
that there is some way to force a factory reset. With some consumer devices that have low overall implementation quality, end users
might be familiar with the need to reset the device regularly.

The authors are unable to come up with an attack scenario where a compromised voucher signature enables an attacker to
introduce a compromised pledge into an existing operator's network. This is the case because the operator controls the
communication between registrar and MASA, and there is no opportunity to introduce the fake voucher through that conduit.

11.6.2.2. Risks after Key Compromise is Known

Once the operator of the MASA realizes that the voucher signing key has been compromised, it has to do a few things.

First, it MUST issue a firmware update to all devices that had that key as a trust anchor, such that they will no longer trust vouchers
from that key. This will affect devices in the field that are operating, but those devices, being in operation, are not performing
onboarding operations, so this is not a critical patch.

Devices in boxes (in warehouses) are vulnerable and remain vulnerable until patched. An operator would be prudent to unbox the
devices, onboard them in a safe environment, and then perform firmware updates. This does not have to be done by the end-
operator; it could be done by a distributor that stores the spares. A recommended practice for high-value devices (which typically
have a <4hr service window) may be to validate the device operation on a regular basis anyway.

If the onboarding process includes attestations about firmware versions, then through that process, the operator would be advised
to upgrade the firmware before going into production. Unfortunately, this does not help against situations where the attacker
operates their own registrar (as listed above).

https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-masa-signing-
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.2.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-attacker-opportunities-with
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-risks-after-key-compromise-


Page 144 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The need for short-lived vouchers is explained in [RFC8366], Section 6.1. The nonce guarantees freshness, and the short-lived
nature of the voucher means that the window to deliver a fake voucher is very short. A nonceless, long-lived voucher would be the
only option for the attacker, and devices in the warehouse would be vulnerable to such a thing.

A key operational recommendation is for manufacturers to sign nonceless, long-lived vouchers with a different key than what is used
to sign short-lived vouchers. That key needs significantly better protection. If both keys come from a common trust-anchor (the
manufacturer's CA), then a compromise of the manufacturer's CA would compromise both keys. Such a compromise of the
manufacturer's CA likely compromises all keys outlined in this section.

11.6.3. Compromise of MASA Web Service

An attacker that takes over the MASA web service can inflict a number of attacks. The most obvious one is simply to take the
database listing of customers and devices and sell the data to other attackers who will now know where to find potentially vulnerable
devices.

The second most obvious thing that the attacker can do is to kill the service, or make it operate unreliably, making customers
frustrated. This could have a serious effect on the ability to deploy new services by customers and would be a significant issue
during disaster recovery.

While the compromise of the MASA web service may lead to the compromise of the MASA voucher signing key, if the signing occurs
offboard (such as in a hardware signing module (HSM)), then the key may well be safe, but control over it resides with the attacker.

Such an attacker can issue vouchers for any device presently in service. Said device still needs to be convinced to go through a
factory reset process before an attack.

If the attacker has access to a key that is trusted for long-lived nonceless vouchers, then they could issue vouchers for devices that
are not yet in service. This attack may be very hard to verify as it would involve doing firmware updates on every device in
warehouses (a potentially ruinously expensive process); a manufacturer might be reluctant to admit this possibility.

11.7. YANG Module Security Considerations

As described in Section 7.4 (Security Considerations) of [RFC8366], the YANG module specified in this document defines the
schema for data that is subsequently encapsulated by a CMS signed-data content type, as described in Section 5 of [RFC5652]. As
such, all of the YANG-modeled data is protected from modification.

The use of YANG to define data structures, via the "yang-data" statement, is relatively new and distinct from the traditional use of
YANG to define an API accessed by network management protocols such as NETCONF [RFC6241] and RESTCONF [RFC8040].
For this reason, these guidelines do not follow the template described by Section 3.7 of [RFC8407].

12. References

12.1. Normative References

[IDevID]

https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc8366#section-6.1
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.6.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-compromise-of-masa-web-serv
https://www.rfc-editor.org/rfc/rfc8995.html#section-11.7
https://www.rfc-editor.org/rfc/rfc8995.html#name-yang-module-security-consid
https://www.rfc-editor.org/rfc/rfc8366#section-7.4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8366
https://www.rfc-editor.org/rfc/rfc5652#section-5
https://www.rfc-editor.org/rfc/rfc8995.html#RFC5652
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6241
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8040
https://www.rfc-editor.org/rfc/rfc8407#section-3.7
https://www.rfc-editor.org/rfc/rfc8995.html#RFC8407
https://www.rfc-editor.org/rfc/rfc8995.html#section-12
https://www.rfc-editor.org/rfc/rfc8995.html#name-references
https://www.rfc-editor.org/rfc/rfc8995.html#section-12.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-normative-references


Page 145 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

IEEE, "IEEE Standard for Local and metropolitan area networks - Secure Device Identity", IEEE 802.1AR,
<https://1.ieee802.org/security/802-1ar>.

[ITU.X690]

ITU-T, "Information Technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2015, August 2015,
<https://www.itu.int/rec/T-REC-X.690>.

[REST]

Fielding, R.F., "Architectural Styles and the Design of Network-based Software Architectures", 2000,
<http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf>.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC3339]

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/info/rfc3339>.

[RFC3688]

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
editor.org/info/rfc3688>.

[RFC3748]

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, Ed., "Extensible Authentication Protocol (EAP)", RFC
3748, DOI 10.17487/RFC3748, June 2004, <https://www.rfc-editor.org/info/rfc3748>.

[RFC3927]

Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of IPv4 Link-Local Addresses", RFC 3927, DOI
10.17487/RFC3927, May 2005, <https://www.rfc-editor.org/info/rfc3927>.

[RFC4086]

Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, DOI
10.17487/RFC4086, June 2005, <https://www.rfc-editor.org/info/rfc4086>.

[RFC4519]

Sciberras, A., Ed., "Lightweight Directory Access Protocol (LDAP): Schema for User Applications", RFC 4519, DOI
10.17487/RFC4519, June 2006, <https://www.rfc-editor.org/info/rfc4519>.

[RFC4648]

https://1.ieee802.org/security/802-1ar%3E
https://www.itu.int/rec/T-REC-X.690%3E
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf%3E
https://www.rfc-editor.org/info/rfc2119%3E
https://www.rfc-editor.org/info/rfc3339%3E
https://www.rfc-editor.org/info/rfc3688%3E
https://www.rfc-editor.org/info/rfc3688%3E
https://www.rfc-editor.org/info/rfc3748%3E
https://www.rfc-editor.org/info/rfc3927%3E
https://www.rfc-editor.org/info/rfc4086%3E
https://www.rfc-editor.org/info/rfc4519%3E


Page 146 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/info/rfc4648>.

[RFC4862]

Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, DOI 10.17487/RFC4862,
September 2007, <https://www.rfc-editor.org/info/rfc4862>.

[RFC5272]

Schaad, J. and M. Myers, "Certificate Management over CMS (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
<https://www.rfc-editor.org/info/rfc5272>.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, <https://www.rfc-
editor.org/info/rfc5280>.

[RFC5652]

Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.

[RFC6020]

Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI
10.17487/RFC6020, October 2010, <https://www.rfc-editor.org/info/rfc6020>.

[RFC6125]

Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet
Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI
10.17487/RFC6125, March 2011, <https://www.rfc-editor.org/info/rfc6125>.

[RFC6241]

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.

[RFC6762]

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI 10.17487/RFC6762, February 2013, <https://www.rfc-
editor.org/info/rfc6762>.

[RFC6763]

Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
<https://www.rfc-editor.org/info/rfc6763>.

[RFC7030]

https://www.rfc-editor.org/info/rfc4648%3E
https://www.rfc-editor.org/info/rfc4862%3E
https://www.rfc-editor.org/info/rfc5272%3E
https://www.rfc-editor.org/info/rfc5280%3E
https://www.rfc-editor.org/info/rfc5280%3E
https://www.rfc-editor.org/info/rfc5652%3E
https://www.rfc-editor.org/info/rfc6020%3E
https://www.rfc-editor.org/info/rfc6125%3E
https://www.rfc-editor.org/info/rfc6241%3E
https://www.rfc-editor.org/info/rfc6762%3E
https://www.rfc-editor.org/info/rfc6762%3E
https://www.rfc-editor.org/info/rfc6763%3E


Page 147 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed., "Enrollment over Secure Transport", RFC 7030, DOI 10.17487/RFC7030,
October 2013, <https://www.rfc-editor.org/info/rfc7030>.

[RFC7230]

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230,
DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.

[RFC7231]

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/info/rfc7231>.

[RFC7469]

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
2015, <https://www.rfc-editor.org/info/rfc7469>.

[RFC7950]

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.

[RFC7951]

Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016,
<https://www.rfc-editor.org/info/rfc7951>.

[RFC8040]

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8259]

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI
10.17487/RFC8259, December 2017, <https://www.rfc-editor.org/info/rfc8259>.

[RFC8366]

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert, "A Voucher Artifact for Bootstrapping Protocols", RFC 8366, DOI
10.17487/RFC8366, May 2018, <https://www.rfc-editor.org/info/rfc8366>.

[RFC8368]

Eckert, T., Ed. and M. Behringer, "Using an Autonomic Control Plane for Stable Connectivity of Network Operations,
Administration, and Maintenance (OAM)", RFC 8368, DOI 10.17487/RFC8368, May 2018, <https://www.rfc-

https://www.rfc-editor.org/info/rfc7030%3E
https://www.rfc-editor.org/info/rfc7230%3E
https://www.rfc-editor.org/info/rfc7231%3E
https://www.rfc-editor.org/info/rfc7469%3E
https://www.rfc-editor.org/info/rfc7950%3E
https://www.rfc-editor.org/info/rfc7951%3E
https://www.rfc-editor.org/info/rfc8040%3E
https://www.rfc-editor.org/info/rfc8174%3E
https://www.rfc-editor.org/info/rfc8259%3E
https://www.rfc-editor.org/info/rfc8366%3E
https://www.rfc-editor.org/info/rfc8368%3E


Page 148 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

editor.org/info/rfc8368>.

[RFC8407]

Bierman, A., "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models", BCP 216, RFC 8407,
DOI 10.17487/RFC8407, October 2018, <https://www.rfc-editor.org/info/rfc8407>.

[RFC8446]

Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.

[RFC8610]

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data Definition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610, June 2019,
<https://www.rfc-editor.org/info/rfc8610>.

[RFC8951]

Richardson, M., Werner, T., and W. Pan, "Clarification of Enrollment over Secure Transport (EST): Transfer Encodings and
ASN.1", RFC 8951, DOI 10.17487/RFC8951, November 2020, <https://www.rfc-editor.org/info/rfc8951>.

[RFC8981]

Gont, F., Krishnan, S., Narten, T., and R. Draves, "Temporary Address Extensions for Stateless Address Autoconfiguration in
IPv6", RFC 8981, DOI 10.17487/RFC8981, February 2021, <https://www.rfc-editor.org/info/rfc8981>.

[RFC8990]

Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic Autonomic Signaling Protocol (GRASP)", RFC 8990, DOI
10.17487/RFC8990, May 2021, <https://www.rfc-editor.org/rfc/rfc8990>.

[RFC8994]

Eckert, T., Ed., Behringer, M., Ed., and S. Bjarnason, "An Autonomic Control Plane (ACP)", RFC 8994, DOI
10.17487/RFC8994, May 2021, <https://www.rfc-editor.org/rfc/rfc8994>.

12.2. Informative References

[ACE-COAP-EST]

van der Stok, P., Kampanakis, P., Richardson, M., and S. Raza, "EST over secure CoAP (EST-coaps)", Work in Progress,
Internet-Draft, draft-ietf-ace-coap-est-18, 6 January 2020, <https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>.

[ANIMA-CONSTRAINED-VOUCHER]

Richardson, M., van der Stok, P., Kampanakis, P., and E. Dijk, "Constrained Voucher Artifacts for Bootstrapping Protocols",
Work in Progress, Internet-Draft, draft-ietf-anima-constrained-voucher-10, 21 February 2021, <https://tools.ietf.org/html/draft-
ietf-anima-constrained-voucher-10>.

https://www.rfc-editor.org/info/rfc8368%3E
https://www.rfc-editor.org/info/rfc8407%3E
https://www.rfc-editor.org/info/rfc8446%3E
https://www.rfc-editor.org/info/rfc8610%3E
https://www.rfc-editor.org/info/rfc8951%3E
https://www.rfc-editor.org/info/rfc8981%3E
https://www.rfc-editor.org/rfc/rfc8990%3E
https://www.rfc-editor.org/rfc/rfc8994%3E
https://www.rfc-editor.org/rfc/rfc8995.html#section-12.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-informative-references
https://tools.ietf.org/html/draft-ietf-ace-coap-est-18%3E
https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10%3E
https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10%3E


Page 149 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

[ANIMA-STATE]

Richardson, M., "Considerations for stateful vs stateless join router in ANIMA bootstrap", Work in Progress, Internet-Draft,
draft-richardson-anima-state-for-joinrouter-03, 22 September 2020, <https://tools.ietf.org/html/draft-richardson-anima-state-
for-joinrouter-03>.

[brewski]

Urban Dictionary, "brewski", March 2003, <https://www.urbandictionary.com/define.php?term=brewski>.

[cabforumaudit]

CA/Browser Forum, "Information for Auditors and Assessors", August 2019, <https://cabforum.org/information-for-auditors-
and-assessors/>.

[Dingledine]

Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The Second-Generation Onion Router", August 2004, <https://svn-
archive.torproject.org/svn/projects/design-paper/tor-design.pdf>.

[dnssecroot]

"DNSSEC Practice Statement for the Root Zone ZSK Operator", December 2017,
<https://www.iana.org/dnssec/procedures/zsk-operator/dps-zsk-operator-v2.1.pdf>.

[docsisroot]

"CableLabs Digital Certificate Issuance Service", February 2018, <https://www.cablelabs.com/resources/digital-certificate-
issuance-service/>.

[imprinting]

Wikipedia, "Imprinting (psychology)", January 2021, <https://en.wikipedia.org/w/index.php?
title=Imprinting_(psychology)&=999211441>.

[IoTstrangeThings]

ESET, "IoT of toys stranger than fiction: Cybersecurity and data privacy update", March 2017,
<https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/>.

[livingwithIoT]

Silicon Republic, "What is it actually like to live in a house filled with IoT devices?", February 2018,
<https://www.siliconrepublic.com/machines/iot-smart-devices-reality>.

[minerva]

Richardson, M., "Minerva reference implementation for BRSKI", 2020, <https://minerva.sandelman.ca/>.

[minervagithub]

https://tools.ietf.org/html/draft-richardson-anima-state-for-joinrouter-03%3E
https://tools.ietf.org/html/draft-richardson-anima-state-for-joinrouter-03%3E
https://www.urbandictionary.com/define.php?term=brewski%3E
https://cabforum.org/information-for-auditors-and-assessors/%3E
https://cabforum.org/information-for-auditors-and-assessors/%3E
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf%3E
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf%3E
https://www.iana.org/dnssec/procedures/zsk-operator/dps-zsk-operator-v2.1.pdf%3E
https://www.cablelabs.com/resources/digital-certificate-issuance-service/%3E
https://www.cablelabs.com/resources/digital-certificate-issuance-service/%3E
https://en.wikipedia.org/w/index.php?title=Imprinting_(psychology)&=999211441%3E
https://en.wikipedia.org/w/index.php?title=Imprinting_(psychology)&=999211441%3E
https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/%3E
https://www.siliconrepublic.com/machines/iot-smart-devices-reality%3E
https://minerva.sandelman.ca/%3E


Page 150 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

"ANIMA Minerva toolkit", <https://github.com/ANIMAgus-minerva>.

[openssl]

OpenSSL, "OpenSSL X509 Utility", September 2019, <https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/>.

[RFC2131]

Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, DOI 10.17487/RFC2131, March 1997, <https://www.rfc-
editor.org/info/rfc2131>.

[RFC2663]

Srisuresh, P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, DOI
10.17487/RFC2663, August 1999, <https://www.rfc-editor.org/info/rfc2663>.

[RFC5209]

Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J. Tardo, "Network Endpoint Assessment (NEA): Overview and
Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008, <https://www.rfc-editor.org/info/rfc5209>.

[RFC6960]

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP", RFC 6960, DOI 10.17487/RFC6960, June 2013, <https://www.rfc-
editor.org/info/rfc6960>.

[RFC6961]

Pettersen, Y., "The Transport Layer Security (TLS) Multiple Certificate Status Request Extension", RFC 6961, DOI
10.17487/RFC6961, June 2013, <https://www.rfc-editor.org/info/rfc6961>.

[RFC7228]

Bormann, C., Ersue, M., and A. Keranen, "Terminology for Constrained-Node Networks", RFC 7228, DOI
10.17487/RFC7228, May 2014, <https://www.rfc-editor.org/info/rfc7228>.

[RFC7258]

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May 2014,
<https://www.rfc-editor.org/info/rfc7258>.

[RFC7435]

Dukhovni, V., "Opportunistic Security: Some Protection Most of the Time", RFC 7435, DOI 10.17487/RFC7435, December
2014, <https://www.rfc-editor.org/info/rfc7435>.

[RFC7575]

Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A., Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic Networking:
Definitions and Design Goals", RFC 7575, DOI 10.17487/RFC7575, June 2015, <https://www.rfc-editor.org/info/rfc7575>.

https://github.com/ANIMAgus-minerva%3E
https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/%3E
https://www.rfc-editor.org/info/rfc2131%3E
https://www.rfc-editor.org/info/rfc2131%3E
https://www.rfc-editor.org/info/rfc2663%3E
https://www.rfc-editor.org/info/rfc5209%3E
https://www.rfc-editor.org/info/rfc6960%3E
https://www.rfc-editor.org/info/rfc6960%3E
https://www.rfc-editor.org/info/rfc6961%3E
https://www.rfc-editor.org/info/rfc7228%3E
https://www.rfc-editor.org/info/rfc7258%3E
https://www.rfc-editor.org/info/rfc7435%3E
https://www.rfc-editor.org/info/rfc7575%3E


Page 151 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

[RFC8126]

Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126,
DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.

[RFC8340]

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.

[RFC8615]

Nottingham, M., "Well-Known Uniform Resource Identifiers (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
<https://www.rfc-editor.org/info/rfc8615>.

[RFC8993]

Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia, L., and J. Nobre, "A Reference Model for Autonomic Networking",
RFC 8993, DOI 10.17487/RFC8993, May 2021, <https://www.rfc-editor.org/info/rfc8993>.

[slowloris]

Wikipedia, "Slowloris (computer security)", January 2021, <https://en.wikipedia.org/w/index.php?
title=Slowloris_(computer_security)&oldid=1001473290/>.

[softwareescrow]

Wikipedia, "Source code escrow", March 2020, <https://en.wikipedia.org/w/index.php?
title=Source_code_escrow&oldid=948073074>.

[Stajano99theresurrecting]

Stajano, F. and R. Anderson, "The Resurrecting Duckling: Security Issues for Ad-hoc Wireless Networks", 1999,
<https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf>.

[TR069]

Broadband Forum, "CPE WAN Management Protocol", TR-069, Issue 1, Amendment 6, March 2018,
<https://www.broadband-forum.org/download/TR-069_Amendment-6.pdf>.

[W3C.capability-urls]

Tennison, J., "Good Practices for Capability URLs", W3C First Public Working Draft, World Wide Web Consortium WD WD-
capability-urls-20140218, February 2014, <https://www.w3.org/TR/2014/WD-capability-urls>.

[YANG-KEYSTORE]

Watsen, K., "A YANG Data Model for a Keystore", Work in Progress, Internet-Draft, draft-ietf-netconf-keystore-22, 18 May
2021, <https://tools.ietf.org/html/draft-ietf-netconf-keystore-22>.

https://www.rfc-editor.org/info/rfc8126%3E
https://www.rfc-editor.org/info/rfc8340%3E
https://www.rfc-editor.org/info/rfc8615%3E
https://www.rfc-editor.org/info/rfc8993%3E
https://en.wikipedia.org/w/index.php?title=Slowloris_(computer_security)&oldid=1001473290/%3E
https://en.wikipedia.org/w/index.php?title=Slowloris_(computer_security)&oldid=1001473290/%3E
https://en.wikipedia.org/w/index.php?title=Source_code_escrow&oldid=948073074%3E
https://en.wikipedia.org/w/index.php?title=Source_code_escrow&oldid=948073074%3E
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf%3E
https://www.broadband-forum.org/download/TR-069_Amendment-6.pdf%3E
https://www.w3.org/TR/2014/WD-capability-urls%3E
https://tools.ietf.org/html/draft-ietf-netconf-keystore-22%3E


Page 152 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Appendix A. IPv4 And Non-ANI
Operations
The specification of BRSKI in Section 4 intentionally covers only the mechanisms for an IPv6 pledge using link-local addresses. This
section describes non-normative extensions that can be used in other environments.

A.1. IPv4 Link-Local Addresses
Instead of an IPv6 link-local address, an IPv4 address may be generated using "Dynamic Configuration of IPv4 Link-Local
Addresses" [RFC3927].

In the case where an IPv4 link-local address is formed, the bootstrap process would continue, as in an IPv6 case, by looking for a
(circuit) proxy.

A.2. Use Of DHCPv4
The pledge MAY obtain an IP address via DHCP ([RFC2131]. The DHCP-provided parameters for the Domain Name System can
be used to perform DNS operations if all local discovery attempts fail.

Appendix B. MDNS / DNS-SD Proxy
Discovery Options
Pledge discovery of the proxy (Section 4.1) MAY be performed with DNS-based Service Discovery [RFC6763] over Multicast DNS
[RFC6762] to discover the proxy at "_brski-proxy._tcp.local.".

Proxy discovery of the registrar (Section 4.3) MAY be performed with DNS-based Service Discovery over Multicast DNS to discover
registrars by searching for the service "_brski-registrar._tcp.local.".

To prevent unacceptable levels of network traffic, when using mDNS, the congestion avoidance mechanisms specified in
[RFC6762], Section 7 MUST be followed. The pledge SHOULD listen for an unsolicited broadcast response as described in
[RFC6762]. This allows devices to avoid announcing their presence via mDNS broadcasts and instead silently join a network by
watching for periodic unsolicited broadcast responses.

Discovery of the registrar MAY also be performed with DNS-based Service Discovery by searching for the service "_brski-
registrar._tcp.example.com". In this case, the domain "example.com" is discovered as described in [RFC6763], Section 11
(Appendix A.2 of this document suggests the use of DHCP parameters).

If no local proxy or registrar service is located using the GRASP mechanisms or the above-mentioned DNS-based Service
Discovery methods, the pledge MAY contact a well-known manufacturer-provided bootstrapping server by performing a DNS lookup

https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.a
https://www.rfc-editor.org/rfc/rfc8995.html#name-ipv4-and-non-ani-operations
https://www.rfc-editor.org/rfc/rfc8995.html#name-ipv4-and-non-ani-operations
https://www.rfc-editor.org/rfc/rfc8995.html#proxydetails
https://www.rfc-editor.org/rfc/rfc8995.html#section-a.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-ipv4-link-local-addresses
https://www.rfc-editor.org/rfc/rfc8995.html#RFC3927
https://www.rfc-editor.org/rfc/rfc8995.html#section-a.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-use-of-dhcpv4
https://www.rfc-editor.org/rfc/rfc8995.html#RFC2131
https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.b
https://www.rfc-editor.org/rfc/rfc8995.html#name-mdns-dns-sd-proxy-discovery
https://www.rfc-editor.org/rfc/rfc8995.html#name-mdns-dns-sd-proxy-discovery
https://www.rfc-editor.org/rfc/rfc8995.html#discovery
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6763
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6762
https://www.rfc-editor.org/rfc/rfc8995.html#JRCgrasp
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6762
https://www.rfc-editor.org/rfc/rfc6762#section-7
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6762
https://www.rfc-editor.org/rfc/rfc8995.html#RFC6763
https://www.rfc-editor.org/rfc/rfc6763#section-11
https://www.rfc-editor.org/rfc/rfc8995.html#IPv4dhcp


Page 153 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

using a well-known URI such as "brski-registrar.manufacturer.example.com". The details of the URI are manufacturer specific.
Manufacturers that leverage this method on the pledge are responsible for providing the registrar service. Also see Section 2.7.

The current DNS services returned during each query are maintained until bootstrapping is completed. If bootstrapping fails and the
pledge returns to the Discovery state, it picks up where it left off and continues attempting bootstrapping. For example, if the first
Multicast DNS _bootstrapks._tcp.local response doesn't work, then the second and third responses are tried. If these fail, the pledge
moves on to normal DNS-based Service Discovery.

Appendix C. Example Vouchers
Three entities are involved in a voucher: the MASA issues (signs) it, the registrar's public key is mentioned in it, and the pledge
validates it. In order to provide reproducible examples, the public and private keys for an example MASA and registrar are listed
first.

The keys come from an open source reference implementation of BRSKI, called "Minerva" [minerva]. It is available on GitHub
[minervagithub]. The keys presented here are used in the unit and integration tests. The MASA code is called "highway", the
registrar code is called "fountain", and the example client is called "reach".

The public key components of each are presented as base64 certificates and are decoded by openssl's x509 utility so that the
extensions can be seen. This was version 1.1.1c of the library and utility of [openssl].

C.1. Keys Involved
The manufacturer has a CA that signs the pledge's IDevID. In addition, the Manufacturer's signing authority (the MASA) signs the
vouchers, and that certificate must distributed to the devices at manufacturing time so that vouchers can be validated.

C.1.1. Manufacturer Certification Authority For IDevID Signatures

This private key is the CA that signs IDevID certificates:

\<CODE BEGINS> file "vendor.key"

-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDCAYkoLW1IEA5SKKhMMdkTK7sJxk5ybKqYq9Yr5aR7tNwqXyLGS7z8G
8S4w/UJ58BqgBwYFK4EEACKhZANiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP
juF8QkoAbT8pMrY83MS8y76wZ7AalNQ=
-----END EC PRIVATE KEY-----

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#cloudregistrar
https://www.rfc-editor.org/rfc/rfc8995.html#section-appendix.c
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-vouchers
https://www.rfc-editor.org/rfc/rfc8995.html#minerva
https://www.rfc-editor.org/rfc/rfc8995.html#minervagithub
https://www.rfc-editor.org/rfc/rfc8995.html#openssl
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-keys-involved
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-manufacturer-certification-


Page 154 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

This public key validates IDevID certificates:

file: examples/vendor.key

\<CODE BEGINS> file "vendor.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 1216069925 (0x487bc125)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 13 20:34:24 2021 GMT
            Not After : Apr 13 20:34:24 2023 GMT
        Subject: CN = highway-test.example.com CA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (384 bit)
                pub:
                    04:2e:e7:fc:a4:b4:96:c5:2e:33:02:f3:b8:7b:6f:
                    ec:93:ad:e1:6e:17:c1:b0:7b:02:87:2f:89:92:d2:
                    bd:1d:54:04:2e:6e:a0:d4:41:c4:eb:8e:fa:57:ad:
                    70:a9:4e:88:e2:2c:2c:e0:a7:c7:f3:91:c5:03:91:
                    9f:4b:0f:f3:3d:d0:b0:e2:a6:22:cd:20:e9:0f:8e:
                    e1:7c:42:4a:00:6d:3f:29:32:b6:3c:dc:c4:bc:cb:
                    be:b0:67:b0:1a:94:d4
                ASN1 OID: secp384r1
                NIST CURVE: P-384
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
            X509v3 Subject Key Identifier:
                5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:
                8C:53:8A:08
            X509v3 Authority Key Identifier:
                keyid:5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:
                80:76:8C:53:8A:08

    Signature Algorithm: ecdsa-with-SHA256



Page 155 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.1.2. MASA Key Pair For Voucher Signatures

The MASA is the Manufacturer Authorized Signing Authority. This key pair signs vouchers. An example TLS certificate (see Section
5.4) HTTP authentication is not provided as it is a common form.

This private key signs the vouchers that are presented below:

         30:64:02:30:60:37:a0:66:89:80:27:e1:0d:e5:43:9a:62:f1:
         02:bc:0f:72:6d:a9:e9:cb:84:a5:c6:44:d3:41:9e:5d:ce:7d:
         46:16:6e:15:de:f7:cc:e8:3e:61:f9:03:7c:20:c4:b7:02:30:
         7f:e9:f3:12:bb:06:c6:24:00:2b:41:aa:21:6b:d8:25:ed:81:
         07:11:ef:66:8f:06:bf:c8:be:f0:58:74:24:45:39:4d:04:fc:
         31:69:6f:cf:db:fe:61:7b:c3:24:31:ff
-----BEGIN CERTIFICATE-----
MIIB3TCCAWSgAwIBAgIESHvBJTAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjAzNDI0WhcNMjMwNDEz
MjAzNDI0WjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0Ew
djAQBgcqhkjOPQIBBgUrgQQAIgNiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP
juF8QkoAbT8pMrY83MS8y76wZ7AalNSjYzBhMA8GA1UdEwEB/wQFMAMBAf8wDgYD
VR0PAQH/BAQDAgEGMB0GA1UdDgQWBBReDKlSWozfqQ8DFOmW8YB2jFOKCDAfBgNV
HSMEGDAWgBReDKlSWozfqQ8DFOmW8YB2jFOKCDAKBggqhkjOPQQDAgNnADBkAjBg
N6BmiYAn4Q3lQ5pi8QK8D3JtqenLhKXGRNNBnl3OfUYWbhXe98zoPmH5A3wgxLcC
MH/p8xK7BsYkACtBqiFr2CXtgQcR72aPBr/IvvBYdCRFOU0E/DFpb8/b/mF7wyQx
/w==
-----END CERTIFICATE-----

\<CODE ENDS>

\<CODE BEGINS> file "masa.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJQYJHNy8pkiLJ6CcvxMGoAoGCCqGSM49
AwEHoUQDQgAEqgQVo0S54kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+
gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpQ==
-----END EC PRIVATE KEY-----

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-key-pair-for-voucher-s
https://www.rfc-editor.org/rfc/rfc8995.html#brskimasatls
https://www.rfc-editor.org/rfc/rfc8995.html#brskimasatls


Page 156 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

This public key validates vouchers, and it has been signed by the CA above:

file: examples/masa.key

\<CODE BEGINS> file "masa.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 193399345 (0xb870a31)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 13 21:40:16 2021 GMT
            Not After : Apr 13 21:40:16 2023 GMT
        Subject: CN = highway-test.example.com MASA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:aa:04:15:a3:44:b9:e2:44:f8:c9:f9:1b:07:1b:
                    a6:74:73:9c:1e:ba:6c:a9:b3:a9:30:a9:a2:32:59:
                    f7:a0:1d:47:01:6d:b9:30:95:7e:82:a8:b8:b4:c1:
                    5f:48:9d:22:13:0b:7c:92:cc:df:59:72:b8:ac:b8:
                    09:4b:69:a7:a5
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:FALSE
    Signature Algorithm: ecdsa-with-SHA256
         30:66:02:31:00:ae:cb:61:2d:d4:5c:8d:6e:86:aa:0b:06:1d:
         c6:d3:60:ba:32:73:36:25:d3:23:85:49:87:1c:ce:94:23:79:
         1a:9e:41:55:24:1d:15:22:a1:48:bb:0a:c0:ab:3c:13:73:02:
         31:00:86:3c:67:b3:95:a2:e2:e5:f9:ad:f9:1d:9c:c1:34:32:
         78:f5:cf:ea:d5:47:03:9f:00:bf:d0:59:cb:51:c2:98:04:81:
         24:8a:51:13:50:b1:75:b2:2f:9d:a8:b4:f4:b9
-----BEGIN CERTIFICATE-----
MIIBcDCB9qADAgECAgQLhwoxMAoGCCqGSM49BAMCMCYxJDAiBgNVBAMMG2hpZ2h3
YXktdGVzdC5leGFtcGxlLmNvbSBDQTAeFw0yMTA0MTMyMTQwMTZaFw0yMzA0MTMy
MTQwMTZaMCgxJjAkBgNVBAMMHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBNQVNB
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqgQVo0S54kT4yfkbBxumdHOcHrps



Page 157 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.1.3. Registrar Certification Authority

This CA enrolls the pledge once it is authorized, and it also signs the registrar's certificate.

The public key is indicated in a pledge voucher-request to show proximity.

file: examples/ownerca_secp384r1.key

qbOpMKmiMln3oB1HAW25MJV+gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpaMQMA4w
DAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNpADBmAjEArsthLdRcjW6GqgsGHcbT
YLoyczYl0yOFSYcczpQjeRqeQVUkHRUioUi7CsCrPBNzAjEAhjxns5Wi4uX5rfkd
nME0Mnj1z+rVRwOfAL/QWctRwpgEgSSKURNQsXWyL52otPS5
-----END CERTIFICATE-----

\<CODE ENDS>

\<CODE BEGINS> file "ownerca_secp384r1.key"

-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDCHnLI0MSOLf8XndiZqoZdqblcPR5YSoPGhPOuFxWy1gFi9HbWv8b/R
EGdRgGEVSjKgBwYFK4EEACKhZANiAAQbf1m6F8MavGaNjGzgw/oxcQ9l9iKRvbdW
gAfb37h6pUVNeYpGlxlZljGxj2l9Mr48yD5bY7VG9qjVb5v5wPPTuRQ/ckdRpHbd
0vC/9cqPMAF/+MJf0/UgA0SLi/IHbLQ=
-----END EC PRIVATE KEY-----

\<CODE ENDS>

\<CODE BEGINS> file "ownerca_secp384r1.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 694879833 (0x296b0659)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Validity
            Not Before: Feb 25 21:31:45 2020 GMT
            Not After : Feb 24 21:31:45 2022 GMT

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-certification-aut


Page 158 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

        Subject: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (384 bit)
                pub:
                    04:1b:7f:59:ba:17:c3:1a:bc:66:8d:8c:6c:e0:c3:
                    fa:31:71:0f:65:f6:22:91:bd:b7:56:80:07:db:df:
                    b8:7a:a5:45:4d:79:8a:46:97:19:59:96:31:b1:8f:
                    69:7d:32:be:3c:c8:3e:5b:63:b5:46:f6:a8:d5:6f:
                    9b:f9:c0:f3:d3:b9:14:3f:72:47:51:a4:76:dd:d2:
                    f0:bf:f5:ca:8f:30:01:7f:f8:c2:5f:d3:f5:20:03:
                    44:8b:8b:f2:07:6c:b4
                ASN1 OID: secp384r1
                NIST CURVE: P-384
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
            X509v3 Subject Key Identifier:
                B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:
                87:B3:74:26
            X509v3 Authority Key Identifier:
                keyid:B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:
                10:BC:87:B3:74:26

    Signature Algorithm: ecdsa-with-SHA256
         30:64:02:30:20:83:06:ce:8d:98:a4:54:7a:66:4c:4a:3a:70:
         c2:52:36:5a:52:8d:59:7d:20:9b:2a:69:14:58:87:38:d8:55:
         79:dd:fd:29:38:95:1e:91:93:76:b4:f5:66:29:44:b4:02:30:
         6f:38:f9:af:12:ed:30:d5:85:29:7c:b1:16:58:bd:67:91:43:
         c4:0d:30:f9:d8:1c:ac:2f:06:dd:bc:d5:06:42:2c:84:a2:04:
         ea:02:a4:5f:17:51:26:fb:d9:2f:d2:5c
-----BEGIN CERTIFICATE-----
MIICazCCAfKgAwIBAgIEKWsGWTAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
Fw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0xEjAQBgoJkiaJk/IsZAEZ
FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoGA1UEAwwzZm91bnRh
aW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBSb290IENBMHYw
EAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYikb23VoAH



Page 159 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.1.4. Registrar Key Pair

The registrar is the representative of the domain owner. This key signs registrar voucher-requests and terminates the TLS
connection from the pledge.

The public key is indicated in a pledge voucher-request to show proximity.

29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR23dLw
v/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0j
BBgwFoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMG
zo2YpFR6ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBv
OPmvEu0w1YUpfLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lw=
-----END CERTIFICATE-----

\<CODE ENDS>

\<CODE BEGINS> file "jrc_prime256v1.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFZodk+PC5Mu24+ra0sbOjKzan+dW5rvDAR7YuJUOC1YoAoGCCqGSM49
AwEHoUQDQgAElmVQcjS6n+Xd5l/28IFv6UiegQwSBztGj5dkK2MAjQIPV8l8lH+E
jLIOYdbJiI0VtEIf1/Jqt+TOBfinTNOLOg==
-----END EC PRIVATE KEY-----

\<CODE ENDS>

\<CODE BEGINS> file "jrc_prime256v1.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 1066965842 (0x3f989b52)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Validity
            Not Before: Feb 25 21:31:54 2020 GMT
            Not After : Feb 24 21:31:54 2022 GMT

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.4
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-key-pair


Page 160 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

        Subject: DC = ca, DC = sandelman,
         CN = fountain-test.example.com
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:96:65:50:72:34:ba:9f:e5:dd:e6:5f:f6:f0:81:
                    6f:e9:48:9e:81:0c:12:07:3b:46:8f:97:64:2b:63:
                    00:8d:02:0f:57:c9:7c:94:7f:84:8c:b2:0e:61:d6:
                    c9:88:8d:15:b4:42:1f:d7:f2:6a:b7:e4:ce:05:f8:
                    a7:4c:d3:8b:3a
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Extended Key Usage: critical
                CMC Registration Authority
            X509v3 Key Usage: critical
                Digital Signature
    Signature Algorithm: ecdsa-with-SHA256
         30:65:02:30:66:4f:60:4c:55:48:1e:96:07:f8:dd:1f:b9:c8:
         12:8d:45:36:87:9b:23:c0:bc:bb:f1:cb:3d:26:15:56:6f:5f:
         1f:bf:d5:1c:0e:6a:09:af:1b:76:97:99:19:23:fd:7e:02:31:
         00:bc:ac:c3:41:b0:ba:0d:af:52:f9:9c:6e:7a:7f:00:1d:23:
         c8:62:01:61:bc:4b:c5:c0:47:99:35:0a:0c:77:61:44:01:4a:
         07:52:70:57:00:75:ff:be:07:0e:98:cb:e5
-----BEGIN CERTIFICATE-----
MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
Fw0yMDAyMjUyMTMxNTRaFw0yMjAyMjQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZ
FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRh
aW4tdGVzdC5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZl
UHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRC
H9fyarfkzgX4p0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1Ud
DwEB/wQEAwIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaH
myPAvLvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAd
I8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U=
-----END CERTIFICATE-----

\<CODE ENDS>



Page 161 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.1.5. Pledge Key Pair

The pledge has an IDevID key pair built in at manufacturing time:

The certificate is used by the registrar to find the MASA.

\<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHNh6r8QRevRuo+tEmBJeFjQKf6bpFA/9NGoltv+9sNoAoGCCqGSM49
AwEHoUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLx
FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw==
-----END EC PRIVATE KEY-----

\<CODE ENDS>

\<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 521731815 (0x1f18fee7)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 27 18:29:30 2021 GMT
            Not After : Dec 31 00:00:00 2999 GMT
        Subject: serialNumber = 00-D0-E5-F2-00-02
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:03:a3:75:43:87:b3:7c:c0:0a:9a:87:9c:ad:f6:
                    f4:38:13:1c:d4:0c:84:1f:e0:40:4e:41:79:f0:5b:
                    13:4b:20:71:b3:44:9b:49:62:f1:16:30:ce:bb:00:
                    7d:80:b1:a7:d9:3b:13:50:9b:a6:27:a5:4f:c3:96:
                    7f:4c:fe:21:27
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.1.5
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-key-pair


Page 162 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.2. Example Process
The JSON examples below are wrapped at 60 columns. This results in strings that have newlines in them, which makes them invalid
JSON as is. The strings would otherwise be too long, so they need to be unwrapped before processing.

For readability, the output of the asn1parse has been truncated at 68 columns rather than wrapped.

C.2.1. Pledge To Registrar

            X509v3 Subject Key Identifier:
                45:88:CC:96:96:00:64:37:B0:BA:23:65:64:64:54:08:
                06:6C:56:AD
            X509v3 Basic Constraints:
                CA:FALSE
            1.3.6.1.5.5.7.1.32:
                ..highway-test.example.com:9443
    Signature Algorithm: ecdsa-with-SHA256
         30:65:02:30:62:2a:db:be:34:f7:1b:cb:85:de:26:8e:43:00:
         f9:0d:88:c8:77:a8:dd:3c:08:40:54:bc:ec:3d:b6:dc:70:2b:
         c3:7f:ca:19:21:9a:a0:ab:c5:51:8e:aa:df:36:de:8b:02:31:
         00:b2:5d:59:f8:47:c7:ed:03:97:a8:c0:c7:a8:81:fa:a8:86:
         ed:67:64:37:51:7a:6e:9c:a3:82:4d:6d:ad:bc:f3:35:9e:9d:
         6a:a2:6d:7f:7f:25:1c:03:ef:f0:ba:9b:71
-----BEGIN CERTIFICATE-----
MIIBrzCCATWgAwIBAgIEHxj+5zAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwIBcNMjEwNDI3MTgyOTMwWhgPMjk5OTEy
MzEwMDAwMDBaMBwxGjAYBgNVBAUTETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZI
zj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsT
SyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYE
FEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYd
aGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDaAAwZQIw
YirbvjT3G8uF3iaOQwD5DYjId6jdPAhAVLzsPbbccCvDf8oZIZqgq8VRjqrfNt6L
AjEAsl1Z+EfH7QOXqMDHqIH6qIbtZ2Q3UXpunKOCTW2tvPM1np1qom1/fyUcA+/w
uptx
-----END CERTIFICATE-----

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-example-process
https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.1
https://www.rfc-editor.org/rfc/rfc8995.html#name-pledge-to-registrar


Page 163 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

As described in Section 5.2, the pledge will sign a pledge voucher-request containing the registrar's public key in the proximity-
registrar-cert field. The base64 has been wrapped at 60 characters for presentation reasons.

The ASN1 decoding of the artifact:

\<CODE BEGINS> file "vr_00-D0-E5-F2-00-02.b64"

MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBglghkgBZQMEAgEwggOJBgkqhkiG
9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0Mzoy
My43NDctMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJu
b25jZSI6Ii1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFy
LWNlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUVFEQWpC
dE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZn
bHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MFlXbHVMWFJsYzNRdVpYaGhi
WEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5
TURBeU1qVXlNVE14TlRSYUZ3MHlNakF5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lh
SmsvSXNaQUVaRmdKallURVpNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJq
RWlNQ0FHQTFVRUF3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpN
Qk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dkNC
YitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU5GYlJDSDlm
eWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU1Bb0dDQ3NHQVFVRkJ3
TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaGtqT1BRUURBZ05vQURCbEFqQm1U
MkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteVBBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212
RzNhWG1Sa2ovWDRDTVFDOHJNTkJzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVr
MUNneDNZVVFCU2dkU2NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIE
DYOv2TAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5j
b20gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBgNVBAUM
ETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ez
fMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VP
w5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQC
MAAwKwYIKwYBBQUHASAEHxYdaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYI
KoZIzj0EAwIDZwAwZAIwTmlG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXp
BczfwF2kllNuujigAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjO
J4ShqnexMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5l
eGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJ
KoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMjNaMC8GCSqGSIb3DQEJ
BDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1errtoCtTAKBggqhkjOPQQDAgRH
MEUCIQCmYuCE61HFQXH/E16GDOCsVquDtgr+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2
vZFQAKXUbimkiHKzXBA8md0VHbU=

\<CODE ENDS>

https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromRegistrar


Page 164 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

file: examples/vr_00-D0-E5-F2-00-02.b64

    0:d=0  hl=4 l=1648 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=1633 cons: cont [ 0 ]
   19:d=2  hl=4 l=1629 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 905 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 890 cons: cont [ 0 ]
   60:d=5  hl=4 l= 886 prim: OCTET STRING      :{"ietf-voucher-
request:v
  950:d=3  hl=4 l= 434 cons: cont [ 0 ]
  954:d=4  hl=4 l= 430 cons: SEQUENCE
  958:d=5  hl=4 l= 309 cons: SEQUENCE
  962:d=6  hl=2 l=   3 cons: cont [ 0 ]
  964:d=7  hl=2 l=   1 prim: INTEGER           :02
  967:d=6  hl=2 l=   4 prim: INTEGER           :0D83AFD9
  973:d=6  hl=2 l=  10 cons: SEQUENCE
  975:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  985:d=6  hl=2 l=  38 cons: SEQUENCE
  987:d=7  hl=2 l=  36 cons: SET
  989:d=8  hl=2 l=  34 cons: SEQUENCE
  991:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  996:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-
test.example.com
 1025:d=6  hl=2 l=  32 cons: SEQUENCE
 1027:d=7  hl=2 l=  13 prim: UTCTIME           :210413203739Z
 1042:d=7  hl=2 l=  15 prim: GENERALIZEDTIME   :29991231000000Z
 1059:d=6  hl=2 l=  28 cons: SEQUENCE
 1061:d=7  hl=2 l=  26 cons: SET
 1063:d=8  hl=2 l=  24 cons: SEQUENCE
 1065:d=9  hl=2 l=   3 prim: OBJECT            :serialNumber
 1070:d=9  hl=2 l=  17 prim: UTF8STRING        :00-D0-E5-F2-00-02
 1089:d=6  hl=2 l=  89 cons: SEQUENCE
 1091:d=7  hl=2 l=  19 cons: SEQUENCE
 1093:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1102:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 1112:d=7  hl=2 l=  66 prim: BIT STRING



Page 165 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 1180:d=6  hl=2 l=  89 cons: cont [ 3 ]
 1182:d=7  hl=2 l=  87 cons: SEQUENCE
 1184:d=8  hl=2 l=  29 cons: SEQUENCE
 1186:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key 
Ident
 1191:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX 
DUMP]:04144588CC9696
 1215:d=8  hl=2 l=   9 cons: SEQUENCE
 1217:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic 
Constraints
 1222:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1226:d=8  hl=2 l=  43 cons: SEQUENCE
 1228:d=9  hl=2 l=   8 prim: OBJECT            :1.3.6.1.5.5.7.1.32
 1238:d=9  hl=2 l=  31 prim: OCTET STRING      [HEX 
DUMP]:161D6869676877
 1271:d=5  hl=2 l=  10 cons: SEQUENCE
 1273:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1283:d=5  hl=2 l= 103 prim: BIT STRING
 1388:d=3  hl=4 l= 260 cons: SET
 1392:d=4  hl=4 l= 256 cons: SEQUENCE
 1396:d=5  hl=2 l=   1 prim: INTEGER           :01
 1399:d=5  hl=2 l=  46 cons: SEQUENCE
 1401:d=6  hl=2 l=  38 cons: SEQUENCE
 1403:d=7  hl=2 l=  36 cons: SET
 1405:d=8  hl=2 l=  34 cons: SEQUENCE
 1407:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1412:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-
test.example.com
 1441:d=6  hl=2 l=   4 prim: INTEGER           :0D83AFD9
 1447:d=5  hl=2 l=  11 cons: SEQUENCE
 1449:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1460:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1462:d=6  hl=2 l=  24 cons: SEQUENCE
 1464:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1475:d=7  hl=2 l=  11 cons: SET
 1477:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 1488:d=6  hl=2 l=  28 cons: SEQUENCE
 1490:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1501:d=7  hl=2 l=  15 cons: SET
 1503:d=8  hl=2 l=  13 prim: UTCTIME           :210413214323Z
 1518:d=6  hl=2 l=  47 cons: SEQUENCE
 1520:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest



Page 166 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The JSON contained in the voucher-request:

C.2.2. Registrar To MASA

As described in Section 5.5, the registrar will sign a registrar voucher-request and will include the pledge's voucher-request in the
prior-signed-voucher-request.

 1531:d=7  hl=2 l=  34 cons: SET
 1533:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX 
DUMP]:49C21C9889B223
 1567:d=5  hl=2 l=  10 cons: SEQUENCE
 1569:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1579:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX 
DUMP]:3045022100A662

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr
eated-on":"2021-04-13T17:43:23.747-04:00","serial-number":"0
0-D0-E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","proximit
y-registrar-cert":"MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDA
jBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZ
WxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zd
HJ1bmcgRm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNTRaFw0yMjAyM
jQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkA
RkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRhaW4tdGVzdC5leGFtcGxlL
mNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZlUHI0up/l3eZf9vCBb
+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p
0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1UdDwEB/wQEA
wIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaHmyPAv
Lvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAdI
8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U="}}

\<CODE BEGINS> file "parboiled_vr_00-D0-E5-F2-00-02.b64"

MIIPYwYJKoZIhvcNAQcCoIIPVDCCD1ACAQExDTALBglghkgBZQMEAgEwggl4BgkqhkiG
9w0BBwGggglpBIIJZXsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QyMTo0Mzoy
My43ODdaIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2Ui
OiItX1hFOXpLOXE4TGwxcXlsTXRMS2VnIiwicHJpb3Itc2lnbmVkLXZvdWNoZXItcmVx
dWVzdCI6Ik1JSUdjQVlKS29aSWh2Y05BUWNDb0lJR1lUQ0NCbDBDQVFFeERUQUxCZ2xn

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.2
https://www.rfc-editor.org/rfc/rfc8995.html#name-registrar-to-masa
https://www.rfc-editor.org/rfc/rfc8995.html#RequestVoucherFromMASA


Page 167 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

aGtnQlpRTUVBZ0V3Z2dPSkJna3Foa2lHOXcwQkJ3R2dnZ042QklJRGRuc2lhV1YwWmkx
MmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVkyaGxjaUk2ZXlKaGMzTmxjblJwYjI0aU9p
SndjbTk0YVcxcGRIa2lMQ0pqY21WaGRHVmtMVzl1SWpvaU1qQXlNUzB3TkMweE0xUXhO
em8wTXpveU15NDNORGN0TURRNk1EQWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0
UkRBdFJUVXRSakl0TURBdE1ESWlMQ0p1YjI1alpTSTZJaTFmV0VVNWVrczVjVGhNYkRG
eGVXeE5kRXhMWldjaUxDSndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9p
Sk5TVWxDTDBSRFEwRlpTMmRCZDBsQ1FXZEpSVkExYVdKVmFrRkxRbWRuY1docmFrOVFV
VkZFUVdwQ2RFMVNTWGRGUVZsTFExcEpiV2xhVUhsTVIxRkNSMUpaUTFreVJYaEhWRUZZ
UW1kdlNtdHBZVXByTDBseldrRkZXa1puYkhwWlZ6VnJXbGQ0ZEZsWE5IaFFSRUUyUW1k
T1ZrSkJUVTFOTWxwMlpGYzFNRmxYYkhWTVdGSnNZek5SZFZwWWFHaGlXRUp6V2xNMWFt
SXlNR2RXVnpWNlpFaEtNV0p0WTJkU2JUa3hZbTVTYUdGWE5HZFZiVGwyWkVOQ1JGRlVR
V1ZHZHpCNVRVUkJlVTFxVlhsTlZFMTRUbFJTWVVaM01IbE5ha0Y1VFdwUmVVMVVUWGhP
VkZKaFRVWk5lRVZxUVZGQ1oyOUthMmxoU21zdlNYTmFRVVZhUm1kS2FsbFVSVnBOUW1O
SFEyZHRVMHB2YlZRNGFYaHJRVkpyVjBOWVRtaGliVkpzWWtjeGFHSnFSV2xOUTBGSFFU
RlZSVUYzZDFwYWJUa3hZbTVTYUdGWE5IUmtSMVo2WkVNMWJHVkhSblJqUjNoc1RHMU9k
bUpVUWxwTlFrMUhRbmx4UjFOTk5EbEJaMFZIUTBOeFIxTk5ORGxCZDBWSVFUQkpRVUpL
V214VlNFa3dkWEF2YkRObFdtWTVka05DWWl0c1NXNXZSVTFGWjJNM1VtOHJXRnBEZEdw
QlNUQkRSREZtU21aS1VpOW9TWGw1UkcxSVYzbFphVTVHWWxKRFNEbG1lV0Z5Wm10Nlox
ZzBjREI2VkdsNmNXcExha0Z2VFVKWlIwRXhWV1JLVVVWQ0wzZFJUVTFCYjBkRFEzTkhR
VkZWUmtKM1RXTk5RVFJIUVRGVlpFUjNSVUl2ZDFGRlFYZEpTR2RFUVV0Q1oyZHhhR3Rx
VDFCUlVVUkJaMDV2UVVSQ2JFRnFRbTFVTWtKTlZsVm5aV3huWmpRelVpczFlVUpMVGxK
VVlVaHRlVkJCZGt4MmVIbDZNRzFHVmxwMldIZ3JMekZTZDA5aFoyMTJSek5oV0cxU2Ey
b3ZXRFJEVFZGRE9ISk5Ua0p6VEc5T2NqRk1OVzVITlRabWQwRmtTVGhvYVVGWFJ6aFRP
RmhCVWpWck1VTm5lRE5aVlZGQ1UyZGtVMk5HWTBGa1ppc3JRbmMyV1hrclZUMGlmWDJn
Z2dHeU1JSUJyakNDQVRXZ0F3SUJBZ0lFRFlPdjJUQUtCZ2dxaGtqT1BRUURBakFtTVNR
d0lnWURWUVFEREJ0b2FXZG9kMkY1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnUTBFd0lC
Y05NakV3TkRFek1qQXpOek01V2hnUE1qazVPVEV5TXpFd01EQXdNREJhTUJ3eEdqQVlC
Z05WQkFVTUVUQXdMVVF3TFVVMUxVWXlMVEF3TFRBeU1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSXpqMERBUWNEUWdBRUE2TjFRNGV6Zk1BS21vZWNyZmIwT0JNYzFBeUVIK0JBVGtG
NThGc1RTeUJ4czBTYlNXTHhGakRPdXdCOWdMR24yVHNUVUp1bUo2VlB3NVovVFA0aEo2
TlpNRmN3SFFZRFZSME9CQllFRkVXSXpKYVdBR1Ezc0xvalpXUmtWQWdHYkZhdE1Ba0dB
MVVkRXdRQ01BQXdLd1lJS3dZQkJRVUhBU0FFSHhZZGFHbG5hSGRoZVMxMFpYTjBMbVY0
WVcxd2JHVXVZMjl0T2prME5ETXdDZ1lJS29aSXpqMEVBd0lEWndBd1pBSXdUbWxHOHNY
a0tHTmJ3YktRY1lNYXBGYm1TYm5ISFVSRlVvRnVScXZiZ1lYN0ZsWHBCY3pmd0Yya2xs
TnV1amlnQWpBb3cxa2M0cjU1RW1pSCtPTUVYakJObFdsQlNaQzVRdUpqRWYwSnNteHNz
YytwdWNqT0o0U2hxbmV4TUV5N2JqQXhnZ0VFTUlJQkFBSUJBVEF1TUNZeEpEQWlCZ05W
QkFNTUcyaHBaMmgzWVhrdGRHVnpkQzVsZUdGdGNHeGxMbU52YlNCRFFRSUVEWU92MlRB
TEJnbGdoa2dCWlFNRUFnR2dhVEFZQmdrcWhraUc5dzBCQ1FNeEN3WUpLb1pJaHZjTkFR
Y0JNQndHQ1NxR1NJYjNEUUVKQlRFUEZ3MHlNVEEwTVRNeU1UUXpNak5hTUM4R0NTcUdT
SWIzRFFFSkJERWlCQ0JKd2h5WWliSWplcWVSM2JPYUxVUnpNbEdyYzNGMlgra3ZKMWVy
cnRvQ3RUQUtCZ2dxaGtqT1BRUURBZ1JITUVVQ0lRQ21ZdUNFNjFIRlFYSC9FMTZHRE9D
c1ZxdUR0Z3IrUS82L0R1LzlRa3pBN2dJZ2Y3TUZoQUlQVzJQTndSYTJ2WkZRQUtYVWJp



Page 168 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The ASN1 decoding of the artifact:

file: examples/parboiled_vr_00_D0-E5-02-00-2D.b64

bWtpSEt6WEJBOG1kMFZIYlU9In19oIIEbzCCAfwwggGCoAMCAQICBD+Ym1IwCgYIKoZI
zj0EAwIwbTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVs
bWFuMTwwOgYDVQQDDDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tIFVuc3RydW5nIEZv
dW50YWluIFJvb3QgQ0EwHhcNMjAwMjI1MjEzMTU0WhcNMjIwMjI0MjEzMTU0WjBTMRIw
EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xIjAgBgNV
BAMMGWZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAASWZVByNLqf5d3mX/bwgW/pSJ6BDBIHO0aPl2QrYwCNAg9XyXyUf4SMsg5h1smI
jRW0Qh/X8mq35M4F+KdM04s6oyowKDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDHDAOBgNV
HQ8BAf8EBAMCB4AwCgYIKoZIzj0EAwIDaAAwZQIwZk9gTFVIHpYH+N0fucgSjUU2h5sj
wLy78cs9JhVWb18fv9UcDmoJrxt2l5kZI/1+AjEAvKzDQbC6Da9S+Zxuen8AHSPIYgFh
vEvFwEeZNQoMd2FEAUoHUnBXAHX/vgcOmMvlMIICazCCAfKgAwIBAgIEKWsGWTAKBggq
hkjOPQQDAjBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5k
ZWxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcg
Rm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0x
EjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoG
A1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBS
b290IENBMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYi
kb23VoAH29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR2
3dLwv/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0jBBgw
FoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMGzo2YpFR6
ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBvOPmvEu0w1YUp
fLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lwxggFLMIIBRwIBATB1
MG0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8
MDoGA1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFp
biBSb290IENBAgQ/mJtSMAsGCWCGSAFlAwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG
9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIxMDQxMzIxNDMyM1owLwYJKoZIhvcNAQkEMSIE
IEnOrdWjlG70K74IhCJ7UXi+wPS+r2C8DFEqjabGP+G8MAoGCCqGSM49BAMCBEcwRQIh
AMhO3M+tSWb2wKTBOXPArN+XvjSzAhaQA/uLj3qhPwi/AiBDDthf6mjMuirqXE0yjMif
C2UY9oNUFF9Nl0wEQpBBAA==

\<CODE ENDS>

    0:d=0  hl=4 l=3939 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=3924 cons: cont [ 0 ]
   19:d=2  hl=4 l=3920 cons: SEQUENCE



Page 169 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l=2424 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l=2409 cons: cont [ 0 ]
   60:d=5  hl=4 l=2405 prim: OCTET STRING      :{"ietf-voucher-
request:v
 2469:d=3  hl=4 l=1135 cons: cont [ 0 ]
 2473:d=4  hl=4 l= 508 cons: SEQUENCE
 2477:d=5  hl=4 l= 386 cons: SEQUENCE
 2481:d=6  hl=2 l=   3 cons: cont [ 0 ]
 2483:d=7  hl=2 l=   1 prim: INTEGER           :02
 2486:d=6  hl=2 l=   4 prim: INTEGER           :3F989B52
 2492:d=6  hl=2 l=  10 cons: SEQUENCE
 2494:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 2504:d=6  hl=2 l= 109 cons: SEQUENCE
 2506:d=7  hl=2 l=  18 cons: SET
 2508:d=8  hl=2 l=  16 cons: SEQUENCE
 2510:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2522:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 2526:d=7  hl=2 l=  25 cons: SET
 2528:d=8  hl=2 l=  23 cons: SEQUENCE
 2530:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2542:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2553:d=7  hl=2 l=  60 cons: SET
 2555:d=8  hl=2 l=  58 cons: SEQUENCE
 2557:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2562:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-
test.example.co
 2615:d=6  hl=2 l=  30 cons: SEQUENCE
 2617:d=7  hl=2 l=  13 prim: UTCTIME           :200225213154Z
 2632:d=7  hl=2 l=  13 prim: UTCTIME           :220224213154Z
 2647:d=6  hl=2 l=  83 cons: SEQUENCE
 2649:d=7  hl=2 l=  18 cons: SET
 2651:d=8  hl=2 l=  16 cons: SEQUENCE
 2653:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2665:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 2669:d=7  hl=2 l=  25 cons: SET
 2671:d=8  hl=2 l=  23 cons: SEQUENCE
 2673:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent



Page 170 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 2685:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2696:d=7  hl=2 l=  34 cons: SET
 2698:d=8  hl=2 l=  32 cons: SEQUENCE
 2700:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2705:d=9  hl=2 l=  25 prim: UTF8STRING        :fountain-
test.example.co
 2732:d=6  hl=2 l=  89 cons: SEQUENCE
 2734:d=7  hl=2 l=  19 cons: SEQUENCE
 2736:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 2745:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 2755:d=7  hl=2 l=  66 prim: BIT STRING
 2823:d=6  hl=2 l=  42 cons: cont [ 3 ]
 2825:d=7  hl=2 l=  40 cons: SEQUENCE
 2827:d=8  hl=2 l=  22 cons: SEQUENCE
 2829:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Extended Key 
Usag
 2834:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 2837:d=9  hl=2 l=  12 prim: OCTET STRING      [HEX 
DUMP]:300A06082B0601
 2851:d=8  hl=2 l=  14 cons: SEQUENCE
 2853:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Key Usage
 2858:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 2861:d=9  hl=2 l=   4 prim: OCTET STRING      [HEX DUMP]:03020780
 2867:d=5  hl=2 l=  10 cons: SEQUENCE
 2869:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 2879:d=5  hl=2 l= 104 prim: BIT STRING
 2985:d=4  hl=4 l= 619 cons: SEQUENCE
 2989:d=5  hl=4 l= 498 cons: SEQUENCE
 2993:d=6  hl=2 l=   3 cons: cont [ 0 ]
 2995:d=7  hl=2 l=   1 prim: INTEGER           :02
 2998:d=6  hl=2 l=   4 prim: INTEGER           :296B0659
 3004:d=6  hl=2 l=  10 cons: SEQUENCE
 3006:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3016:d=6  hl=2 l= 109 cons: SEQUENCE
 3018:d=7  hl=2 l=  18 cons: SET
 3020:d=8  hl=2 l=  16 cons: SEQUENCE
 3022:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3034:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3038:d=7  hl=2 l=  25 cons: SET
 3040:d=8  hl=2 l=  23 cons: SEQUENCE
 3042:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3054:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman



Page 171 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 3065:d=7  hl=2 l=  60 cons: SET
 3067:d=8  hl=2 l=  58 cons: SEQUENCE
 3069:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3074:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-
test.example.co
 3127:d=6  hl=2 l=  30 cons: SEQUENCE
 3129:d=7  hl=2 l=  13 prim: UTCTIME           :200225213145Z
 3144:d=7  hl=2 l=  13 prim: UTCTIME           :220224213145Z
 3159:d=6  hl=2 l= 109 cons: SEQUENCE
 3161:d=7  hl=2 l=  18 cons: SET
 3163:d=8  hl=2 l=  16 cons: SEQUENCE
 3165:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3177:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3181:d=7  hl=2 l=  25 cons: SET
 3183:d=8  hl=2 l=  23 cons: SEQUENCE
 3185:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3197:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3208:d=7  hl=2 l=  60 cons: SET
 3210:d=8  hl=2 l=  58 cons: SEQUENCE
 3212:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3217:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-
test.example.co
 3270:d=6  hl=2 l= 118 cons: SEQUENCE
 3272:d=7  hl=2 l=  16 cons: SEQUENCE
 3274:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 3283:d=8  hl=2 l=   5 prim: OBJECT            :secp384r1
 3290:d=7  hl=2 l=  98 prim: BIT STRING
 3390:d=6  hl=2 l=  99 cons: cont [ 3 ]
 3392:d=7  hl=2 l=  97 cons: SEQUENCE
 3394:d=8  hl=2 l=  15 cons: SEQUENCE
 3396:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic 
Constraints
 3401:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3404:d=9  hl=2 l=   5 prim: OCTET STRING      [HEX DUMP]:30030101FF
 3411:d=8  hl=2 l=  14 cons: SEQUENCE
 3413:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Key Usage
 3418:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3421:d=9  hl=2 l=   4 prim: OCTET STRING      [HEX DUMP]:03020106
 3427:d=8  hl=2 l=  29 cons: SEQUENCE
 3429:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key 
Ident
 3434:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX 



Page 172 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

DUMP]:0414B9A5F6CB11
 3458:d=8  hl=2 l=  31 cons: SEQUENCE
 3460:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Authority Key 
Ide
 3465:d=9  hl=2 l=  24 prim: OCTET STRING      [HEX 
DUMP]:30168014B9A5F6
 3491:d=5  hl=2 l=  10 cons: SEQUENCE
 3493:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3503:d=5  hl=2 l= 103 prim: BIT STRING
 3608:d=3  hl=4 l= 331 cons: SET
 3612:d=4  hl=4 l= 327 cons: SEQUENCE
 3616:d=5  hl=2 l=   1 prim: INTEGER           :01
 3619:d=5  hl=2 l= 117 cons: SEQUENCE
 3621:d=6  hl=2 l= 109 cons: SEQUENCE
 3623:d=7  hl=2 l=  18 cons: SET
 3625:d=8  hl=2 l=  16 cons: SEQUENCE
 3627:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3639:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3643:d=7  hl=2 l=  25 cons: SET
 3645:d=8  hl=2 l=  23 cons: SEQUENCE
 3647:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3659:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3670:d=7  hl=2 l=  60 cons: SET
 3672:d=8  hl=2 l=  58 cons: SEQUENCE
 3674:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3679:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-
test.example.co
 3732:d=6  hl=2 l=   4 prim: INTEGER           :3F989B52
 3738:d=5  hl=2 l=  11 cons: SEQUENCE
 3740:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 3751:d=5  hl=2 l= 105 cons: cont [ 0 ]
 3753:d=6  hl=2 l=  24 cons: SEQUENCE
 3755:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 3766:d=7  hl=2 l=  11 cons: SET
 3768:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 3779:d=6  hl=2 l=  28 cons: SEQUENCE
 3781:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 3792:d=7  hl=2 l=  15 cons: SET
 3794:d=8  hl=2 l=  13 prim: UTCTIME           :210413214323Z
 3809:d=6  hl=2 l=  47 cons: SEQUENCE
 3811:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 3822:d=7  hl=2 l=  34 cons: SET



Page 173 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The JSON contained in the voucher-request. Note that the previous voucher-request is in the prior-signed-voucher-request attribute.

 3824:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX 
DUMP]:49CEADD5A3946E
 3858:d=5  hl=2 l=  10 cons: SEQUENCE
 3860:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3870:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX 
DUMP]:3045022100C84E

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr
eated-on":"2021-04-13T21:43:23.787Z","serial-number":"00-D0-
E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","prior-signed-
voucher-request":"MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBg
lghkgBZQMEAgEwggOJBgkqhkiG9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaG
VyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLC
JjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0MzoyMy43NDctMDQ6MDAiLC
JzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6Ii
1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFyLW
NlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUV
FEQWpCdE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYU
prL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MF
lXbHVMWFJsYzNRdVpYaGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm
5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5TURBeU1qVXlNVE14TlRSYUZ3MHlNak
F5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lhSmsvSXNaQUVaRmdKallURV
pNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFVRU
F3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQn
lxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dk
NCYitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU
5GYlJDSDlmeWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU
1Bb0dDQ3NHQVFVRkJ3TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaG
tqT1BRUURBZ05vQURCbEFqQm1UMkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteV
BBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212RzNhWG1Sa2ovWDRDTVFDOHJNTk
JzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVrMUNneDNZVVFCU2dkU2
NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIEDYOv2TAKBg
gqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb2
0gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBg
NVBAUMETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQ
cDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFj
DOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAG
Q3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYdaGlnaH
dheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDZwAwZAIwTm



Page 174 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

C.2.3. MASA To Registrar

The MASA will return a voucher to the registrar, which is to be relayed to the pledge.

lG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXpBczfwF2kllNuuj
igAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjOJ4Shqn
exMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC
5leGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w
0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMj
NaMC8GCSqGSIb3DQEJBDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1
errtoCtTAKBggqhkjOPQQDAgRHMEUCIQCmYuCE61HFQXH/E16GDOCsVquDtg
r+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2vZFQAKXUbimkiHKzXBA8md0VHb
U="}}

\<CODE BEGINS> file "voucher_00-D0-E5-F2-00-02.b64"

MIIGIgYJKoZIhvcNAQcCoIIGEzCCBg8CAQExDTALBglghkgBZQMEAgEwggN4BgkqhkiG
9w0BBwGgggNpBIIDZXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0aW9uIjoi
bG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMjEtMDQtMTNUMTc6NDM6MjQuNTg5LTA0OjAw
Iiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2UiOiItX1hF
OXpLOXE4TGwxcXlsTXRMS2VnIiwicGlubmVkLWRvbWFpbi1jZXJ0IjoiTUlJQi9EQ0NB
WUtnQXdJQkFnSUVQNWliVWpBS0JnZ3Foa2pPUFFRREFqQnRNUkl3RUFZS0NaSW1pWlB5
TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pBRVpGZ2x6WVc1a1pXeHRZVzR4UERB
NkJnTlZCQU1NTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnVlc1emRI
SjFibWNnUm05MWJuUmhhVzRnVW05dmRDQkRRVEFlRncweU1EQXlNalV5TVRNeE5UUmFG
dzB5TWpBeU1qUXlNVE14TlRSYU1GTXhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVa
TUJjR0NnbVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVpTUNBR0ExVUVBd3daWm05
MWJuUmhhVzR0ZEdWemRDNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0ND
cUdTTTQ5QXdFSEEwSUFCSlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1ha
Q3RqQUkwQ0QxZkpmSlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFq
S2pBb01CWUdBMVVkSlFFQi93UU1NQW9HQ0NzR0FRVUZCd01jTUE0R0ExVWREd0VCL3dR
RUF3SUhnREFLQmdncWhrak9QUVFEQWdOb0FEQmxBakJtVDJCTVZVZ2VsZ2Y0M1IrNXlC
S05SVGFIbXlQQXZMdnh5ejBtRlZadlh4Ky8xUndPYWdtdkczYVhtUmtqL1g0Q01RQzhy
TU5Cc0xvTnIxTDVuRzU2ZndBZEk4aGlBV0c4UzhYQVI1azFDZ3gzWVVRQlNnZFNjRmNB
ZGYrK0J3Nll5K1U9In19oIIBdDCCAXAwgfagAwIBAgIEC4cKMTAKBggqhkjOPQQDAjAm
MSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjE0
MDE2WhcNMjMwNDEzMjE0MDE2WjAoMSYwJAYDVQQDDB1oaWdod2F5LXRlc3QuZXhhbXBs
ZS5jb20gTUFTQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABKoEFaNEueJE+Mn5Gwcb
pnRznB66bKmzqTCpojJZ96AdRwFtuTCVfoKouLTBX0idIhMLfJLM31lyuKy4CUtpp6Wj
EDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDaQAwZgIxAK7LYS3UXI1uhqoLBh3G

https://www.rfc-editor.org/rfc/rfc8995.html#section-c.2.3
https://www.rfc-editor.org/rfc/rfc8995.html#name-masa-to-registrar


Page 175 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

The ASN1 decoding of the artifact:

file: examples/voucher_00-D0-E5-F2-00-02.b64

02C6MnM2JdMjhUmHHM6UI3kankFVJB0VIqFIuwrAqzwTcwIxAIY8Z7OVouLl+a35HZzB
NDJ49c/q1UcDnwC/0FnLUcKYBIEkilETULF1si+dqLT0uTGCAQUwggEBAgEBMC4wJjEk
MCIGA1UEAwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBAgQLhwoxMAsGCWCGSAFl
AwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIx
MDQxMzIxNDMyNFowLwYJKoZIhvcNAQkEMSIEIFUUjg4WYVO+MpX122Qfk/7zm/G6/B59
HD/xrVR0lGIjMAoGCCqGSM49BAMCBEgwRgIhAOhUfxbH2dwpB2BrTDcsYSjRkCCk/WE6
Mdt+y4z5KD9IAiEAphwdIUb40A0noNIUpH7N2lTyAFZgyn1lNHTteY9DmYI=

\<CODE ENDS>

    0:d=0  hl=4 l=1570 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=1555 cons: cont [ 0 ]
   19:d=2  hl=4 l=1551 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 888 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 873 cons: cont [ 0 ]
   60:d=5  hl=4 l= 869 prim: OCTET STRING      :{"ietf-
voucher:voucher":
  933:d=3  hl=4 l= 372 cons: cont [ 0 ]
  937:d=4  hl=4 l= 368 cons: SEQUENCE
  941:d=5  hl=3 l= 246 cons: SEQUENCE
  944:d=6  hl=2 l=   3 cons: cont [ 0 ]
  946:d=7  hl=2 l=   1 prim: INTEGER           :02
  949:d=6  hl=2 l=   4 prim: INTEGER           :0B870A31
  955:d=6  hl=2 l=  10 cons: SEQUENCE
  957:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  967:d=6  hl=2 l=  38 cons: SEQUENCE
  969:d=7  hl=2 l=  36 cons: SET
  971:d=8  hl=2 l=  34 cons: SEQUENCE
  973:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  978:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-
test.example.com



Page 176 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

 1007:d=6  hl=2 l=  30 cons: SEQUENCE
 1009:d=7  hl=2 l=  13 prim: UTCTIME           :210413214016Z
 1024:d=7  hl=2 l=  13 prim: UTCTIME           :230413214016Z
 1039:d=6  hl=2 l=  40 cons: SEQUENCE
 1041:d=7  hl=2 l=  38 cons: SET
 1043:d=8  hl=2 l=  36 cons: SEQUENCE
 1045:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1050:d=9  hl=2 l=  29 prim: UTF8STRING        :highway-
test.example.com
 1081:d=6  hl=2 l=  89 cons: SEQUENCE
 1083:d=7  hl=2 l=  19 cons: SEQUENCE
 1085:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1094:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 1104:d=7  hl=2 l=  66 prim: BIT STRING
 1172:d=6  hl=2 l=  16 cons: cont [ 3 ]
 1174:d=7  hl=2 l=  14 cons: SEQUENCE
 1176:d=8  hl=2 l=  12 cons: SEQUENCE
 1178:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic 
Constraints
 1183:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 1186:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1190:d=5  hl=2 l=  10 cons: SEQUENCE
 1192:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1202:d=5  hl=2 l= 105 prim: BIT STRING
 1309:d=3  hl=4 l= 261 cons: SET
 1313:d=4  hl=4 l= 257 cons: SEQUENCE
 1317:d=5  hl=2 l=   1 prim: INTEGER           :01
 1320:d=5  hl=2 l=  46 cons: SEQUENCE
 1322:d=6  hl=2 l=  38 cons: SEQUENCE
 1324:d=7  hl=2 l=  36 cons: SET
 1326:d=8  hl=2 l=  34 cons: SEQUENCE
 1328:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1333:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-
test.example.com
 1362:d=6  hl=2 l=   4 prim: INTEGER           :0B870A31
 1368:d=5  hl=2 l=  11 cons: SEQUENCE
 1370:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1381:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1383:d=6  hl=2 l=  24 cons: SEQUENCE
 1385:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1396:d=7  hl=2 l=  11 cons: SET
 1398:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data



Page 177 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Acknowledgements

We would like to thank the various reviewers for their input, in particular William Atwood, Brian Carpenter, Fuyu Eleven, Eliot Lear,
Sergey Kasatkin, Anoop Kumar, Tom Petch, Markus Stenberg, Peter van der Stok, and Thomas Werner.

Significant reviews were done by Jari Arkko, Christian Huitema, and Russ Housley.

Henk Birkholz contributed the CDDL for the audit-log response.

This document started its life as a two-page idea from Steinthor Bjarnason.

In addition, significant review comments were provided by many IESG members, including Adam Roach, Alexey Melnikov, Alissa
Cooper, Benjamin Kaduk, Éric Vyncke, Roman Danyliw, and Magnus Westerlund.

Authors' Addresses
Max Pritikin

Cisco

Email: pritikin@cisco.com

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

 1409:d=6  hl=2 l=  28 cons: SEQUENCE
 1411:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1422:d=7  hl=2 l=  15 cons: SET
 1424:d=8  hl=2 l=  13 prim: UTCTIME           :210413214324Z
 1439:d=6  hl=2 l=  47 cons: SEQUENCE
 1441:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 1452:d=7  hl=2 l=  34 cons: SET
 1454:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX 
DUMP]:55148E0E166153
 1488:d=5  hl=2 l=  10 cons: SEQUENCE
 1490:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1500:d=5  hl=2 l=  72 prim: OCTET STRING      [HEX 
DUMP]:3046022100E854

https://www.rfc-editor.org/rfc/rfc8995.html#name-acknowledgements
https://www.rfc-editor.org/rfc/rfc8995.html#name-authors-addresses
mailto:pritikin@cisco.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/


Page 178 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Toerless Eckert

Futurewei Technologies Inc. USA

2330 Central Expy

Santa Clara, CA 95050

United States of America

Email: tte+ietf@cs.fau.de

Michael H. Behringer

Email: Michael.H.Behringer@gmail.com

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

mailto:tte+ietf@cs.fau.de
mailto:Michael.H.Behringer@gmail.com
mailto:kent+ietf@watsen.net


Page 179 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI Over Wifi

                         BRSKI over IEEE 802.11
                   draft-friel-brski-over-802dot11-01

Abstract

   This document outlines the challenges associated with implementing
   Bootstrapping Remote Secure Key Infrastructures over IEEE 802.11 
and
   IEEE 802.1x networks.  Multiple options are presented for 
discovering
   and authenticating to the correct IEEE 802.11 SSID.  This initial
   draft is a discussion document and no final recommendations are 
made
   on the recommended approaches to take.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current 
Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six 
months
   and may be updated, replaced, or obsoleted by other documents at 
any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2019.



Page 180 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with 
respect

Friel, et al.            Expires January 3, 2019                [Page 
1]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   to this document.  Code Components extracted from this document 
must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   
3
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   
4
   2.  Discovery and Authentication Design Considerations  . . . . .   
5
     2.1.  Incorrect SSID Discovery  . . . . . . . . . . . . . . . .   
5
       2.1.1.  Leveraging BRSKI MASA . . . . . . . . . . . . . . . .   



Page 181 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

5
       2.1.2.  Relying on the Network Administrator  . . . . . . . .   
6
       2.1.3.  Requiring the Network to Demonstrate Knowledge of
               Device  . . . . . . . . . . . . . . . . . . . . . . .   
6
     2.2.  IEEE 802.11 Authentication Mechanisms . . . . . . . . . .   
6
       2.2.1.  IP Address Assignment Considerations  . . . . . . . .   
7
     2.3.  Client and Server Implementations . . . . . . . . . . . .   
8
   3.  Potential SSID Discovery Mechanisms . . . . . . . . . . . . .   
8
     3.1.  Well-known BRSKI SSID . . . . . . . . . . . . . . . . . .   
8
     3.2.  IEEE 802.11aq . . . . . . . . . . . . . . . . . . . . . .   
9
     3.3.  IEEE 802.11 Vendor Specific Information Element . . . . .  
10
     3.4.  Reusing Existing IEEE 802.11u Elements  . . . . . . . . .  
10
     3.5.  IEEE 802.11u Interworking Information - Internet  . . . .  
11
     3.6.  Define New IEEE 802.11u Extensions  . . . . . . . . . . .  
12
     3.7.  Wi-Fi Protected Setup . . . . . . . . . . . . . . . . . .  
12
     3.8.  Define and Advertise a BRSKI-specific AKM in RSNE . . . .  
12
     3.9.  Wi-Fi Device Provisioning Profile . . . . . . . . . . . .  
13
   4.  Potential Authentication Options  . . . . . . . . . . . . . .  
13
     4.1.  Unauthenticated Pre-BRSKI and EAP-TLS Post-BRSKI  . . . .  
14
     4.2.  PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI . . . . . . .  
15
     4.3.  MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI . . .  
15
     4.4.  EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI  . . . . . . . .  
15



Page 182 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

     4.5.  New TEAP BRSKI mechanism  . . . . . . . . . . . . . . . .  
16
     4.6.  New IEEE 802.11 Authentication Algorithm for BRSKI and
           EAP-TLS Post-BRSKI  . . . . . . . . . . . . . . . . . . .  
18
     4.7.  New IEEE 802.1X EAPOL-Announcements to encapsulate BRSKI
           and EAP-TLS Post-BRSKI  . . . . . . . . . . . . . . . . .  
19
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  
20
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  
20
   7.  Informative References  . . . . . . . . . . . . . . . . . . .  
20
   Appendix A.  IEEE 802.11 Primer . . . . . . . . . . . . . . . . .  
21
     A.1.  IEEE 802.11i  . . . . . . . . . . . . . . . . . . . . . .  
21
     A.2.  IEEE 802.11u  . . . . . . . . . . . . . . . . . . . . . .  
22
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  
23

Friel, et al.            Expires January 3, 2019                [Page 
2]

Internet-Draft                 BRSKI-WIFI                      July 
2018

1.  Introduction

   Bootstrapping Remote Secure Key Infrastructures (BRSKI)
   [I-D.ietf-anima-bootstrapping-keyinfra] describes how a device can



Page 183 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   bootstrap against a local network using an Initial Device Identity
   X.509 [IEEE802.1AR] IDevID certificate that is pre-installed by the
   vendor on the device in order to obtain an [IEEE802.1AR] LDevID.  
The
   BRSKI flow assumes the device can obtain an IP address, and thus
   assumes the device has already connected to the local network.
   Further, the draft states that BRSKI use of IDevIDs:

      allows for alignment with [IEEE802.1X] network access control
      methods, its use here is for Pledge authentication rather than
      network access control.  Integrating this protocol with network
      access control, perhaps as an Extensible Authentication Protocol
      (EAP) method (see [RFC3748], is out-of-scope.

   The draft does not describe any mechanisms for how an [IEEE802.11]
   enabled device would discover and select a suitable [IEEE802.11] 
SSID
   when multiple SSIDs are available.  A typical deployment scenario
   could involve a device begin deployed in a location were twenty or
   more SSIDs are being broadcast, for example, in a multi-tenanted
   building or campus where multiple independent organizations operate
   [IEEE802.11] networks.

   In order to reduce the administrative overhead of installing new
   devices, it is desirable that the device will automatically 
discover
   and connect to the correct SSID without the installer having to
   manually provision any network information or credentials on the
   device.  It is also desirable that the device does not discover,
   connect to, and automatically enroll with the wrong network as this
   could result in a device that is owned by one organization 
connecting
   to the network of a different organization in a multi-tenanted
   building or campus.

   Additionally, as noted above, the BRSKI draft does not describe how
   BRSKI could potentially align with [IEEE802.1X] authentication
   mechanisms.

   This document outlines multiple different potential mechanisms that
   would enable a bootstrapping device to choose between different
   available [IEEE802.11] SSIDs in order to execute the BRSKI flow.



Page 184 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   This document also outlines several options for how [IEEE802.11]
   networks enforcing [IEEE802.1X] authentication could enable the 
BRSKI
   flow, and describes the required device behaviour.

   This document presents both [IEEE802.11] mechanisms and Wi-Fi
   Alliance (WFA) mechanisms.  An important consideration when

Friel, et al.            Expires January 3, 2019                [Page 
3]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   determining what the most appropriate solution to device onboarding
   should be is what bodies need to be involved in standardisation
   efforts: IETF, IEEE and/or WFA.

1.1.  Terminology

   IEEE 802.11u: an amendment to the IEEE 802.11-2007 standard to add
   features that improve interworking with external networks.

   ANI: Autonomic Networking Infrastructure

   ANQP: Access Network Query Protocol

   AP: IEEE 802.11 Access Point

   CA: Certificate Authority

   EAP: Extensible Authentication Protocol

   EST: Enrollment over Secure Transport

   HotSpot 2.0 / HS2.0: An element of the Wi-Fi Alliance Passpoint



Page 185 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   certificatoin program that enables cell phones to automatically
   discover capabilities and enroll into IEEE 802.11 guest networks
   (hotspots).

   IE: Information Element

   IDevID: Initial Device Identifier

   LDevID: Locally Significant Device Identifier

   OI: Organization Identifier

   MASA: BRSKI Manufacturer Authorized Signing Authority service

   SSID: IEEE 802.11 Service Set Identifier

   STA: IEEE 802.11 station

   WFA: Wi-Fi Alliance

   WLC: Wireless LAN Controller

   WPA/WPA2: Wi-Fi Protected Access / Wi-Fi Protected Access version 2

   WPS: Wi-Fi Protected Setup

Friel, et al.            Expires January 3, 2019                [Page 
4]

Internet-Draft                 BRSKI-WIFI                      July 
2018

2.  Discovery and Authentication Design Considerations

2.1.  Incorrect SSID Discovery



Page 186 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   As will be seen in the following sections, there are several
   discovery scenarios where the device can choose an incorrect SSID 
and
   attempt to join the wrong network.  For example, the device is 
being
   deployed by one organization in a multi-tenant building, and 
chooses
   to connect to the SSID of a neighbor organization.  The device is
   dependent upon the incorrect network rejecting its BRSKI enrollment
   attempt.  It is possible that the device could end up enrolled with
   the wrong network.

2.1.1.  Leveraging BRSKI MASA

2.1.1.1.  Prevention

   BRSKI allows optional sales channel integration which could be used
   to ensure only the "correct" network can claim the device.  In
   theory, this could be achieved if the BRSKI MASA service has 
explicit
   knowledge of the network where every single device will be 
deployed.
   After connecting to the incorrect SSID and possibly authenticating 
to
   the network, the device would present network TLS information in 
its
   voucher-request, and the MASA server would have to reject the 
request
   based on this network TLS information and not issue a voucher.  The
   device could then reject that SSID and attempt to bootstrap against
   the next available SSID.

   This could possibly be acheieved via sales channel integration, 
where
   devices are tracked through the supply chain all the way from
   manufacturer factory to target deployment network operator.  In
   practice, this approach may be challenging to deploy as it may be
   extremely difficult to implement this tightly coupled sales channel
   integration and ensure that the MASA actually has accurate 
deployment
   network information.



Page 187 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   An alternative to sales channel integration is to provide the 
device
   owners with a, possibly authenticated, interface or API to the MASA
   service whereby they would have to explicitly claim devices prior 
to
   the MASA issuing vouchers for that device.  There are similar
   problems with this approach, as there could be a complex sales and
   channel partner chain between the MASA service operator and the
   device operator who owns and deploys the device.  This could make
   exposure of APIs by the MASA operator to the device operator
   untenable.

Friel, et al.            Expires January 3, 2019                [Page 
5]

Internet-Draft                 BRSKI-WIFI                      July 
2018

2.1.1.2.  Detection

   If a device connects to the wrong network, the correct network
   operator could detect this after the fact by integration with MASA
   and checking audit logs for the device.  The MASA audit logs should
   indicate all networks that have been issued vouchers for a specific
   device.  This mechanism also relies on the correct network operater
   having a list, bill or materials, or similar of all device 
identities
   that should be connecting to their network in order to check MASA
   logs for devices that have not come online, but are known to be
   physically deployed.

2.1.2.  Relying on the Network Administrator



Page 188 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   An obvious mechanism is to rely on network administrators to be 
good
   citizens and explicitly reject devices that attempt to bootstrap
   against the wrong network.  This is not guaranteed to work for two
   main reasons:

   o  Some network administrators will configure an open policy on 
their
      network.  Any device that attempts to connect to the network 
will
      be automatically granted access.

   o  Some network administrators will be bad actors and will
      intentionally attempt to onboard devices that they do not own 
but
      that are in range of their networks.

2.1.3.  Requiring the Network to Demonstrate Knowledge of Device

   Protocols such as the WFA Device Provisioning Profile [DPP] require
   that a network provisoining entity demonstrate knowledge of device
   information such as the device's bootstrapping public key prior to
   the device attempting to connect to the network.  This gives a 
higher
   level of confidence to the device that it is connecting to the
   correct SSID.  These mechanisms could leverage a key that is 
printed
   on the device label, or included in a sales channel bill of
   materials.  The security of these types of key distribution
   mechanisms relies on keeping the device label or bill of materials
   content from being compromised prior to device installation.

2.2.  IEEE 802.11 Authentication Mechanisms

   [IEEE802.11i] allows an SSID to advertise different authentication
   mechanisms via the AKM Suite list in the RSNE.  A very brief
   introduction to [IEEE802.11i] is given in the appendices.  An SSID
   could advertise PSK or [IEEE802.1X] authentication mechanisms.  
When
   a network operator needs to enforce two different authentication



Page 189 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Friel, et al.            Expires January 3, 2019                [Page 
6]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   mechanisms, one for pre-BRSKI devices and one for post-BRSKI 
devices,
   the operator has two options:

   o  configure two SSIDs with the same SSID string value, each one
      advertising a different authentication mechanism

   o  configure two different SSIDs, each with its own SSID string
      value, with each one advertising a different authentication
      mechanism

   If devices have to be flexible enough to handle both options, then
   this adds complexity to the device firmware and internal state
   machines.  Similarly, if network infrastructure (APs, WLCs, AAAs)
   potentially needs to support both options, then this adds 
complexity
   to network infrastructure configuration flexibility, software and
   state machines.  Consideration must be given to the practicalities 
of
   implementation for both devices and network infrastructure when
   designing the final bootstrap mechanism and aligning [IEEE802.11],
   [IEEE802.1X] and BRSKI protocol interactions.

   Devices should be flexible enough to handle potential options 
defined
   by any final draft.  When discovering a pre-BRSKI SSID, the device
   should also discover the authentication mechanism enforced by the
   SSID that is advertising BRSKI support.  If the device supports the
   authentication mechanism being advertised, then the device can



Page 190 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   connect to the SSID in order to initiate the BRSKI flow.  For
   example, the device may support [IEEE802.1X] as a pre-BRSKI
   authentication mechanism, but may not support PSK as a pre-BRSKI
   authentication mechanism.

   Once the device has completed the BRKSI flow and has obtained an
   LDevID, a mechanism is needed to tell the device which SSID to use
   for post-BRSKI network access.  This may be a different SSID to the
   pre-BRSKI SSID.  The mechanism by which the post-BRSKI SSID is
   advertised to the device is out-of-scope of this version of this
   document.

2.2.1.  IP Address Assignment Considerations

   If a device has to perform two different authentications, one for
   pre-BRSKI and one for post-BRSKI, network policy will typically
   assign the device to different VLANs for these different stages, 
and
   may assign the device different IP addresses depending on which
   network segment the device is assigned to.  This could be true even
   if a single SSID is used for both pre-BRSKI and post-BRSKI
   connections.  Therefore, the bootstrapping device may need to
   completely reset its network connection and network software stack,

Friel, et al.            Expires January 3, 2019                [Page 
7]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   and obtain a new IP address between pre-BRSKI and post-BRSKI
   connections.

2.3.  Client and Server Implementations



Page 191 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   When evaluating all possible SSID discovery mechanism and
   authentication mechanisms outlined in this document, consideration
   must be given to the complexity of the required client and server
   implementation and state machines.  Consideration must also be 
given
   to the network operator configuration complexity if multiple
   permutations and combinations of SSID discovery and network
   authentication mechanisms are possible.

3.  Potential SSID Discovery Mechanisms

   This section outlines multiple different mechanisms that could
   potentially be leveraged that would enable a bootstrapping device 
to
   choose between multiple different available [IEEE802.11] SSIDs.  As
   noted previously, this draft does not make any final 
recommendations.

   The discovery options outlined in this document include:

   o  Well-known BRSKI SSID

   o  [IEEE802.11aq]

   o  [IEEE802.11] Vendor Specific Information Element

   o  Reusing Existing [IEEE802.11u] Elements

   o  [IEEE802.11u] Interworking Information - Internet

   o  Define New [IEEE802.11u] Extensions

   o  Wi-Fi Protected Setup

   o  Define and Advertise a BRSKI-specific AKM in RSNE

   o  Wi-Fi Device Provisioning Profile

   These mechanisms are described in more detail in the following
   sections.

3.1.  Well-known BRSKI SSID



Page 192 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   A standardized naming convention for SSIDs offering BRSKI services 
is
   defined such as:

Friel, et al.            Expires January 3, 2019                [Page 
8]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   o  BRSKI%ssidname

   Where:

   o  BRSKI: is a well-known prefix string of characters.  This prefix
      string would be baked into device firmware.

   o  %: is a well known delimiter character.  This delimiter 
character
      would be baked into device firmware.

   o  ssidname: is the freeform SSID name that the network operator
      defines.

   Device manufacturers would bake the well-known prefix string and
   character delimiter into device firmware.  Network operators
   configuring SSIDs which offer BRSKI services would have to ensure
   that the SSID of those networks begins with this prefix.  On
   bootstrap, the device would scan all available SSIDs and look for
   ones with this given prefix.

   If multiple SSIDs are available with this prefix, then the device
   could simply round robin through these SSIDs and attempt to start 
the



Page 193 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   BRSKI flow on each one in turn until it succeeds.

   This mechanism suffers from the limitations outlined in Section 2.1 
-
   it does nothing to prevent a device enrolling against an incorrect
   network.

   Another issue with defining a specific naming convention for the 
SSID
   is that this may require network operators to have to deploy a new
   SSID.  In general, network operators attempt to keep the number of
   unique SSIDs deployed to a minimum as each deployed SSID eats up a
   percentage of available air time and network capacity.  A good
   discussion of SSID overhead and an SSID overhead [calculator] is
   available.

3.2.  IEEE 802.11aq

   [IEEE802.11aq] is currently being worked by the IEEE, but is not 
yet
   finalized, and is not yet supported by any vendors in shipping
   product.  [IEEE802.11aq] defines new elements that can be included 
in
   [IEEE802.11] Beacon, Probe Request and Probe Response frames, and
   defines new elements for ANQP frames.

   The extensions allow an AP to broadcast support for backend 
services,
   where allowed services are those registered in the [IANA] Service
   Name and Transport Protocol Port Number Registry.  The services can
   be advertised in [IEEE802.11] elements that include either:

Friel, et al.            Expires January 3, 2019                [Page 
9]

Internet-Draft                 BRSKI-WIFI                      July 
2018



Page 194 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   o  SHA256 hashes of the registered service names

   o  a bloom filter of the SHA256 hashes of the registered service
      names

   Bloom filters simply serve to reduce the size of Beacon and Probe
   Response frames when a large number of services are advertised.  If 
a
   bloom filter is used by the AP, and a device discovers a potential
   service match in the bloom filter, then the device can query the AP
   for the full list of service name hashes using newly defined ANQP
   elements.

   If BRSKI were to leverage [IEEE802.11aq], then the [IEEE802.11aq]
   specification would need to be pushed and supported, and a BRSKI
   service would need to be defined in [IANA].

   This mechanism suffers from the limitations outlined in Section 2.1 
-
   it does nothing to prevent a device enrolling against an incorrect
   network.

3.3.  IEEE 802.11 Vendor Specific Information Element

   [IEEE802.11] defines Information Element (IE) number 221 for 
carrying
   Vendor Specific information.  The purpose of this document is to
   define an SSID discovery mechanism that can be used across all
   devices and vendors, so use of this IE is not an appropriate long
   term solution.

3.4.  Reusing Existing IEEE 802.11u Elements

   [IEEE802.11u] defines mechanisms for interworking.  An introduction
   to [IEEE802.11u] is given in the appendices.  Existing IEs in
   [IEEE802.11u] include:

   o  Roaming Consortium IE

   o  NAI Realm IE



Page 195 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   These existing IEs could be used to advertise a well-known, logical
   service that devices implicitly know to look for.

   In the case of NAI Realm, a well-known service name such as
   "_bootstrapks" could be defined and advertised in the NAI Realm IE.
   In the case of Roaming Consortium, a well-known Organization
   Identifier (OI) could be defined and advertised in the Roaming
   Consortium IE.

Friel, et al.            Expires January 3, 2019               [Page 
10]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   Device manufacturers would bake the well-known NAI Realm or Roaming
   Consortium OI into device firmware.  Network operators configuring
   SSIDs which offer BRSKI services would have to ensure that the SSID
   offered this NAI Realm or OI.  On bootstrap, the device would scan
   all available SSIDs and use ANQP to query for NAI Realms or Roaming
   Consortium OI looking for a match.

   The key concept with this proposal is that BRSKI uses a well-known
   NAI Realm name or Roaming Consortium OI more as a logical service
   advertisement rather than as a backhaul internet provider
   advertisement.  This is conceptually very similar to what
   [IEEE802.11aq] is attempting to achieve.

   Leveraging NAI Realm or Roaming Consortium would not require any
   [IEEE802.11] specification changes, and could possibly be defined 
by
   this IETF draft.  Note that the authors are not aware of any
   currently defined IETF or IANA namespaces that define NAI Realms or



Page 196 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   OIs.

   Additionally (or alternatively...) as NAI Realm includes 
advertising
   the EAP mechanism required, if a new EAP-BRSKI were to be defined,
   then this could be advertised.  Devices could then scan for an NAI
   Realm that enforced EAP-BRSKI, and ignore the realm name.

   This mechanism suffers from the limitations outlined in Section 2.1 
-
   it does nothing to prevent a device enrolling against an incorrect
   network.

   Additionally, as the IEEE is attempting to standardize logical
   service advertisement via [IEEE802.11aq], [IEEE802.11aq] would seem
   to be the more appropriate option than overloading an existing IE.
   However, it is worth noting that configuration of these IEs is
   supported today by WLCs, and this mechanism may be suitable for
   demonstrations or proof-of-concepts.

3.5.  IEEE 802.11u Interworking Information - Internet

   It is possible that an SSID may be configured to provide 
unrestricted
   and unauthenticated internet access.  This could be advertised in 
the
   Interworking Information IE by including:

   o  internet bit = 1

   o  ASRA bit = 0

   If such a network were discovered, a device could attempt to use 
the
   BRSKI well-known vendor cloud Registrar.  Possibly this could be a

Friel, et al.            Expires January 3, 2019               [Page 
11]



Page 197 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Internet-Draft                 BRSKI-WIFI                      July 
2018

   default fall back mechanism that a device could use when 
determining
   which SSID to use.

3.6.  Define New IEEE 802.11u Extensions

   Of the various elements currently defined by [IEEE802.11u] for
   potentially advertising BRSKI, NAI Realm and Roaming Consortium IE
   are the two existing options that are a closest fit, as outlined
   above.  Another possibility that has been suggested in the IETF
   mailers is defining an extension to [IEEE802.11u] specifically for
   advertising BRSKI service capability.  Any extensions should be
   included in Beacon and Probe Response frames so that devices can
   discover BRSKI capability without the additional overhead of having
   to explicitly query using ANQP.

   [IEEE802.11aq] appears to be the proposed mechanism for generically
   advertising any service capability, provided that service is
   registered with [IANA].  It is probably a better approach to
   encourage adoption of [IEEE802.11aq] and register a service name 
for
   BRSKI with [IANA] rather than attempt to define a completely new
   BRSKI-specific [IEEE802.11u] extension.

3.7.  Wi-Fi Protected Setup

   Wi-Fi Protected Setup (WPS) only works with Wi-Fi Protected Access
   (WPA) and WPA2 when in Personal Mode.  WPS does not work when the
   network is in Enterprise Mode enforcing [IEEE802.1X] 
authentication.
   WPS is intended for consumer networks and does not address the
   security requirements of enterprise or IoT deployments.

3.8.  Define and Advertise a BRSKI-specific AKM in RSNE

   [IEEE802.11i] introduced the RSNE element which allows an SSID to



Page 198 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   advertise multiple authentication mechanisms.  A new Authentication
   and Key Management (AKM) Suite could be defined that indicates the
   STA can use BRSKI mechanisms to authenticate against the SSID.  The
   authentication handshake could be an [IEEE802.1X] handshake, 
possibly
   leveraging an EAP-BRSKI mechanism, the key thing here is that a new
   AKM is defined and advertised to indicate the specific BRSKI-
capable
   EAP method that is supported by [IEEE802.1X], as opposed to the
   current [IEEE802.1X] AKMs which give no indication of the supported
   EAP mechanisms.  It is clear that such method would limit the SSID 
to
   BRSKI-supporting clients.  This would require an additional SSID
   specifically for BRSKI clients.

Friel, et al.            Expires January 3, 2019               [Page 
12]

Internet-Draft                 BRSKI-WIFI                      July 
2018

3.9.  Wi-Fi Device Provisioning Profile

   The [DPP] specification defines how an entity that is already 
trusted
   by a network can assist an untrusted entity in enrolling with the
   network.  The description below assumes the [IEEE802.11] network is
   in infrastructure mode.  DPP introduces multiple key roles 
including:

   o  Configurator: A logical entity that is already trusted by the
      network that has capabilities to enroll and provision devices



Page 199 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

      called Enrollees.  A Configurator may be a STA or an AP.

   o  Enrollee: A logical entity that is being provisioned by a
      Configurator.  An Enrollee may be a STA or an AP.

   o  Initiator: A logical entity that initiates the DPP 
Authentication
      Protocol.  The Initiator may be the Configurator or the 
Enrollee.

   o  Responder: A logical entity that responds to the Initiator of 
the
      DPP Authentication Protocol.  The Responder may be the
      Configurator or the Enrollee.

   In order to support a plug and play model for installation of
   devices, where the device is simply powered up for the first time 
and
   automatically discovers the network without the need for a helper 
or
   supervising application, for example an application running on a
   smart cell phone or tablet that performs the role of Configurator,
   then this implies that the AP must perform the role of the
   Configurator and the device or STA performs the role of Enrollee.
   Note that the AP may simply proxy DPP messages through to a backend
   WLC, but from the perspective of the device, the AP is the
   Configurator.

   The DPP specification also mandates that the Initiator must be
   bootstrapped the bootstrapping public key of the Responder.  For
   BRSKI purposes, the DPP bootstrapping public key will be the
   [IEEE802.1AR] IDevID of the device.  As the boostrapping device
   cannot know in advance the bootstrapping public key of a specific
   operators network, this implies that the Configurator must take on
   the role of the Initiator.  Therefore, the AP must take on the 
roles
   of both the Configurator and the Initiator.

   More details to be added...

4.  Potential Authentication Options



Page 200 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   When the bootstrapping device determines which SSID to connect to,
   there are multiple potential options available for how the device

Friel, et al.            Expires January 3, 2019               [Page 
13]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   authenticates with the network while bootstrapping.  Several 
options
   are outlined in this section.  This list is not exhaustive.

   At a high level, authentication can generally be split into two
   phases using two different credentials:

   o  Pre-BRSKI: The device can use its [IEEE802.1AR] IDevID to 
connect
      to the network while executing the BRSKI flow

   o  Post-BRSKI: The device can use its [IEEE802.1AR] LDevID to 
connect
      to the network after completing BRSKI enrollment

   The authentication options outlined in this document include:

   o  Unauthenticated Pre-BRSKI and EAP-TLS Post-BRSKI

   o  PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI

   o  MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI

   o  EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI

   o  New TEAP BRSKI mechanism



Page 201 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   o  New [IEEE802.11] Authentication Algorithm for BRSKI and EAP-TLS
      Post-BRSKI

   o  New [IEEE802.1X] EAPOL-Announcements to encapsulate BRSKI prior 
to
      EAP-TLS Post-BRSKI

   These mechanisms are described in more detail in the following
   sections.  Note that any mechanisms leveraging [IEEE802.1X] are
   [IEEE802.11] MAC layer authentication mechanisms and therefore the
   SSID must advertise WPA2 capability.

   When evaluating the multiple authentication options outlined below,
   care and consideration must be given to the complexity of the
   software state machine required in both devices and services for
   implementation.

4.1.  Unauthenticated Pre-BRSKI and EAP-TLS Post-BRSKI

   The device connects to an unauthenticated network pre-BRSKI.  The
   device connects to a network enforcing EAP-TLS post-BRSKI.  The
   device uses its LDevID as the post-BRSKI EAP-TLS credential.

   To be completed..

Friel, et al.            Expires January 3, 2019               [Page 
14]

Internet-Draft                 BRSKI-WIFI                      July 
2018

4.2.  PSK or SAE Pre-BRSKI and EAP-TLS Post-BRSKI

   The device connects to a network enforcing PSK pre-BRSKI.  The



Page 202 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   mechanism by which the PSK is provisioned on the device for pre-
BRSKI
   authentication is out-of-scope of this version of this document.  
The
   device connects to a network enforcing EAP-TLS post-BRSKI.  The
   device uses the LDevID obtained via BRSKI as the post-BRSKI EAP-TLS
   credential.

   When the device connects to the post-BRSKI network that is 
enforcing
   EAP-TLS, the device uses its LDevID as its credential.  The device
   should verify the certificate presented by the server during that
   EAP-TLS exchange against the trusted CA list it obtained during
   BRSKI.

   If the [IEEE802.1X] network enforces a tunneled EAP method, for
   example [RFC7170], where the device must present an additional
   credential such as a password, the mechanism by which that 
additional
   credential is provisioned on the device for post-BRSKI 
authentication
   is out-of-scope of this version of this document.  NAI Realm may be
   used to advertise the EAP methods being enforced by an SSID.  It is
   to be determined if guidelines should be provided on use of NAI 
Realm
   for advertising EAP method in order to streamline BRSKI.

4.3.  MAC Address Bypass Pre-BRSKI and EAP-TLS Post-BRSKI

   Many AAA server state machine logic allows for the network to
   fallback to MAC Address Bypass (MAB) when initial authentication
   against the network fails.  If the device does not present a valid
   credential to the network, then the network will check if the
   device's MAC address is whitelisted.  If it is, then the network 
may
   grant the device access to a network segment that will allow it to
   complete the BRSKI flow and get provisioned with an LDevID.  Once 
the
   device has an LDevID, it can then reauthenticate against the 
network
   using its EAP-TLS and its LDevID.



Page 203 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

4.4.  EAP-TLS Pre-BRSKI and EAP-TLS Post-BRSKI

   The device connects to a network enforcing EAP-TLS pre-BRSKI.  The
   device uses its IDevID as the pre-BRSKI EAP-TLS credential.  The
   device connects to a network enforcing EAP-TLS post-BRSKI.  The
   device uses its LDevID as the post-BRSKI EAP-TLS credential.

   When the device connects to a pre-BRSKI network that is enforcing
   EAP-TLS, the device uses its IDevID as its credential.  The deivce
   should not attempt to verify the certificate presented by the 
server
   during that EAP-TLS exchange, as it has not yet discovered the 
local
   domain trusted CA list.

Friel, et al.            Expires January 3, 2019               [Page 
15]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   When the device connects to the post-BRSKI network that is 
enforcing
   EAP-TLS, the device uses its LDevID as its credential.  The device
   should verify the certificate presented by the server during that
   EAP-TLS exchange against the trusted CA list it obtained during
   BRSKI.

   Again, if the post-BRSKI network enforces a tunneled EAP method, 
the
   mechanism by which that second credential is provisioned on the
   device is out-of-scope of this version of this document.

4.5.  New TEAP BRSKI mechanism

   New TEAP TLVs are defined to transport BRSKI messages inside an 



Page 204 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

outer
   EAP TLS tunnel such as TEAP [RFC7170].  [I-D.lear-eap-teap-brski]
   outlines a proposal for how BRSKI messages could be transported
   inside TEAP TLVs.  At a high level, this enables the device to 
obtain
   an LDevID during the Layer 2 authentication stage.  This has 
multiple
   advantages including:

   o  avoids the need for the device to potentially connect to two
      different SSIDs during bootstrap

   o  the device only needs to handle one authentication mechanism
      during bootstrap

   o  the device only needs to obtain one IP address, which it obtains
      after BRSKI is complete

   o  avoids the need for the device to have to disconnect from the
      network, reset its network stack, and reconnect to the network

   o  potentially simplifies network policy configuration

   There are two suboptions to choose from when tunneling BRSKI 
messages
   inside TEAP:

   o  define new TLVs for transporting BRSKI messages inside the TEAP
      tunnel

   o  define a new EAP BRSKI method type that is tunneled within the
      outer TEAP method

   This section assumes that new TLVs are defined for transporting 
BRSKI
   messages inside the TEAP tunnel and that a new EAP BRSKI method 
type
   is not defined.

   The device discovers and connects to a network enforcing TEAP.  A
   high level TEAP with BRSKI extensions flow would look something 
like:



Page 205 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Friel, et al.            Expires January 3, 2019               [Page 
16]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   o  Device starts the EAP flow by sending the EAP TLS ClientHello
      message

   o  EAP server replies and includes CertificateRequest message, and
      may specify certificate_authorities in the message

   o  if the device has an LDevID and the LDevID issuing CA is allowed
      by the certificate_authorities list (i.e. the issuing CA is
      explicitly included in the list, or else the list is empty) then
      the device uses its LDevID to establish the TLS tunnel

   o  if the device does not have an LDevID, or 
certificate_authorities
      prevents it using its LDevID, then the device uses its IDevID to
      establish the TLS tunnel

   o  if certificate_authorities prevents the device from using its
      IDevID (and its LDevID if it has one) then the device fails to
      connect

   The EAP server continues with TLS tunnel establishment:

   o  if the device certificate is invalid or expired, then the EAP
      server fails the connection request.

   o  if the device certificate is valid but is not allowed due to a
      configured policy on the EAP server, then the EAP server fails 
the
      connection request



Page 206 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   o  if the device certificate is accepted, then the EAP server
      establishes the TLS tunnel and starts the tunneled EAP-BRSKI
      procedures

   At this stage, the EAP server has some policy decisions to make:

   o  if network policy indicates that the device certificate is
      sufficient to grant network access, whether it is an LDevID or 
an
      IDevID, then the EAP server simply initiates the Crypto-Binding
      TLV and 'Success' Result TLV exchange.  The device can now 
obtain
      an IP address and connect to the network.

   o  the EAP server may instruct the device to initialise a full 
BRSKI
      flow.  Typically, the EAP server will instruct the device to
      initialize a BRSKI flow when it presents an IDevID, however, the
      EAP server may instruct the device to initialize a BRSKI flow 
even
      if it presented a valid LDevID.  The device sends all BRSKI
      messages, for example 'requestvoucher', inside the TLS tunnel
      using new TEAP TLVs.  Assuming the BRSKI flow completes
      successfully and the device is issued an LDevID, the EAP server

Friel, et al.            Expires January 3, 2019               [Page 
17]

Internet-Draft                 BRSKI-WIFI                      July 
2018

      completes the exchange by initiating the Crypto-Binding TLV and
      'Success' Result TLV exchange.

   Once the EAP flow has successfully completed, then:



Page 207 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   o  network policy will automatically assign the device to the 
correct
      network segment

   o  the device obtains an IP address

   o  the device can access production service

   It is assumed that the device will automatically handle LDevID
   certificate reenrolment via standard EST [RFC7030] outside the
   context of the EAP tunnel.

   An item to be considered here is what information is included in
   Beacon or Probe Response frames to explicitly indicate that
   [IEEE802.1X] authentication using TEAP supporting BRSKI extensions 
is
   allowed.  Currently, the RSNE included in Beacon and Probe Response
   frames can only indicate [IEEE802.1X] support.

4.6.  New IEEE 802.11 Authentication Algorithm for BRSKI and EAP-TLS
      Post-BRSKI

   [IEEE802.11] supports multiple authentication algorithms in its
   Authentication frame including:

   o  Open System

   o  Shared Key

   o  Fast BSS Transition

   o  Simultaneous Authentication of Equals

   Shared Key authentication is used to indicate that the legacy WEP
   authentication mechanism is to be used.  Simultaneous 
Authentication
   of Equals is used to indicate that the Dragonfly-based shared
   passphrase authentication mechanism introduced in [IEEE802.11s] is 
to
   be used.  One thing that these two methods have in common is that a
   series of handshake data exchanges occur between the device and the



Page 208 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   AP as elements inside Authentication frames, and these 
Authentication
   exchanges happen prior to [IEEE802.11] Association.

   It would be possible to define a new Authentication Algorithm and
   define new elements to encapsulate BRSKI messages inside
   Authentication frames.  For example, new elements could be defined 
to

Friel, et al.            Expires January 3, 2019               [Page 
18]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   encapsulate BRSKI requestvoucher, voucher and voucher telemetry 
JSON
   messages.  The full BRSKI flow completes and the device gets issued
   an LDevID prior to associating with an SSID, and prior to doing 
full
   [IEEE802.1X] authentication using its LDevID.

   The high level flow would be something like:

   o  SSID Beacon / Probe Response indicates in RSNE that it supports
      BRSKI based Authentication Algorithm

   o  SSIDs could also advertise that they support both BRSKI based
      Authentication and [IEEE802.1X]

   o  device discovers SSID via suitable mechanism

   o  device completes BRSKI by sending new elements inside
      Authentication frames and obtains an LDevID

   o  device associates with the AP



Page 209 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   o  device completes [IEEE802.1X] authentication using its LDevID as
      credential for EAP-TLS or TEAP

4.7.  New IEEE 802.1X EAPOL-Announcements to encapsulate BRSKI and 
EAP-
      TLS Post-BRSKI

   [IEEE802.1X] defines multiple EAPOL packet types, including EAPOL-
   Announcement and EAPOL-Announcement-Req messages.  EAPOL-
Annoncement
   and EAPOL-Announcement-Req messages can include multiple TLVs.
   EAPOL-Annoncement messages can be sent prior to starting any EAP
   authentication flow.  New TLVs could be defined to encapsulate 
BRSKI
   messages inside EAPOL-Announcement and EAPOL-Announcement-Req TLVs.
   For example, new TLVs could be defined to encapsulate BRSKI
   requestvoucher, voucher and voucher telemetry JSON messages.  The
   full BRSKI flow could complete inside EAPOL-Announcement exchanges
   prior to sending EAPOL-Start or EAPOL-EAP messages.

   The high level flow would be something like:

   o  SSID Beacon / Probe Response indicates somehow in RSNE that it
      supports [IEEE802.1X] including BRSKI extensions.

   o  device connects to SSID and completes standard Open System
      Authentication and Association

   o  device starts [IEEE802.1X] EAPOL flow and uses new EAPOL-
      Announcement frames to encapsulate and complete BRSKI flow to
      obtain an LDevID

Friel, et al.            Expires January 3, 2019               [Page 
19]



Page 210 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Internet-Draft                 BRSKI-WIFI                      July 
2018

   o  device completes [IEEE802.1X] authentication using its LDevID as
      credential for EAP-TLS or TEAP

5.  IANA Considerations

   [[ TODO ]]

6.  Security Considerations

   [[ TODO ]]

7.  Informative References

   [calculator]
              Revolution Wi-Fi, "SSID Overhead Calculator", n.d.,
              <http://www.revolutionwifi.net/revolutionwifi/p/
              ssid-overhead-calculator.html>.

   [DPP]      Wi-Fi Alliance, "Wi-Fi Device Provisioning Protocol",
              n.d., <https://www.wi-fi.org/file/wi-fi-device-
              provisioning-protocol-dpp-draft-technical-specification-
              v0023>.

   [I-D.ietf-anima-bootstrapping-keyinfra]
              Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
              S., and K. Watsen, "Bootstrapping Remote Secure Key
              Infrastructures (BRSKI)", draft-ietf-anima-
bootstrapping-
              keyinfra-16 (work in progress), June 2018.

   [I-D.lear-eap-teap-brski]
              Lear, E., Friel, O., and N. Cam-Winget, "Bootstrapping 
Key
              Infrastructure over EAP", draft-lear-eap-teap-brski-00
              (work in progress), June 2018.

   [IANA]     Internet Assigned Numbers Authority, "Service Name and
              Transport Protocol Port Number Registry", n.d.,



Page 211 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

              <https://www.iana.org/assignments/service-names-port-
              numbers/service-names-port-numbers.xhtml>.

   [IEEE802.11]
              IEEE, ., "Wireless LAN Medium Access Control (MAC) and
              Physical Layer (PHY) Specifications", 2016.

   [IEEE802.11aq]
              IEEE, ., "802.11 Amendment 5 Pre-Association Discovery",
              2017.

Friel, et al.            Expires January 3, 2019               [Page 
20]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   [IEEE802.11i]
              IEEE, ., "802.11 Amendment 6 Medium Access Control (MAC)
              Security Enhancements", 2004.

   [IEEE802.11s]
              IEEE, ., "802.11 Amendment 10 Mesh Networking", 2011.

   [IEEE802.11u]
              IEEE, ., "802.11 Amendment 9 Interworking with External
              Networks", 2011.

   [IEEE802.1AR]
              IEEE, ., "Secure Device Identity", 2017.

   [IEEE802.1X]
              IEEE, ., "Port-Based Network Access Control", 2010.



Page 212 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

   [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and 
H.
              Levkowetz, Ed., "Extensible Authentication Protocol
              (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
              <https://www.rfc-editor.org/info/rfc3748>.

   [RFC4282]  Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
              Network Access Identifier", RFC 4282,
              DOI 10.17487/RFC4282, December 2005,
              <https://www.rfc-editor.org/info/rfc4282>.

   [RFC7030]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
              "Enrollment over Secure Transport", RFC 7030,
              DOI 10.17487/RFC7030, October 2013,
              <https://www.rfc-editor.org/info/rfc7030>.

   [RFC7170]  Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
              "Tunnel Extensible Authentication Protocol (TEAP) 
Version
              1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
              <https://www.rfc-editor.org/info/rfc7170>.

Appendix A.  IEEE 802.11 Primer

A.1.  IEEE 802.11i

   802.11i-2004 is an IEEE standard from 2004 that improves connection
   security. 802.11i-2004 is incorporated into 802.11-2014. 802.11i
   defines the Robust Security Network IE which includes information 
on:

   o  Pairwise Cipher Suites (WEP-40, WEP-104, CCMP-128, etc.)

   o  Authentication and Key Management Suites (PSK, 802.1X, etc.)

Friel, et al.            Expires January 3, 2019               [Page 
21]



Page 213 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Internet-Draft                 BRSKI-WIFI                      July 
2018

   The RSN IEs are included in Beacon and Probe Response frames.  STAs
   can use this frame to determine the authentication mechanisms 
offered
   by a particular AP e.g.  PSK or 802.1X.

A.2.  IEEE 802.11u

   802.11u-2011 is an IEEE standard from 2011 that adds features that
   improve interworking with external networks. 802.11u-2011 is
   incorporated into 802.11-2016.

   STAs and APs advertise support for 802.11u by setting the
   Interworking bit in the Extended Capabilities IE, and by including
   the Interworking IE in Beacon, Probe Request and Probe Response
   frames.

   The Interworking IE includes information on:

   o  Access Network Type (Private, Free public, Chargeable public,
      etc.)

   o  Internet bit (yes/no)

   o  ASRA (Additional Step required for Access - e.g.  Acceptance of
      terms and conditions, On-line enrollment, etc.)

   802.11u introduced Access Network Query Protocol (ANQP) which 
enables
   STAs to query APs for information not present in Beacons/Probe
   Responses.

   ANQP defines these key IEs for enabling the STA to determine which
   network to connect to:

   o  Roaming consortium IE: includes the Organization Identifier(s) 
of
      the roaming consortium(s).  The OI is typically provisioned on
      cell phones by the SP, so the cell phone can automatically 



Page 214 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

detect
      802.11 networks that provide access to its SP's consortium.

   o  3GPP Cellular Network IE: includes the Mobile Country Code (MCC)
      and Mobile Network Code (MNC) of the SP the AP provides access 
to.

   o  Network Access Identifier Realm IE: includes [RFC4282] realm 
names
      that the AP provides access to (e.g. wifi.service-provider.com).
      The NAI Realm IE also includes info on the EAP type required to
      access that realm e.g.  EAP-TLS.

   o  Domain name IE: the domain name(s) of the local AP operator.  
Its
      purpose is to enable a STA to connect to a domain operator that
      may have a roaming agreement with STA's Service Provider.

Friel, et al.            Expires January 3, 2019               [Page 
22]

Internet-Draft                 BRSKI-WIFI                      July 
2018

   STAs can use one or more of the above IEs to make a suitable 
decision
   on which SSID to pick.

   HotSpot 2.0 is an example of a specification built on top of 
802.11u
   and defines 10 additional ANQP elements using the standard vendor
   extensions mechanisms defined in 802.11.  It also defines a HS2.0
   Indication element that is included in Beacons and Probe Responses 
so
   that STAs can immediately tell if an SSID supports HS2.0.



Page 215 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Authors' Addresses

   Owen Friel
   Cisco

   Email: ofriel@cisco.com

   Eliot Lear
   Cisco

   Email: lear@cisco.com

   Max Pritikin
   Cisco

   Email: pritikin@cisco.com

   Michael Richardson
   Sandelman Software Works

   Email: mcr+ietf@sandelman.ca



Page 216 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Datatracker

draft-friel-brski-over-802dot11-01 None

Info

Contents

Prefs

Friel, et al.            Expires January 3, 2019               [Page 
23]

https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/


Page 217 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Document
type

Replaced Internet-Draft (individual) Expired & archivedThis
document is an Internet-Draft (I-D). Anyone may submit an I-D to
the IETF. This I-D is not endorsed by the IETF and has no formal

standing in the IETF standards process.

Select

version
0001

Compare

versions

draft-friel-brski-over-802dot11-01 draft-friel-brski-over-802dot11-00

draft-friel-brski-over-802dot11-00 draft-friel-brski-over-802dot11-01

draft-friel-brski-over-802dot11-00 draft-friel-brski-over-802dot11-

01Side-by-side Inline

Authors
Owen Friel , Eliot Lear , Max Pritikin , Michael Richardson Email

authors

Replaced by draft-friel-anima-brski-over-802dot11

RFC stream (None)

Intended

RFC status
(None)

Other

formats
txt xml pdf bibtex bibxml

https://datatracker.ietf.org/doc/rfc2026/
https://datatracker.ietf.org/doc/html/draft-friel-brski-over-802dot11-00
https://datatracker.ietf.org/doc/html/draft-friel-brski-over-802dot11-01
https://datatracker.ietf.org/person/ofriel@cisco.com
https://datatracker.ietf.org/person/lear@lear.ch
https://datatracker.ietf.org/person/pritikin@cisco.com
https://datatracker.ietf.org/person/mcr+ietf@sandelman.ca
mailto:draft-friel-brski-over-802dot11@ietf.org?subject=draft-friel-brski-over-802dot11
mailto:draft-friel-brski-over-802dot11@ietf.org?subject=draft-friel-brski-over-802dot11
https://datatracker.ietf.org/doc/html/draft-friel-anima-brski-over-802dot11
https://www.ietf.org/archive/id/draft-friel-brski-over-802dot11-01.txt
https://www.ietf.org/archive/id/draft-friel-brski-over-802dot11-01.xml
https://datatracker.ietf.org/doc/pdf/draft-friel-brski-over-802dot11-01
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/bibtex/
https://datatracker.ietf.org/doc/bibxml3/draft-friel-brski-over-802dot11-01.xml


Page 218 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI-AE: Alternative
Enrollment Protocols In
BRSKI

Abstract
This document enhances Bootstrapping Remote Secure Key Infrastructure (BRSKI, RFC 8995) to allow employing alternative
enrollment protocols, such as CMP.

Using self-contained signed objects, the origin of enrollment requests and responses can be authenticated independently of
message transfer. This supports end-to-end security and asynchronous operation of certificate enrollment and provides flexibility
where to authenticate and authorize certification requests.

Status Of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in
progress."

This Internet-Draft will expire on 8 October 2022.

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as
they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Revised BSD License.

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#abstract
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-status-of-this-memo-2
https://datatracker.ietf.org/drafts/current/
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-copyright-notice-2
https://trustee.ietf.org/license-info


Page 219 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

▲

Table Of Contents
1. Introduction

1.1. Motivation

1.2. Supported Environment

1.3. List of Application Examples

2. Terminology

3. Requirements and Mapping to Solutions
3.1. Basic Requirements

3.2. Solution Options for Proof-of-possession

3.3. Solution Options for Proof-of-identity

4. Adaptations to BRSKI
4.1. Architecture

4.2. Message Exchange

4.3. Enhancements to Addressing Scheme

4.4. Domain Registrar Support of Alternative Enrollment Protocols

5. Instantiation to Existing Enrollment Protocols
5.1. BRSKI-EST-fullCMC: Instantiation to EST (informative)

5.2. BRSKI-CMP: Instantiation to CMP (normative if CMP is chosen)

6. IANA Considerations

7. Security Considerations

8. Acknowledgments

9. References
9.1. Normative References

9.2. Informative References

Appendix A. Using EST for Certificate Enrollment

Appendix B. Application Examples
B.1. Rolling Stock

B.2. Building Automation

B.3. Substation Automation

B.4. Electric Vehicle Charging Infrastructure

B.5. Infrastructure Isolation Policy

B.6. Sites with Insufficient Level of Operational Security

Appendix C. History of Changes TBD RFC Editor: please delete

Authors' Addresses

1. Introduction

1.1. Motivation

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-table-of-contents-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-introduction-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-motivation
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-supported-environment
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-list-of-application-example
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-terminology
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-requirements-and-mapping-to
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-basic-requirements
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-solution-options-for-proof-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-solution-options-for-proof-o
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-adaptations-to-brski
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-architecture
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-message-exchange
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-enhancements-to-addressing-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-domain-registrar-support-of
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-instantiation-to-existing-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-est-fullcmc-instantia
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-cmp-instantiation-to-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-6
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-iana-considerations-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-7
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-security-considerations-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-8
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-acknowledgments-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-references-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-normative-references-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-informative-references-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-A
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-using-est-for-certificate-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-application-examples
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-rolling-stock
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-building-automation
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-substation-automation
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-electric-vehicle-charging-i
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.5
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-infrastructure-isolation-po
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.6
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-sites-with-insufficient-lev
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-C
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-history-of-changes-tbd-rfc-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-authors-addresses-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-introduction-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-motivation


Page 220 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

BRSKI, as defined in [RFC8995], specifies a solution for secure automated zero-touch bootstrapping of new devices, so-called
pledges. This includes the discovery of the registrar in the target domain, time synchronization, and the exchange of security
information necessary to establish mutual trust between pledges and the target domain.

A pledge gains trust in the target domain via the domain registrar as follows. It obtains security information about the domain,
specifically a domain certificate to be trusted, by requesting a voucher object defined in [RFC8366]. Such a voucher is a self-
contained signed object originating from a Manufacturer Authorized Signing Authority (MASA). Therefore, the voucher may be
provided in online mode (synchronously) or offline mode (asynchronously). The pledge can authenticate the voucher because it is
shipped with a trust anchor of its manufacturer such that it can validate signatures (including related certificates) by the MASA.

Trust by the target domain in a pledge is established by providing the pledge with a domain-specific LDevID certificate. The
certification request of the pledge is signed using its IDevID secret and can be validated by the target domain using the trust anchor
of the pledge manufacturer, which needs to pre-installed in the domain.

For enrolling devices with LDevID certificates, BRSKI typically utilizes Enrollment over Secure Transport (EST) [RFC7030]. EST has
its specific characteristics, detailed in Appendix A. In particular, it requires online or on-site availability of the RA for performing the
data origin authentication and final authorization decision on the certification request. This type of enrollment can be called
'synchronous enrollment'. For various reasons, it may be preferable to use alternative enrollment protocols such as the Certificate
Management Protocol (CMP) [RFC4210] profiled in [I-D.ietf-lamps-lightweight-cmp-profile] or Certificate Management over CMS
(CMC) [RFC5272]. that are more flexible and independent of the transfer mechanism because they represent certification request
messages as authenticated self-contained objects.

Depending on the application scenario, the required RA/CA components may not be part of the registrar. They even may not be
available on-site but rather be provided by remote backend systems. The registrar or its deployment site may not have an online
connection with them or the connectivity may be intermittent. This may be due to security requirements for operating the backend
systems or due to site deployments where on-site or always-online operation may be not feasible or too costly. In such scenarios,
the authentication and authorization of certification requests will not or can not be performed on-site at enrollment time. In this
document, enrollment that is not performed in a (time-wise) consistent way is called 'asynchronous enrollment'. Asynchronous
enrollment requires a store-and-forward transfer of certification requests along with the information needed for authenticating the
requester. This allows offline processing the request.

Application scenarios may also involve network segmentation, which is utilized in industrial systems to separate domains with
different security needs. Such scenarios lead to similar requirements if the TLS connection carrying the requester authentication is
terminated and thus request messages need to be forwarded on further channels before the registrar/RA can authorize the
certification request. In order to preserve the requester authentication, authentication information needs to be retained and ideally
bound directly to the certification request.

There are basically two approaches for forwarding certification requests along with requester authentication information:

A trusted component (e.g., a local RA) in the target domain is needed that forwards the certification request combined with
the validated identity of the requester (e,g., its IDevID certificate) and an indication of successful verification of the proof-of-
possession (of the corresponding private key) in a way preventing changes to the combined information. When connectivity is
available, the trusted component forwards the certification request together with the requester information (authentication and
proof-of-possession) for further processing. This approach offers only hop-by-hop security. The backend PKI must rely on the
local pledge authentication result provided by the local RA when performing the authorization of the certification request. In
BRSKI, the EST server is such a trusted component, being co-located with the registrar in the target domain.

Involved components use authenticated self-contained objects for the enrollment, directly binding the certification request and
the requester authentication in a cryptographic way. This approach supports end-to-end security, without the need to trust in
intermediate domain components. Manipulation of the request and the requester identity information can be detected during
the validation of the self-contained signed object.

Focus of this document is the support of alternative enrollment protocols that allow using authenticated self-contained objects for
device credential bootstrapping. This enhancement of BRSKI is named BRSKI-AE, where AE stands for alternative enrollment
protocols and for asynchronous enrollment. This specification carries over the main characteristics of BRSKI, namely that the pledge
obtains trust anchor information for authenticating the domain registrar and other target domain components as well as a domain-

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8366
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#using-est
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC4210
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5272


Page 221 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

specific X.509 device certificate (the LDevID certificate) along with the corresponding private key (the LDevID secret) and certificate
chain.

The goals are to enhance BRSKI to

support alternative enrollment protocols,

support end-to-end security for enrollment, and

make it applicable to scenarios involving asynchronous enrollment.

This is achieved by

extending the well-known URI approach with an additional path element indicating the enrollment protocol being used, and

defining a certificate waiting indication and handling, for the case that the certifying component is (temporarily) not available.

This specification can be applied to both synchronous and asynchronous enrollment.

In contrast to BRSKI, this specification supports offering multiple enrollment protocols on the infrastructure side, which enables
pledges and their developers to pick the preferred one.

1.2. Supported Environment

BRSKI-AE is intended to be used in domains that may have limited support of on-site PKI services and comprises application
scenarios like the following.

There are requirements or implementation restrictions that do not allow using EST for enrolling an LDevID certificate.

Pledges and/or the target domain already have an established certificate management approach different from EST that shall
be reused (e.g., in brownfield installations).

There is no registration authority available on site in the target domain. Connectivity to an off-site RA is intermittent or entirely
offline. A store-and-forward mechanism is used for communicating with the off-site services.

Authoritative actions of a local RA are limited and may not be sufficient for authorizing certification requests by pledges. Final
authorization is done by an RA residing in the operator domain.

1.3. List Of Application Examples

Bootstrapping can be handled in various ways, depending on the application domains. The informative Appendix B provides
illustrative examples from various industrial control system environments and operational setups. They motivate the support of
alternative enrollment protocols, based on the following examples of operational environments:

Rolling stock

Building automation

Electrical substation automation

Electric vehicle charging infrastructures

Infrastructure isolation policy

Sites with insufficient level of operational security

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-supported-environment
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-1.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-list-of-application-example
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#app-examples


Page 222 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119]
[RFC8174] when, and only when, they appear in all capitals, as shown here.

This document relies on the terminology defined in [RFC8995] and [IEEE.802.1AR_2009]. The following terms are defined in
addition:

EE:

End entity, in the BRSKI context called pledge. It is the entity that is bootstrapped to the target domain. It holds a public-
private key pair, for which it requests a public-key certificate. An identifier for the EE is given as the subject name of the
certificate.

RA:

Registration authority, an optional system component to which a CA delegates certificate management functions such as
authenticating requesters and performing authorization checks on certification requests.

CA:

Certification authority, issues certificates and provides certificate status information.

target domain:

The set of entities that share a common local trust anchor, independent of where the entities are deployed.

site:

Describes the locality where an entity, e.g., pledge, registrar, RA, CA, is deployed. Different sites can belong to the same
target domain.

on-site:

Describes a component or service or functionality available in the target deployment site.

off-site:

Describes a component or service or functionality available in an operator site different from the target deployment site. This
may be a central site or a cloud service, to which only a temporary connection is available.

asynchronous communication:

Describes a time-wise interrupted communication between a pledge (EE) and a registrar or PKI component.

synchronous communication:

Describes a time-wise uninterrupted communication between a pledge (EE) and a registrar or PKI component.

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-terminology
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC2119
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8174
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#IEEE.802.1AR_2009


Page 223 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

authenticated self-contained object:

Describes in this context an object that is cryptographically bound to the IDevID certificate of a pledge. The binding is
assumed to be provided through a digital signature of the actual object using the IDevID secret.

3. Requirements And Mapping To
Solutions

3.1. Basic Requirements

There were two main drivers for the definition of BRSKI-AE:

The solution architecture may already use or require a certificate management protocol other than EST. Therefore, this other
protocol should be usable for requesting LDevID certificates.

The domain registrar may not be the (final) point that authenticates and authorizes certification requests and the pledge may
not have a direct connection to it. Therefore, certification requests should be self-contained signed objects.

Based on the intended target environment described in Section 1.2 and the application examples described in Appendix B, the
following requirements are derived to support authenticated self-contained objects as containers carrying certification requests.

At least the following properties are required:

proof-of-possession: demonstrates access to the private key corresponding to the public key contained in a certification
request. This is typically achieved by a self-signature using the corresponding private key.

proof-of-identity: provides data origin authentication of the certification request. This typically is achieved by a signature using
the IDevID secret of the pledge.

The rest of this section gives an incomplete list of solution examples, based on existing technology described in IETF documents:

3.2. Solution Options For Proof-Of-Possession

Certification request objects: Certification requests are data structures protecting only the integrity of the contained data and
providing proof-of-possession for a (locally generated) private key. Examples for certification request data structures are:

PKCS#10 [RFC2986]. This certification request structure is self-signed to protect its integrity and prove possession of the
private key that corresponds to the public key included in the request.

CRMF [RFC4211]. Also this certificate request message format supports integrity protection and proof-of-possession, typically
by a self-signature generated over (part of) the structure with the private key corresponding to the included public key. CRMF
also supports further proof-of-possession methods for types of keys that do not support any signature algorithm.

The integrity protection of certification request fields includes the public key because it is part of the data signed by the
corresponding private key. Yet note that for the above examples this is not sufficient to provide data origin authentication, i.e., proof-
of-identity. This extra property can be achieved by an additional binding to the IDevID of the pledge. This binding to source
authentication supports the authorization decision for the certification request. The binding of data origin authentication to the
certification request may be delegated to the protocol used for certificate management.

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-requirements-and-mapping-to
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-requirements-and-mapping-to
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-basic-requirements
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#sup-env
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#app-examples
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-solution-options-for-proof-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC2986
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC4211


Page 224 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

3.3. Solution Options For Proof-Of-Identity

The certification request should be bound to an existing authenticated credential (here, the IDevID certificate) to enable a proof of
identity and, based on it, an authorization of the certification request. The binding may be achieved through security options in an
underlying transport protocol such as TLS if the authorization of the certification request is (completely) done at the next
communication hop. This binding can also be done in a transport-independent way by wrapping the certification request with
signature employing an existing IDevID. the BRSKI context, this will be the IDevID. This requirement is addressed by existing
enrollment protocols in various ways, such as:

EST [RFC7030] utilizes PKCS#10 to encode the certification request. The Certificate Signing Request (CSR) optionally
provides a binding to the underlying TLS session by including the tls-unique value in the self-signed PKCS#10 structure. The
tls-unique value results from the TLS handshake. Since the TLS handshake includes client authentication and the pledge
utilizes its IDevID for it, the proof-of-identity is provided by such a binding to the TLS session. This can be supported using
the EST /simpleenroll endpoint. Note that the binding of the TLS handshake to the CSR is optional in EST. As an alternative
to binding to the underlying TLS authentication in the transport layer, [RFC7030] sketches wrapping the CSR with a Full PKI
Request message using an existing certificate.

SCEP [RFC8894] supports using a shared secret (passphrase) or an existing certificate to protect CSRs based on SCEP
Secure Message Objects using CMS wrapping ([RFC5652]). Note that the wrapping using an existing IDevID in SCEP is
referred to as renewal. Thus SCEP does not rely on the security of the underlying transfer.

CMP [RFC4210] supports using a shared secret (passphrase) or an existing certificate, which may be an IDevID credential,
to authenticate certification requests via the PKIProtection structure in a PKIMessage. The certification request is typically
encoded utilizing CRMF, while PKCS#10 is supported as an alternative. Thus CMP does not rely on the security of the
underlying transfer protocol.

CMC [RFC5272] also supports utilizing a shared secret (passphrase) or an existing certificate to protect certification requests,
which can be either in CRMF or PKCS#10 structure. The proof-of-identity can be provided as part of a FullCMCRequest,
based on CMS [RFC5652] and signed with an existing IDevID secret. Thus CMC does not rely on the security of the
underlying transfer protocol.

4. Adaptations To BRSKI
In order to support alternative enrollment protocols, asynchronous enrollment, and more general system architectures, BRSKI-AE
lifts some restrictions of BRSKI [RFC8995]. This way, authenticated self-contained objects such as those described in Section 3
above can be used for certificate enrollment.

The enhancements needed are kept to a minimum in order to ensure reuse of already defined architecture elements and
interactions. In general, the communication follows the BRSKI model and utilizes the existing BRSKI architecture elements. In
particular, the pledge initiates communication with the domain registrar and interacts with the MASA as usual.

4.1. Architecture

The key element of BRSKI-AE is that the authorization of a certification request MUST be performed based on an authenticated
self-contained object. The certification request is bound in a self-contained way to a proof-of-origin based on the IDevID.
Consequently, the authentication and authorization of the certification request MAY be done by the domain registrar and/or by other
domain components. These components may be offline or reside in some central backend of the domain operator (off-site) as
described in Section 1.2. The registrar and other on-site domain components may have no or only temporary (intermittent)
connectivity to them. The certification request MAY also be piggybacked on another protocol.

This leads to generalizations in the placement and enhancements of the logical elements as shown in Figure 1.

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-3.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-solution-options-for-proof-o
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8894
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5652
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC4210
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5272
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5652
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-adaptations-to-brski
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-architecture
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#sup-env
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#uc1figure


Page 225 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 1: Architecture Overview Using Off-site PKI Components

The architecture overview in Figure 1 has the same logical elements as BRSKI, but with more flexible placement of the
authentication and authorization checks on certification requests. Depending on the application scenario, the registrar MAY still do
all of these checks (as is the case in BRSKI), or part of them, or none of them.

The following list describes the on-site components in the target domain of the pledge shown in Figure 1.

Join Proxy: same functionality as described in BRSKI [RFC8995].

                                           +------------------------+
   +--------------Drop-Ship--------------->| Vendor Service         |
   |                                       +------------------------+
   |                                       | M anufacturer|         |
   |                                       | A uthorized  |Ownership|
   |                                       | S igning     |Tracker  |
   |                                       | A uthority   |         |
   |                                       +--------------+---------+
   |                                                      ^
   |                                                      |
   V                                                      |
+--------+     .........................................  |
|        |     .                                       .  | BRSKI-
|        |     .  +------------+       +------------+  .  | MASA
| Pledge |     .  |   Join     |       | Domain     \<-----+
|        |     .  |   Proxy    |       | Registrar/ |  .
|        \<-------->............\<-------> Enrollment |  .
|        |     .  |        BRSKI-AE    | Proxy/LRA  |  .
| IDevID |     .  |            |       +------^-----+  .
|        |     .  +------------+              |        .
|        |     .                              |        .
+--------+     ...............................|.........
                on-site "domain" components   |
                                              | e.g., RFC 4210,
                                              |       RFC 7030, ...
 .............................................|.....................
 . +---------------------------+     +--------v------------------+ .
 . | Public-Key Infrastructure \<-----+ Registration Authority    | .
 . | PKI CA                    +-----> PKI RA                    | .
 . +---------------------------+     +---------------------------+ .
 ...................................................................
         off-site or central "domain" components

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#figure-1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-architecture-overview-using
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#uc1figure
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#uc1figure
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995


Page 226 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Domain Registrar / Enrollment Proxy / LRA: in BRSKI-AE, the domain registrar has mostly the same functionality as in
BRSKI, namely to facilitate the communication of the pledge with the MASA and the PKI. Yet in contrast to BRSKI, the
registrar offers different enrollment protocols and MAY act as a local registration authority (LRA) or simply as an enrollment
proxy. In such cases, the domain registrar forwards the certification request to some off-site RA component, which performs
at least part of the authorization. This also covers the case that the registrar has only intermittent connection and forwards the
certification request to the RA upon re-established connectivity.

Note: To support alternative enrollment protocols, the URI scheme for addressing the domain registrar is generalized (see
Section 4.3).

The following list describes the components provided by the vendor or manufacturer outside the target domain.

MASA: general functionality as described in BRSKI [RFC8995]. The voucher exchange with the MASA via the domain
registrar is performed as described in BRSKI.

Note: The interaction with the MASA may be synchronous (voucher request with nonce) or asynchronous (voucher request
without nonce).

Ownership tracker: as defined in BRSKI.

The following list describes the target domain components that can optionally be operated in the off-site backend of the target
domain.

PKI RA: Performs certificate management functions for the domain as a centralized public-key infrastructure for the domain
operator. As far as not already done by the domain registrar, it performs the final validation and authorization of certification
requests.

PKI CA: Performs certificate generation by signing the certificate structure requested in already authenticated and authorized
certification requests.

Based on the diagram in Section 2.1 of BRSKI [RFC8995] and the architectural changes, the original protocol flow is divided into
three phases showing commonalities and differences to the original approach as follows.

Discovery phase: same as in BRSKI steps (1) and (2)

Voucher exchange phase: same as in BRSKI steps (3) and (4).

Enrollment phase: step (5) is changed to employing an alternative enrollment protocol that uses authenticated self-contained
objects.

4.2. Message Exchange

The behavior of a pledge described in Section 2.1 of BRSKI [RFC8995] is kept with one exception. After finishing the Imprint step
(4), the Enroll step (5) MUST be performed with an enrollment protocol utilizing authenticated self-contained objects. Section 5
discusses selected suitable enrollment protocols and options applicable.

[
 Cannot render SVG graphics - please view
 https://raw.githubusercontent.com/anima-wg/anima-brski-ae/main/o.png
]

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#addressing
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-message-exchange
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot


Page 227 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 2: BRSKI-AE Abstract Protocol Overview

Pledge - registrar discovery and voucher exchange

The discovery phase and voucher exchange are applied as specified in [RFC8995].

Registrar - MASA voucher exchange

This voucher exchange is performed as specified in [RFC8995].

Pledge - registrar - RA/CA certificate enrollment

As stated in Section 3, the enrollment MUST be performed using an authenticated self-contained object providing not only proof-of-
possession but also proof-of-identity (source authentication).

+--------+                        +------------+       +------------+
| Pledge |                        | Domain     |       | Operator   |
|        |                        | Registrar  |       | RA/CA      |
|        |                        |  (JRC)     |       | (PKI)      |
+--------+                        +------------+       +------------+
 /-->                                      |                       |
[Optional request of CA certificates]      |                       |
 |---------- CA Certs Request ------------>|                       |
 |                 [if connection to operator domain is available] |
 |                                         |-- CA Certs Request -->|
 |                                         |\<- CA Certs Response --|
 |\<--------- CA Certs Response ------------|                       |
 /-->                                      |                       |
[Optional request of attributes to include in Certificate Request] |
 |---------- Attribute Request ----------->|                       |
 |                 [if connection to operator domain is available] |
 |                                         |- Attribute Request -->|
 |                                         |\<- Attribute Response -|
 |\<--------- Attribute Response -----------|                       |
 /-->                                      |                       |
[Mandatory certificate request]            |                       |
 |---------- Certificate Request --------->|                       |
 |                 [if connection to operator domain is available] |
 |                                         |-Certificate Request ->|
 |                                         |\<- Certificate Resp. --|
 |\<--------- Certificate Response ---------|                       |
 /-->                                      |                       |
[Optional certificate confirmation]        |                       |
 |---------- Certificate Confirm --------->|                       |

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#figure-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-ae-abstract-protocol-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol


Page 228 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Figure 3: Certificate Enrollment

The following list provides an abstract description of the flow depicted in Figure 3.

CA Certs Request: The pledge optionally requests the latest relevant CA certificates. This ensures that the pledge has the
complete set of current CA certificates beyond the pinned-domain-cert (which is contained in the voucher and may be just the
domain registrar certificate).

CA Certs Response: It MUST contain the current root CA certificate, which typically is the LDevID trust anchor, and any
additional certificates that the pledge may need to validate certificates.

Attribute Request: Typically, the automated bootstrapping occurs without local administrative configuration of the pledge.
Nevertheless, there are cases in which the pledge may also include additional attributes specific to the target domain into the
certification request. To get these attributes in advance, the attribute request can be used.

Attribute Response: It MUST contain the attributes to be included in the subsequent certification request.

Certificate Request: This certification request MUST contain the authenticated self-contained object ensuring both proof-of-
possession of the corresponding private key and proof-of-identity of the requester.

Certificate Response: The certification response message MUST contain on success the requested certificate and MAY
include further information, like certificates of intermediate CAs.

Certificate Confirm: An optional confirmation sent after the requested certificate has been received and validated. It contains a
positive or negative confirmation by the pledge whether the certificate was successfully enrolled and fits its needs.

PKI/Registrar Confirm: An acknowledgment by the PKI or registrar that MUST be sent on reception of the Cert Confirm.

The generic messages described above may be implemented using various enrollment protocols supporting authenticated self-
contained objects, as described in Section 3. Examples are available in Section 5.

Pledge - registrar - enrollment status telemetry

The enrollment status telemetry is performed as specified in [RFC8995]. In BRSKI this is described as part of the enrollment phase,
but due to the generalization on the enrollment protocol described in this document it fits better as a separate step here.

4.3. Enhancements To Addressing Scheme

BRSKI-AE provides generalizations to the addressing scheme defined in BRSKI [RFC8995] to accommodate alternative enrollment
protocols that use authenticated self-contained objects for certification requests. As this is supported by various existing enrollment
protocols, they can be directly employed (see also Section 5).

The addressing scheme in BRSKI for certification requests and the related CA certificates and CSR attributes retrieval functions
uses the definition from EST [RFC7030]; here on the example of simple enrollment: "/.well-known/est/simpleenroll". This approach is
generalized to the following notation: "/.well-known/<enrollment-protocol>/<request>" in which <enrollment-protocol> refers to a
certificate enrollment protocol. Note that enrollment is considered here a message sequence that contains at least a certification
request and a certification response. The following conventions are used in order to provide maximal compatibility to BRSKI:

<enrollment-protocol>: MUST reference the protocol being used, which MAY be CMP, CMC, SCEP, EST [RFC7030] as in
BRSKI, or a newly defined approach.

 |                 [if connection to operator domain is available] |
 |                                         |-Certificate Confirm ->|
 |                                         |\<---- PKI Confirm -----|
 |\<--------- PKI/Registrar Confirm --------|                       |

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#figure-3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-certificate-enrollment
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#enrollfigure
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-enhancements-to-addressing-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030


Page 229 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Note: additional endpoints (well-known URIs) at the registrar may need to be defined by the enrollment protocol being used.

<request>: if present, the <request> path component MUST describe, depending on the enrollment protocol being used, the
operation requested. Enrollment protocols are expected to define their request endpoints, as done by existing protocols (see
also Section 5).

4.4. Domain Registrar Support Of Alternative Enrollment

Protocols

Well-known URIs for various endpoints on the domain registrar are already defined as part of the base BRSKI specification or
indirectly by EST. In addition, alternative enrollment endpoints MAY be supported at the registrar. The pledge will recognize whether
its preferred enrollment option is supported by the domain registrar by sending a request to its preferred enrollment endpoint and
evaluating the HTTP response status code.

The following list of endpoints provides an illustrative example for a domain registrar supporting several options for EST as well as
for CMP to be used in BRSKI-AE. The listing contains the supported endpoints to which the pledge may connect for bootstrapping.
This includes the voucher handling as well as the enrollment endpoints. The CMP related enrollment endpoints are defined as well-
known URIs in CMP Updates [I-D.ietf-lamps-cmp-updates] and the Lightweight CMP profile [I-D.ietf-lamps-lightweight-cmp-profile].

5. Instantiation To Existing Enrollment
Protocols
This section maps the requirements to support proof-of-possession and proof-of-identity to selected existing enrollment protocols
handles provides further aspects of instantiating them in BRSKI-AE.

5.1. BRSKI-EST-FullCMC: Instantiation To EST (Informative)

When using EST [RFC7030], the following aspects and constraints need to be considered and the given extra requirements need to
be fulfilled, which adapt Section 5.9.3 of BRSKI [RFC8995]:

  \</brski/voucherrequest>,ct=voucher-cms+json
  \</brski/voucher_status>,ct=json
  \</brski/enrollstatus>,ct=json
  \</est/cacerts>;ct=pkcs7-mime
  \</est/fullcmc>;ct=pkcs7-mime
  \</est/csrattrs>;ct=pkcs7-mime
  \</cmp/initialization>;ct=pkixcmp
  \</cmp/p10>;ct=pkixcmp
  \</cmp/getcacerts>;ct=pkixcmp
  \</cmp/getcertreqtemplate>;ct=pkixcmp

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-4.4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-domain-registrar-support-of
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-domain-registrar-support-of
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-cmp-updates
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-instantiation-to-existing-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-instantiation-to-existing-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-est-fullcmc-instantia
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995


Page 230 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

proof-of-possession is provided typically by using the specified PKCS#10 structure in the request. Together with Full PKI
requests, also CRMF can be used.

proof-of-identity needs to be achieved by signing the certification request object using the Full PKI Request option (including
the /fullcmc endpoint). This provides sufficient information for the RA to authenticate the pledge as the origin of the request
and to make an authorization decision on the received certification request. Note: EST references CMC [RFC5272] for the
definition of the Full PKI Request. For proof-of-identity, the signature of the SignedData of the Full PKI Request is performed
using the IDevID secret of the pledge.

Note: In this case the binding to the underlying TLS connection is not necessary.

When the RA is temporarily not available, as per Section 4.2.3 of [RFC7030], an HTTP status code 202 should be returned by
the registrar, and the pledge will repeat the initial Full PKI Request

5.2. BRSKI-CMP: Instantiation To CMP (Normative If CMP Is

Chosen)

Note: Instead of referring to CMP as specified in [RFC4210] and [I-D.ietf-lamps-cmp-updates], this document refers to the
Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile] because the subset of CMP defined there is sufficient for the
functionality needed here.

When using CMP, the following specific implementation requirements apply (cf. Figure 3).

CA Certs Request
Requesting CA certificates over CMP is OPTIONAL. If supported, it SHALL be implemented as specified in Section
4.3.1 of [I-D.ietf-lamps-lightweight-cmp-profile].

Attribute Request
Requesting certificate request attributes over CMP is OPTIONAL. If supported, it SHALL be implemented as specified
in Section 4.3.3 of [I-D.ietf-lamps-lightweight-cmp-profile]. Note that alternatively the registrar MAY modify the contents
of requested certificate contents as specified in Section 5.2.3.2 of [I-D.ietf-lamps-lightweight-cmp-profile].

Certificate Request
Proof-of-possession SHALL be provided as defined in Section 4.1.1 (based on CRMF) or Section 4.1.4 (based on
PKCS#10) of the Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile]. The  field of certificate
response messages SHOULD NOT be used.

Proof-of-identity SHALL be provided by using signature-based protection of the certification request message as
outlined in Section 3.2. of [I-D.ietf-lamps-lightweight-cmp-profile] using the IDevID secret.

Certificate Confirm
Explicit confirmation of new certificates to the RA MAY be used as specified in Section 4.1.1 of the Lightweight CMP
Profile [I-D.ietf-lamps-lightweight-cmp-profile]. Note that independently of certificate confirmation within CMP,
enrollment status telemetry with the registrar will be performed as described in Section 5.9.4 of BRSKI [RFC8995].

If delayed delivery of responses (for instance, to support asynchronous enrollment) within CMP is needed, it SHALL be
performed as specified in Sections 4.4 and 5.1.2 of [I-D.ietf-lamps-lightweight-cmp-profile].

6. IANA Considerations
This document does not require IANA actions.

caPubs

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5272
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-5.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-cmp-instantiation-to-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-brski-cmp-instantiation-to-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC4210
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-cmp-updates
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#enrollfigure
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-6
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-iana-considerations-2


Page 231 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

7. Security Considerations
The security considerations as laid out in BRSKI [RFC8995] apply for the discovery and voucher exchange as well as for the status
exchange information.

The security considerations as laid out in the Lightweight CMP Profile [I-D.ietf-lamps-lightweight-cmp-profile] apply as far as CMP is
used.

8. Acknowledgments
We would like to thank Brian E. Carpenter, Michael Richardson, and Giorgio Romanenghi for their input and discussion on use
cases and call flows.

9. References

9.1. Normative References

[I-D.ietf-lamps-cmp-updates]

Brockhaus, H., Oheimb, D. V., and J. Gray, "Certificate Management Protocol (CMP) Updates", Work in Progress, Internet-
Draft, draft-ietf-lamps-cmp-updates-17, 12 January 2022, <https://www.ietf.org/archive/id/draft-ietf-lamps-cmp-updates-
17.txt>.

[I-D.ietf-lamps-lightweight-cmp-profile]

Brockhaus, H., Oheimb, D. V., and S. Fries, "Lightweight Certificate Management Protocol (CMP) Profile", Work in Progress,
Internet-Draft, draft-ietf-lamps-lightweight-cmp-profile-10, 1 February 2022, <https://www.ietf.org/archive/id/draft-ietf-lamps-
lightweight-cmp-profile-10.txt>.

[IEEE.802.1AR_2009]

IEEE, "IEEE Standard for Local and metropolitan area networks - Secure Device Identity", IEEE 802.1AR-2009, DOI
10.1109/ieeestd.2009.5367679, 28 December 2009, <http://ieeexplore.ieee.org/servlet/opac?punumber=5367676>.

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[RFC4210]

Adams, C., Farrell, S., Kause, T., and T. Mononen, "Internet X.509 Public Key Infrastructure Certificate Management Protocol
(CMP)", RFC 4210, DOI 10.17487/RFC4210, September 2005, <https://www.rfc-editor.org/info/rfc4210>.

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-7
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-security-considerations-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#I-D.ietf-lamps-lightweight-cmp-profile
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-8
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-acknowledgments-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-references-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-normative-references-2
https://www.ietf.org/archive/id/draft-ietf-lamps-cmp-updates-17.txt%3E
https://www.ietf.org/archive/id/draft-ietf-lamps-cmp-updates-17.txt%3E
https://www.ietf.org/archive/id/draft-ietf-lamps-lightweight-cmp-profile-10.txt%3E
https://www.ietf.org/archive/id/draft-ietf-lamps-lightweight-cmp-profile-10.txt%3E
http://ieeexplore.ieee.org/servlet/opac?punumber=5367676%3E
https://www.rfc-editor.org/info/rfc2119%3E
https://www.rfc-editor.org/info/rfc4210%3E


Page 232 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8366]

Watsen, K., Richardson, M., Pritikin, M., and T. Eckert, "A Voucher Artifact for Bootstrapping Protocols", RFC 8366, DOI
10.17487/RFC8366, May 2018, <https://www.rfc-editor.org/info/rfc8366>.

[RFC8995]

Pritikin, M., Richardson, M., Eckert, T., Behringer, M., and K. Watsen, "Bootstrapping Remote Secure Key Infrastructure
(BRSKI)", RFC 8995, DOI 10.17487/RFC8995, May 2021, <https://www.rfc-editor.org/info/rfc8995>.

9.2. Informative References

[IEC-62351-9]

International Electrotechnical Commission, "IEC 62351 - Power systems management and associated information exchange -
Data and communications security - Part 9: Cyber security key management for power system equipment", IEC 62351-9, May
2017.

[ISO-IEC-15118-2]

International Standardization Organization / International Electrotechnical Commission, "ISO/IEC 15118-2 Road vehicles -
Vehicle-to-Grid Communication Interface - Part 2: Network and application protocol requirements", ISO/IEC 15118-2, April
2014.

[NERC-CIP-005-5]

North American Reliability Council, "Cyber Security - Electronic Security Perimeter", CIP 005-5, December 2013.

[OCPP]

Open Charge Alliance, "Open Charge Point Protocol 2.0.1 (Draft)", December 2019.

[RFC2986]

Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI
10.17487/RFC2986, November 2000, <https://www.rfc-editor.org/info/rfc2986>.

[RFC4211]

Schaad, J., "Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)", RFC 4211, DOI
10.17487/RFC4211, September 2005, <https://www.rfc-editor.org/info/rfc4211>.

[RFC5272]

https://www.rfc-editor.org/info/rfc8174%3E
https://www.rfc-editor.org/info/rfc8366%3E
https://www.rfc-editor.org/info/rfc8995%3E
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#section-9.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-informative-references-2
https://www.rfc-editor.org/info/rfc2986%3E
https://www.rfc-editor.org/info/rfc4211%3E


Page 233 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Schaad, J. and M. Myers, "Certificate Management over CMS (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
<https://www.rfc-editor.org/info/rfc5272>.

[RFC5652]

Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.

[RFC5929]

Altman, J., Williams, N., and L. Zhu, "Channel Bindings for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
<https://www.rfc-editor.org/info/rfc5929>.

[RFC7030]

Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed., "Enrollment over Secure Transport", RFC 7030, DOI 10.17487/RFC7030,
October 2013, <https://www.rfc-editor.org/info/rfc7030>.

[RFC8894]

Gutmann, P., "Simple Certificate Enrolment Protocol", RFC 8894, DOI 10.17487/RFC8894, September 2020,
<https://www.rfc-editor.org/info/rfc8894>.

[UNISIG-Subset-137]

UNISIG, "Subset-137; ERTMS/ETCS On-line Key Management FFFIS; V1.0.0", December 2015,
<https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-
_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf>.
http://www.kmc-subset137.eu/index.php/download/

Appendix A. Using EST For Certificate
Enrollment
When using EST with BRSKI, pledges interact via TLS with the domain registrar, which acts both as EST server and as registration
authority (RA). The TLS connection is mutually authenticated, where the pledge uses its IDevID certificate issued by its
manufacturer.

In order to provide a strong proof-of-origin of the certification request, EST has the option to include in the certification request the
so-called tls-unique value [RFC5929] of the underlying TLS channel. This binding of the proof-of-identity of the TLS client, which is
supposed to be the certificate requester, to the proof-of-possession for the private key is conceptually non-trivial and requires
specific support by TLS implementations.

The registrar terminates the security association with the pledge at TLS level and thus the binding between the certification request
and the authentication of the pledge. The EST server uses the authenticated pledge identity provided by the IDevID for checking the
authorization of the pledge for the given certification request before issuing to the pledge a domain-specific certificate (LDevID
certificate). This approach typically requires online or on-site availability of the RA for performing the final authorization decision for
the certification request.

https://www.rfc-editor.org/info/rfc5272%3E
https://www.rfc-editor.org/info/rfc5652%3E
https://www.rfc-editor.org/info/rfc5929%3E
https://www.rfc-editor.org/info/rfc7030%3E
https://www.rfc-editor.org/info/rfc8894%3E
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf%3E
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-_subset-137_v100.pdf%3E
http://www.kmc-subset137.eu/index.php/download/
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-A
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-using-est-for-certificate-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-using-est-for-certificate-e
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC5929


Page 234 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Using EST for BRSKI has the advantage that the mutually authenticated TLS connection established between the pledge and the
registrar can be reused for protecting the message exchange needed for enrolling the LDevID certificate. This strongly simplifies the
implementation of the enrollment message exchange.

Yet the use of TLS has the limitation that this cannot provide auditability nor end-to-end security for the certificate enrollment request
because the TLS session is transient and terminates at the registrar. This is a problem in particular if the enrollment is done via
multiple hops, part of which may not even be network-based.

A further limitation of using EST as the certificate enrollment protocol is that due to using PKCS#10 structures in enrollment
requests, the only possible proof-of-possession method is a self-signature, which excludes requesting certificates for key types that
do not support signing.

Appendix B. Application Examples
This informative annex provides some detail to the application examples listed in Section 1.3.

B.1. Rolling Stock

Rolling stock or railroad cars contain a variety of sensors, actuators, and controllers, which communicate within the railroad car but
also exchange information between railroad cars building a train, with track-side equipment, and/or possibly with backend systems.
These devices are typically unaware of backend system connectivity. Managing certificates may be done during maintenance cycles
of the railroad car, but can already be prepared during operation. Preparation will include generating certification requests, which are
collected and later forwarded for processing, once the railroad car is connected to the operator backend. The authorization of the
certification request is then done based on the operator's asset/inventory information in the backend.

UNISIG has included a CMP profile for enrollment of TLS certificates of on-board and track-side components in the Subset-137
specifying the ETRAM/ETCS on-line key management for train control systems [UNISIG-Subset-137].

B.2. Building Automation

In building automation scenarios, a detached building or the basement of a building may be equipped with sensors, actuators, and
controllers that are connected with each other in a local network but with only limited or no connectivity to a central building
management system. This problem may occur during installation time but also during operation. In such a situation a service
technician collects the necessary data and transfers it between the local network and the central building management system, e.g.,
using a laptop or a mobile phone. This data may comprise parameters and settings required in the operational phase of the
sensors/actuators, like a component certificate issued by the operator to authenticate against other components and services.

The collected data may be provided by a domain registrar already existing in the local network. In this case connectivity to the
backend PKI may be facilitated by the service technician's laptop. Alternatively, the data can also be collected from the pledges
directly and provided to a domain registrar deployed in a different network as preparation for the operational phase. In this case,
connectivity to the domain registrar may also be facilitated by the service technician's laptop.

B.3. Substation Automation

In electrical substation automation scenarios, a control center typically hosts PKI services to issue certificates for Intelligent
Electronic Devices (IEDs) operated in a substation. Communication between the substation and control center is performed through

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-application-examples
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#list-examples
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-rolling-stock
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#UNISIG-Subset-137
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-building-automation
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.3
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-substation-automation


Page 235 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

a proxy/gateway/DMZ, which terminates protocol flows. Note that [NERC-CIP-005-5] requires inspection of protocols at the
boundary of a security perimeter (the substation in this case). In addition, security management in substation automation assumes
central support of several enrollment protocols in order to support the various capabilities of IEDs from different vendors. The IEC
standard IEC62351-9 [IEC-62351-9] specifies mandatory support of two enrollment protocols: SCEP [RFC8894] and EST
[RFC7030] for the infrastructure side, while the IED must only support one of the two.

B.4. Electric Vehicle Charging Infrastructure

For electric vehicle charging infrastructure, protocols have been defined for the interaction between the electric vehicle and the
charging point (e.g., ISO 15118-2 [ISO-IEC-15118-2]) as well as between the charging point and the charging point operator (e.g.
OCPP [OCPP]). Depending on the authentication model, unilateral or mutual authentication is required. In both cases the charging
point uses an X.509 certificate to authenticate itself in TLS connections between the electric vehicle and the charging point. The
management of this certificate depends, among others, on the selected backend connectivity protocol. In the case of OCPP, this
protocol is meant to be the only communication protocol between the charging point and the backend, carrying all information to
control the charging operations and maintain the charging point itself. This means that the certificate management needs to be
handled in-band of OCPP. This requires the ability to encapsulate the certificate management messages in a transport-independent
way. Authenticated self-containment will support this by allowing the transport without a separate enrollment protocol, binding the
messages to the identity of the communicating endpoints.

B.5. Infrastructure Isolation Policy

This refers to any case in which network infrastructure is normally isolated from the Internet as a matter of policy, most likely for
security reasons. In such a case, limited access to external PKI services will be allowed in carefully controlled short periods of time,
for example when a batch of new devices is deployed, and forbidden or prevented at other times.

B.6. Sites With Insu�cient Level Of Operational Security

The registration authority performing (at least part of) the authorization of a certification request is a critical PKI component and
therefore requires higher operational security than components utilizing the issued certificates for their security features. CAs may
also demand higher security in the registration procedures. Especially the CA/Browser forum currently increases the security
requirements in the certificate issuance procedures for publicly trusted certificates. In case the on-site components of the target
domain cannot be operated securely enough for the needs of a registration authority, this service should be transferred to an off-site
backend component that has a sufficient level of security.

Appendix C. History Of Changes TBD
RFC Editor: Please Delete
From IETF draft 06 -> IETF draft 06:

Renamed the repo and files from anima-brski-async-enroll to anima-brski-ae

Added graphics for abstract protocol overview as suggested by Toerless Eckert

Balanced (sub-)sections and their headers

Added details on CMP instance, now called BRSKI-CMP

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#NERC-CIP-005-5
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#IEC-62351-9
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8894
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC7030
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.4
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-electric-vehicle-charging-i
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#ISO-IEC-15118-2
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#OCPP
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.5
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-infrastructure-isolation-po
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-B.6
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-sites-with-insufficient-lev
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#appendix-C
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-history-of-changes-tbd-rfc-
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-history-of-changes-tbd-rfc-


Page 236 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

From IETF draft 04 -> IETF draft 05:

David von Oheimb became the editor.

Streamline wording, consolidate terminology, improve grammar, etc.

Shift the emphasis towards supporting alternative enrollment protocols.

Update the title accordingly - preliminary change to be approved.

Move comments on EST and detailed application examples to informative annex.

Move the remaining text of section 3 as two new sub-sections of section 1.

From IETF draft 03 -> IETF draft 04:

Moved UC2 related parts defining the pledge in responder mode to a separate document. This required changes and
adaptations in several sections. Main changes concerned the removal of the subsection for UC2 as well as the removal of the
YANG model related text as it is not applicable in UC1.

Updated references to the Lightweight CMP Profile.

Added David von Oheimb as co-author.

From IETF draft 02 -> IETF draft 03:

Housekeeping, deleted open issue regarding YANG voucher-request in UC2 as voucher-request was enhanced with
additional leaf.

Included open issues in YANG model in UC2 regarding assertion value agent-proximity and CSR encapsulation using SZTP
sub module).

From IETF draft 01 -> IETF draft 02:

Defined call flow and objects for interactions in UC2. Object format based on draft for JOSE signed voucher artifacts and
aligned the remaining objects with this approach in UC2 .

Terminology change: issue #2 pledge-agent -> registrar-agent to better underline agent relation.

Terminology change: issue #3 PULL/PUSH -> pledge-initiator-mode and pledge-responder-mode to better address the
pledge operation.

Communication approach between pledge and registrar-agent changed by removing TLS-PSK (former section TLS
establishment) and associated references to other drafts in favor of relying on higher layer exchange of signed data objects.
These data objects are included also in the pledge-voucher-request and lead to an extension of the YANG module for the
voucher-request (issue #12).

Details on trust relationship between registrar-agent and registrar (issue #4, #5, #9) included in UC2.

Recommendation regarding short-lived certificates for registrar-agent authentication towards registrar (issue #7) in the
security considerations.

Introduction of reference to agent signing certificate using SKID in agent signed data (issue #11).

Enhanced objects in exchanges between pledge and registrar-agent to allow the registrar to verify agent-proximity to the
pledge (issue #1) in UC2.

Details on trust relationship between registrar-agent and pledge (issue #5) included in UC2.

Split of use case 2 call flow into sub sections in UC2.

From IETF draft 00 -> IETF draft 01:

Update of scope in Section 1.2 to include in which the pledge acts as a server. This is one main motivation for use case 2.

Rework of use case 2 to consider the transport between the pledge and the pledge-agent. Addressed is the TLS channel
establishment between the pledge-agent and the pledge as well as the endpoint definition on the pledge.

First description of exchanged object types (needs more work)

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#sup-env


Page 237 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Clarification in discovery options for enrollment endpoints at the domain registrar based on well-known endpoints in Section
4.4 do not result in additional /.well-known URIs. Update of the illustrative example. Note that the change to /brski for the
voucher related endpoints has been taken over in the BRSKI main document.

Updated references.

Included Thomas Werner as additional author for the document.

From individual version 03 -> IETF draft 00:

Inclusion of discovery options of enrollment endpoints at the domain registrar based on well-known endpoints in Section 4.4
as replacement of section 5.1.3 in the individual draft. This is intended to support both use cases in the document. An
illustrative example is provided.

Missing details provided for the description and call flow in pledge-agent use case UC2, e.g. to accommodate distribution of
CA certificates.

Updated CMP example in Section 5 to use Lightweight CMP instead of CMP, as the draft already provides the necessary
/.well-known endpoints.

Requirements discussion moved to separate section in Section 3. Shortened description of proof of identity binding and
mapping to existing protocols.

Removal of copied call flows for voucher exchange and registrar discovery flow from [RFC8995] in Section 4 to avoid
doubling or text or inconsistencies.

Reworked abstract and introduction to be more crisp regarding the targeted solution. Several structural changes in the
document to have a better distinction between requirements, use case description, and solution description as separate
sections. History moved to appendix.

From individual version 02 -> 03:

Update of terminology from self-contained to authenticated self-contained object to be consistent in the wording and to
underline the protection of the object with an existing credential. Note that the naming of this object may be discussed. An
alternative name may be attestation object.

Simplification of the architecture approach for the initial use case having an offsite PKI.

Introduction of a new use case utilizing authenticated self-contain objects to onboard a pledge using a commissioning tool
containing a pledge-agent. This requires additional changes in the BRSKI call flow sequence and led to changes in the
introduction, the application example,and also in the related BRSKI-AE call flow.

Update of provided examples of the addressing approach used in BRSKI to allow for support of multiple enrollment protocols
in Section 4.3.

From individual version 01 -> 02:

Update of introduction text to clearly relate to the usage of IDevID and LDevID.

Definition of the addressing approach used in BRSKI to allow for support of multiple enrollment protocols in Section 4.3. This
section also contains a first discussion of an optional discovery mechanism to address situations in which the registrar
supports more than one enrollment approach. Discovery should avoid that the pledge performs a trial and error of enrollment
protocols.

Update of description of architecture elements and changes to BRSKI in Section 4.1.

Enhanced consideration of existing enrollment protocols in the context of mapping the requirements to existing solutions in
Section 3 and in Section 5.

From individual version 00 -> 01:

Update of examples, specifically for building automation as well as two new application use cases in Appendix B.

Deletion of asynchronous interaction with MASA to not complicate the use case. Note that the voucher exchange can already
be handled in an asynchronous manner and is therefore not considered further. This resulted in removal of the alternative

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#discovery_eo
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#discovery_eo
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#discovery_eo
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#RFC8995
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#uc1
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#addressing
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#addressing
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#architecture
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#app-examples


Page 238 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

path the MASA in Figure 1 and the associated description in Section 4.1.

Enhancement of description of architecture elements and changes to BRSKI in Section 4.1.

Consideration of existing enrollment protocols in the context of mapping the requirements to existing solutions in Section 3.

New section starting Section 5 with the mapping to existing enrollment protocols by collecting boundary conditions.

Authors' Addresses
David von Oheimb (editor)

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: david.von.oheimb@siemens.com

URI: https://www.siemens.com/

Steffen Fries

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: steffen.fries@siemens.com

URI: https://www.siemens.com/

Hendrik Brockhaus

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

Germany

Email: hendrik.brockhaus@siemens.com

https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#architecture
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#architecture
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#req-sol
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#exist_prot
https://www.ietf.org/archive/id/draft-ietf-anima-brski-ae-01.html#name-authors-addresses-2
mailto:david.von.oheimb@siemens.com
https://www.siemens.com/
mailto:steffen.fries@siemens.com
https://www.siemens.com/
mailto:hendrik.brockhaus@siemens.com


Page 239 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

URI: https://www.siemens.com/

Eliot Lear

Cisco Systems

Richtistrasse 7

CH-8304 Wallisellen

Switzerland

Phone: [+41 44 878 9200](tel:+41 44 878 9200)

Email: lear@cisco.com

https://www.siemens.com/
mailto:lear@cisco.com


Page 240 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Network Integration
Architecture
This section will be finalised as part of D2.04

"D2.04 - Integration methods - outlines practical method of integration with various bearer technologies"

These items are placeholders for work in progress

The substance of this section will reconcile the target network and interface/API where the CAHN policy framework is integrated.
This allows us to define the universal authorisation and authentication methods across multiple networks.



Page 241 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Wifi Integration Method
The WIFI integration method is addresses through the BRSKI over IEEE 802.11 specification, futher refinements of which have
been produced as part of the NIST delviery.



Page 242 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Lora Integration Method
The LORA integration method will be defined by identifying the precise LoRaWAN API interface points with the CAHN policy
framework



Page 243 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Satellite Integration Method
The satellited integration method will be defined by identifying the precise Starlink API interface points with the CAHN policy
framework



Page 244 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

20 5G Integration Method
The 5G integration method will be defined by identifying the precise 5G Core CRAN/ORAN API interface points with the CAHN
policy framework



Page 245 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

Physical Architecture

5G Network
[5G Architecture.pdf](5G Private Network\5G Architecture.pdf)

[5G Architecture.vsdx](5G Private Network\5G Architecture.vsdx)

WIFI Network
[Boscombe Network As Built.vsdx](Cambium - Public Wi Fi\Boscombe Network As Built.vsdx)

[Boscombe Wi Fi Architecture.pdf](Cambium - Public Wi Fi\Boscombe Wi Fi Architecture.pdf)



Page 246 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.

[Lansdowne Network As Built.vsdx](Cambium - Public Wi Fi\Lansdowne Network As Built.vsdx)

[Lansdowne WiFi architecture.pdf](Cambium - Public Wi Fi\Lansdowne WiFi architecture.pdf)



Page 247 of 247

This document is the property of nquiringMinds. It contains confidential and proprietary information for the individual or entity to which it was provided by nquiringMinds, only for the

purposes expressly communicated by nquiringMinds. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, dissemination or use of the

contents of this document is strictly prohibited. If you have received this document in error, please notify the sender immediately and delete the document. nquiringMinds cannot accept

any liability for loss or damage resulting from the use of the information in this document. Copyright (c) 2024, nquiringMinds. All rights reserved.



tdxVolt	documentation

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/nodejs.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cli.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cpp.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/web.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/nodejs.html


Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

NodeJS	client
This	document	illustrates	how	to	use	the	nodeJS	client	library	to	communicate	with	a	Volt	via
grpc.

Install	packages
Two	packages	are	required	by	nodeJS	 tdx	Volt	clients,	@tdxvolt/volt-client-grpc	and	
@grpc/grpc-js.

To	install	the	@tdxvolt/volt-client-grpc	and	@grpc/grpc-js	packages:

npm	install	@tdxvolt/volt-client-grpc	@grpc/grpc-js

Terminal	window

Configuration
In	order	to	be	able	to	initialise	a	connection	to	a	Volt,	you	will	need	to	obtain	a	 client
configuration.

file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html


How	your	web	application	obtains	or	stores	the	client	configuration	is	not	discussed	here,
needless	to	say	you	need	to	be	careful	not	to	expose	keys	or	other	sensitive	data.	For	the
purposes	of	this	document,	we	assume	Bob's	configuration	is	stored	in	a	local	file.

Example	client	connection	object,	obtained	from	the	 fusebox	identity	dialog:

const	BobsConfig	=	{		client_name:	"Bob",		credential:	{				
client_id:	"25d050b9-5270-441e-920b-de07578394a9",				key:	
"-----BEGIN	ENCRYPTED	PRIVATE	KEY-----
\nMIIFHDBOBgkqhkiG9w0BBQ0wQTApBgkqhkiG9w0BBQwwHAQIRalkrxf/Lt0CAggA\nMAwGCCqGSIb3DQIJBQAwFAYIKoZIhvcNAwcECADS3HqZSdqbBIIEyFH7ooxVlpVn\nxVWA/e32E322VDc/FnlDlUkBm7C4haHdbgIsLSa0AhbazAgI45ibCg9PapD4uKQO\nx1X8NyyxwqsFTYHtX3cxtgY7I3Q2iM7jvyDlvjzc68Q0o0eE7Xk7Et4hEd4aiD3I\nt9EgIsNnSIHXbnXKTYrYD3P939AyQE5wECgKrmEXq/6ymbeBkTcYRg6tqcW9otjs\nuvRgfl5+QFpxE9rydMn0Yjm+wp5L6j2oD/yVTPVNkEKBgefngeqaj3cCsPDxFVOa\n/zBBFb17Kyn6eGga4pUNyg0xKi8TjYHcH5k7GzN6MHjaIVlls0TbbBHk1/tfrfF3\nSL26162J2qHmR4vosOtTzPCNYVlT85NVL3PO/xN1OTsoz6mjP5sScgoTnzi48B1s\nqyl4BMjpkK7j/KwsaVnEdNog+UVO/4lSbrM86KzwH9O6Xuv4WeIIC3sET+v8nQwq\nVNc3vXjDleRJbPONollHt/CLErkhh2sh6CguDFqqJlr+HYyDhbVBzw57jLEmE51M\npeK+LyaX/N2TxrXlIF774TOuEV6NzbPldIn0I4XcCXZhXN0stTiH6LPKS3CMdZTy\nKNgyRAsFXRfQ3F0A9MPqbRcxmyA7v/kLtukZ6ib33B6eY049SlduhbI0eKWt1jqs\nv05o6gDiLyYsyAzzMzl+OvRsPXyRZ6xVhI59uWBM9/EW8JKWwZ09mJGJ1A3tEpT4\nidka0Vfvy3XYL3KZKYD6u/NqpqfS7KW37C4iwtXHWUCLuFsA0HLD4SZOCen2b8fZ\nTNcbfR+brR5KqCrkK40NuejheQWlQi/eLYsCooTHRfpXPF2mQZJRgKxefoPFD6MZ\nWtoW97u10lRCWB1vuTlkq79uwyY+sqY0qTuWxeBdD9zmJeBJkR/QpdTlBUwRTlaQ\nMw529N/5N0haA3PJfwDwEV1Gv5BMNGIda8zx8BG+qv3plvWSUS0YTTGRBTl8GLQ5\nHKMbmTP41544UpcFHKCTtlUKO04rM8U9y4tLSxQp4Xw84fVw4MFNYyd8MLtYqc9j\nH93MGjHY3jx8PedEE8EaSX+JAh3cRYkD9+k9CswDnWxeQ0SIvLz0qL7Y82davVdO\nyOvkvCM7WzuvgMjfIZDGEVsoh4zI7PmVluUXW5SNtrQJhcLn8DsA4FCAXYaWGKXR\ndTupWI9kfCA+7f31ZNkrGUQ+CQFIrDozZzLbNqFv+QODirMIGYNsgeiqbSo1CXHR\n+/L5dc5ZtCK5AWKglgXOgWo2qxTEq9LaYWa6MiPaH3rwMqp9/r7HVsxfDJI0v1z2\n0hGfSkO47NnhHKsjTHfHCoDi7vC3a+w9T4tS/zm1VL9+Ay9uHi4Svq9KVexKYv5J\nim4a91CSIxfsMhN4t3UiciZz8NgU8mfbaZOcL6T1NDFZhT+1HngifCoM8g/Al0J7\nILiT8qNx7e0+TSRKreeGiWSUCJrRykx5Wk/8dCKsKx4hNrXTDlTA6w/ByduO4zKq\n/lXQQfRik1rVSj2Vkt1Jp15hwTL9o7OarmqgpWB5P4iBchEg9hSB70BSM7axK1wS\nxX58fGAQaws4NvNquUxSG3QGuxA2I6AfZeYuyH8x/Vy2MjBtOEopmxVVWHpdGPzW\nf42MsgXLVz6+SBAIc+beTw==\n
-----END	ENCRYPTED	PRIVATE	KEY-----\n",		},		volt:	{				id:	
"9a5944eb-1942-406e-a553-39b4220cbf94",				display_name:	
"Bob's	Volt",				address:	"192.168.1.194:50393",				
public_key:						"-----BEGIN	PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAshZ/IqKr1y0TeMgT4l4f\nc/LrCCjg+lIXD4FE9Na3kL0kRTSwda6FsGM4EmuU0NVK+UZ6ViFEhrgA4DCbMf8h\nefuFcWWfHq17zzkdI65vI1Lh9qdKzYNK0FZ3pKoVQyXtpdomZ8rChosFpdDRm1gS\nmV4sTPvKzsFHSTxcOlHRZ/CMtuS09cPvWuuJ4Lm3VmIr70wYSVfC/78SxJYHGYDj\nwkaBqqBwNxIamxO4dwJ8azpdNLnBEeSnhzt2OP2dLu82l1IdjzJlbEWWlL3R1pdG\n55lf/Y9CySAMQyupbiKX1sOPZ1MWWsweAZNMChQtt8hup67vJV4/MOuLeLEF8em9\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n",				fingerprint:	
"5M1aCpnijWbmibq748AHnyG1qgpHMFmLi5UUeaGBGo8t",				ca_pem:						
"-----BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEG/pk5zANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS45YTU5NDRlYi0xOTQyLTQwNmUtYTU1My0zOWI0MjIw\nY2JmOTQwHhcNMjIwOTE1MTQxNDI1WhcNMjMwOTE1MTQxNDI2WjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS45YTU5NDRlYi0xOTQyLTQwNmUtYTU1My0zOWI0\nMjIwY2JmOTQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCyFn8ioqvX\nLRN4yBPiXh9z8usIKOD6UhcPgUT01reQvSRFNLB1roWwYzgSa5TQ1Ur5RnpWIUSG\nuADgMJsx/yF5+4VxZZ8erXvPOR0jrm8jUuH2p0rNg0rQVnekqhVDJe2l2iZnysKG\niwWl0NGbWBKZXixM+8rOwUdJPFw6UdFn8Iy25LT1w+9a64ngubdWYivvTBhJV8L/\nvxLElgcZgOPCRoGqoHA3EhqbE7h3AnxrOl00ucER5KeHO3Y4/Z0u7zaXUh2PMmVs\nRZaUvdHWl0bnmV/9j0LJIAxDK6luIpfWw49nUxZazB4Bk0wKFC23yG6nru8lXj8w\n64t4sQXx6b1zAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBQNruu/5F1KEvJYHz5hmlfyryQhOjANBgkqhkiG9w0BAQsF\nAAOCAQEAm7mtXgQTftbcN05wQlStJ9IY+PaKkrvXJbJyl9PXOVgw5XNb9qTBzRl+\nTuEdK9N054jxHmkH9bqXObCLp/mo2xbQoavG87tILGMilv2VxEyKKzUaYc2IshYR\nY3zGT+QqC7IIfZHjVOgdc3+wwgm8ntRCYS23Z10+sE5o4lZGxiUkrGod1kjEKOaD\n5AiJ9bC3rI/tAapn14GemzsCagvVY8WzP8GW6WVz+pQCoJvy9jsHkQIq9djpzx29\nJ0hg12H9d2InnsJ8QdUIzbSPwyD8H+upKVtQZ/fVcZd3NtAuR6xo2yG3aSumdhmV\nrBJ5F7SB7WXo5/z0aXxYvCcrUqLgxA==\n
-----END	CERTIFICATE-----\n",		},};

Connection
Begin	by	creating	a	 tdx	Volt	client	instance:

import	grpc	from	"@grpc/grpc-js";import	{	VoltClient	}	from	
"@tdxvolt/volt-client-grpc";
const	client	=	new	VoltClient(grpc);

Initialise	the	tdx	Volt	instance	to	enable	Bob	to	connect	to	the	Volt:

const	configPath	=	"./volt-config.json";await	
client.initialise(configPath);

API	call
Once	initialised	successfully,	you	can	issue	any	API	call.	In	the	example	below,	we	retrieve
the	immediate	descendants	of	the	Volt	root	resource:

client		.initialise(configPath)		.then(()	=>	{				return	
client.GetResourceDescendants({						resource_id:	
client.config.volt.id,						depth:	1,				});		})		
.then((response)	=>	{				console.log(response.descendant);		
})		.catch((err)	=>	{				console.error(err.message);		})

Refer	to	the	API	documentation	for	details	of	the	method	names	and	corresponding	request
and	response	messages.	Each	API	method	expects	a	JSON	object	representing	the	request	as
input,	and	returns	a	JSON	object	as	indicated	by	the	response	message	type.	The	JSON
representation	of	the	protobuf	message	format	is	intuitive.

If	you	see	deprecation	warnings	along	the	lines	of	`Setting	the	TLS	ServerName	to	an	IP
address	is	not	permitted	by	RFC	6066`	you	can	safely	ignore	them	for	the	time	being.	See
also	this	github	issue.

Unary	calls

All	unary	calls	return	a	promise	that	will	either	resolve	with	a	JSON	response	object	matching
that	defined	by	the	API	protobuf,	or	reject	if	there	is	a	problem	with	the	grpc	transport	or	an
error	status	on	the	response	object.

Streaming	calls

The	promise	model	does	not	fit	well	with	streaming	calls	since	they	are	long-lived.

For	this	reason,	all	streaming	calls	(client	streaming,	server	streaming,	and	bi-directional
streaming)	return	a	call	object	that	is	used	to	manage	the	call.

file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
https://github.com/grpc/grpc-node/issues/1919


The	call	object	emits	events	as	interactions	with	the	underlying	websocket	occur,	and	there
are	3	events	of	interest:

“error”	emitted	when	an	error	occurs	on	the	call
“data”	emitted	when	a	response	is	received	from	the	Volt
“end”	emitted	when	the	call	ends

Server	streaming	calls

The	example	below	shows	execution	of	an	SQL	statement	on	a	database,	the	 data	event	will
be	emitted	for	each	row	of	data	in	the	result	set.

The	end	event	is	emitted	when	the	call	ends.

const	call	=	client.SqlExecute(		{				database_id:	
"fc17c5a1-a858-45c6-804b-7e16af7c968d",				statement:	
"SELECT	*	FROM	NETFLIX	LIMIT	100",		});
call.on("error",	(err)	=>	console.error(err.message));
call.on("data",	(response)	=>	console.log(response));
call.on("end",	()	=>	console.log("complete"));

Client	streaming	calls

Client	streaming	calls	have	a	similar	syntax	to	server	streaming	calls,	although	the	 data
event	should	only	be	emitted	once	rather	than	multiple	times.

Clients	can	use	the	 send	method	on	the	returned	 call	object	to	send	requests	to	the	server
(see	bi-direction	example	below).

Clients	use	the	 end	method	of	the	returned	 call	object	to	indicate	to	the	server	that	the	call
has	ended.

Bi-directional	streaming	calls

As	expected,	bi-directional	calls	are	a	combination	of	client	and	server	streaming	calls,
whereby	the	data	event	is	emitted	for	each	response	from	the	server,	and	the	client	can	send
multiple	requests	using	the	call	object	send	method.

const	sub	=	voltApi.SubscribeWire({	wireId	});
sub.on("error",	(err)	=>	console.error(err.message));
sub.on("data",	(response)	=>	console.log(response.chunk));
sub.on("end",	()	=>	console.log("subscription	ended"));
////	...//
//	Some	time	later,	ask	the	server	to	end	the	
subscriptionsub.send({	stop:	true	});

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/web.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html


DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cli.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cpp.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/web.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


FAQ
Questions

Coming	soon
Roadmap

Web	client
There	are	two	means	of	accessing	the	 tdx	Volt	from	web	applications,	via	the	HTTP	interface
or	using	the	websocket	API.

The	websocket	API	is	recommended	because	it	maps	well	to	the	grpc	streaming	modes.

HTTP	interface
The	HTTP	interface	is	a	work	in	progress.	The	 tdx	Volt	API	is	accessible	using	pure	REST
requests,	but	a	javascript	library	that	packages	this	up	is	not	fully	implemented	yet.

Websocket	API
The	websocket	API	is	currently	more	polished	than	the	HTTP	interface.

Begin	by	installing	the	@tdxvolt/volt-client-web	package:

npm	install	@tdxvolt/volt-client-web

Terminal	window

Configuration

In	order	to	be	able	to	initialise	a	connection	to	a	Volt,	you	will	need	to	obtain	a	 client
configuration.

How	your	web	application	obtains	or	stores	the	client	configuration	is	not	discussed	here,
needless	to	say	you	need	to	be	careful	not	to	expose	keys	or	other	sensitive	data.	For	the
purposes	of	this	document,	we	assume	Bob's	configuration	is	obtained	via	some	out-of-band
means	and	stored	in	the	browser	`localStorage`.	It	holds	Bob's	key	in	encrypted	form.	The
web	application	will	then	prompt	Bob	to	enter	the	key	passphrase	in	order	to	unlock	it.

Example	client	connection	object,	obtained	from	the	 fusebox	identity	dialog:

const	BobsConfig	=	{		client_name:	"Bob",		credential:	{				
client_id:	"25d050b9-5270-441e-920b-de07578394a9",				key:	
"-----BEGIN	ENCRYPTED	PRIVATE	KEY-----
\nMIIFHDBOBgkqhkiG9w0BBQ0wQTApBgkqhkiG9w0BBQwwHAQIRalkrxf/Lt0CAggA\nMAwGCCqGSIb3DQIJBQAwFAYIKoZIhvcNAwcECADS3HqZSdqbBIIEyFH7ooxVlpVn\nxVWA/e32E322VDc/FnlDlUkBm7C4haHdbgIsLSa0AhbazAgI45ibCg9PapD4uKQO\nx1X8NyyxwqsFTYHtX3cxtgY7I3Q2iM7jvyDlvjzc68Q0o0eE7Xk7Et4hEd4aiD3I\nt9EgIsNnSIHXbnXKTYrYD3P939AyQE5wECgKrmEXq/6ymbeBkTcYRg6tqcW9otjs\nuvRgfl5+QFpxE9rydMn0Yjm+wp5L6j2oD/yVTPVNkEKBgefngeqaj3cCsPDxFVOa\n/zBBFb17Kyn6eGga4pUNyg0xKi8TjYHcH5k7GzN6MHjaIVlls0TbbBHk1/tfrfF3\nSL26162J2qHmR4vosOtTzPCNYVlT85NVL3PO/xN1OTsoz6mjP5sScgoTnzi48B1s\nqyl4BMjpkK7j/KwsaVnEdNog+UVO/4lSbrM86KzwH9O6Xuv4WeIIC3sET+v8nQwq\nVNc3vXjDleRJbPONollHt/CLErkhh2sh6CguDFqqJlr+HYyDhbVBzw57jLEmE51M\npeK+LyaX/N2TxrXlIF774TOuEV6NzbPldIn0I4XcCXZhXN0stTiH6LPKS3CMdZTy\nKNgyRAsFXRfQ3F0A9MPqbRcxmyA7v/kLtukZ6ib33B6eY049SlduhbI0eKWt1jqs\nv05o6gDiLyYsyAzzMzl+OvRsPXyRZ6xVhI59uWBM9/EW8JKWwZ09mJGJ1A3tEpT4\nidka0Vfvy3XYL3KZKYD6u/NqpqfS7KW37C4iwtXHWUCLuFsA0HLD4SZOCen2b8fZ\nTNcbfR+brR5KqCrkK40NuejheQWlQi/eLYsCooTHRfpXPF2mQZJRgKxefoPFD6MZ\nWtoW97u10lRCWB1vuTlkq79uwyY+sqY0qTuWxeBdD9zmJeBJkR/QpdTlBUwRTlaQ\nMw529N/5N0haA3PJfwDwEV1Gv5BMNGIda8zx8BG+qv3plvWSUS0YTTGRBTl8GLQ5\nHKMbmTP41544UpcFHKCTtlUKO04rM8U9y4tLSxQp4Xw84fVw4MFNYyd8MLtYqc9j\nH93MGjHY3jx8PedEE8EaSX+JAh3cRYkD9+k9CswDnWxeQ0SIvLz0qL7Y82davVdO\nyOvkvCM7WzuvgMjfIZDGEVsoh4zI7PmVluUXW5SNtrQJhcLn8DsA4FCAXYaWGKXR\ndTupWI9kfCA+7f31ZNkrGUQ+CQFIrDozZzLbNqFv+QODirMIGYNsgeiqbSo1CXHR\n+/L5dc5ZtCK5AWKglgXOgWo2qxTEq9LaYWa6MiPaH3rwMqp9/r7HVsxfDJI0v1z2\n0hGfSkO47NnhHKsjTHfHCoDi7vC3a+w9T4tS/zm1VL9+Ay9uHi4Svq9KVexKYv5J\nim4a91CSIxfsMhN4t3UiciZz8NgU8mfbaZOcL6T1NDFZhT+1HngifCoM8g/Al0J7\nILiT8qNx7e0+TSRKreeGiWSUCJrRykx5Wk/8dCKsKx4hNrXTDlTA6w/ByduO4zKq\n/lXQQfRik1rVSj2Vkt1Jp15hwTL9o7OarmqgpWB5P4iBchEg9hSB70BSM7axK1wS\nxX58fGAQaws4NvNquUxSG3QGuxA2I6AfZeYuyH8x/Vy2MjBtOEopmxVVWHpdGPzW\nf42MsgXLVz6+SBAIc+beTw==\n
-----END	ENCRYPTED	PRIVATE	KEY-----\n",		},		volt:	{				id:	
"9a5944eb-1942-406e-a553-39b4220cbf94",				display_name:	
"Bob's	Volt",				address:	"192.168.1.194:50393",				
public_key:						"-----BEGIN	PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAshZ/IqKr1y0TeMgT4l4f\nc/LrCCjg+lIXD4FE9Na3kL0kRTSwda6FsGM4EmuU0NVK+UZ6ViFEhrgA4DCbMf8h\nefuFcWWfHq17zzkdI65vI1Lh9qdKzYNK0FZ3pKoVQyXtpdomZ8rChosFpdDRm1gS\nmV4sTPvKzsFHSTxcOlHRZ/CMtuS09cPvWuuJ4Lm3VmIr70wYSVfC/78SxJYHGYDj\nwkaBqqBwNxIamxO4dwJ8azpdNLnBEeSnhzt2OP2dLu82l1IdjzJlbEWWlL3R1pdG\n55lf/Y9CySAMQyupbiKX1sOPZ1MWWsweAZNMChQtt8hup67vJV4/MOuLeLEF8em9\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n",				fingerprint:	
"5M1aCpnijWbmibq748AHnyG1qgpHMFmLi5UUeaGBGo8t",				ca_pem:						
"-----BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEG/pk5zANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS45YTU5NDRlYi0xOTQyLTQwNmUtYTU1My0zOWI0MjIw\nY2JmOTQwHhcNMjIwOTE1MTQxNDI1WhcNMjMwOTE1MTQxNDI2WjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS45YTU5NDRlYi0xOTQyLTQwNmUtYTU1My0zOWI0\nMjIwY2JmOTQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCyFn8ioqvX\nLRN4yBPiXh9z8usIKOD6UhcPgUT01reQvSRFNLB1roWwYzgSa5TQ1Ur5RnpWIUSG\nuADgMJsx/yF5+4VxZZ8erXvPOR0jrm8jUuH2p0rNg0rQVnekqhVDJe2l2iZnysKG\niwWl0NGbWBKZXixM+8rOwUdJPFw6UdFn8Iy25LT1w+9a64ngubdWYivvTBhJV8L/\nvxLElgcZgOPCRoGqoHA3EhqbE7h3AnxrOl00ucER5KeHO3Y4/Z0u7zaXUh2PMmVs\nRZaUvdHWl0bnmV/9j0LJIAxDK6luIpfWw49nUxZazB4Bk0wKFC23yG6nru8lXj8w\n64t4sQXx6b1zAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBQNruu/5F1KEvJYHz5hmlfyryQhOjANBgkqhkiG9w0BAQsF\nAAOCAQEAm7mtXgQTftbcN05wQlStJ9IY+PaKkrvXJbJyl9PXOVgw5XNb9qTBzRl+\nTuEdK9N054jxHmkH9bqXObCLp/mo2xbQoavG87tILGMilv2VxEyKKzUaYc2IshYR\nY3zGT+QqC7IIfZHjVOgdc3+wwgm8ntRCYS23Z10+sE5o4lZGxiUkrGod1kjEKOaD\n5AiJ9bC3rI/tAapn14GemzsCagvVY8WzP8GW6WVz+pQCoJvy9jsHkQIq9djpzx29\nJ0hg12H9d2InnsJ8QdUIzbSPwyD8H+upKVtQZ/fVcZd3NtAuR6xo2yG3aSumdhmV\nrBJ5F7SB7WXo5/z0aXxYvCcrUqLgxA==\n
-----END	CERTIFICATE-----\n",		},};

Connection

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html


Create	a	tdx	Volt	instance	to	enable	Bob	to	connect	to	the	Volt:

import	{	VoltClient	}	from	"@tdxvolt/volt-client-web";
const	client	=	new	VoltClient(window.WebSocket,	BobsConfig);

Now	attempt	to	initialise	the	 tdx	Volt	connection:

await	client.initialise();

If	initialisation	fails,	an	error	will	be	thrown.

API	call

Once	initialised	successfully,	you	can	issue	any	API	call.

Refer	to	the	API	documentation	for	details	of	the	method	names	and	corresponding	request
and	response	messages.	Each	API	method	expects	a	JSON	object	representing	the	request(s)
as	input,	and	returns	JSON	objects	as	indicated	by	the	response	message	type.	The	JSON
representation	of	the	protobuf	message	format	is	intuitive.

In	the	example	below,	we	retrieve	the	resource	associated	with	Bob’s	home	folder:

client		.initialise()		.then(()	=>	{				return	
client.GetResource({	resourceId:	config.credential.client_id	
});		})		.then((response)	=>	{				
console.log(response.resource);		})		.catch((err)	=>	{				
console.error(err.message);		});

Unary	calls

All	unary	calls	return	a	promise	that	will	either	resolve	with	a	JSON	response	object	matching
that	defined	by	the	API	protobuf,	or	reject	if	there	is	a	problem	with	the	grpc	transport	or	an
error	status	on	the	response	object.

Streaming	calls

The	promise	model	does	not	fit	well	with	streaming	calls	since	they	are	long-lived.

For	this	reason,	all	streaming	calls	(client	streaming,	server	streaming,	and	bi-directional
streaming)	return	a	call	object	that	is	used	to	manage	the	call.

The	call	object	emits	events	as	interactions	with	the	underlying	websocket	occur,	and	there
are	3	events	of	interest:

“error”	emitted	when	an	error	occurs	on	the	call
“data”	emitted	when	a	response	is	received	from	the	Volt
“end”	emitted	when	the	call	ends

Server	streaming	calls

The	example	below	shows	execution	of	an	SQL	statement	on	a	database,	the	 data	event	will
be	emitted	for	each	row	of	data	in	the	result	set.

The	end	event	is	emitted	when	the	call	ends.

const	call	=	client.SqlExecute(		{				database_id:	
"fc17c5a1-a858-45c6-804b-7e16af7c968d",				statement:	
"SELECT	*	FROM	NETFLIX	LIMIT	100",		});
call.on("error",	(err)	=>	console.error(err.message));
call.on("data",	(response)	=>	console.log(response));
call.on("end",	()	=>	console.log("complete"));

Client	streaming	calls

Client	streaming	calls	have	a	similar	syntax	to	server	streaming	calls,	although	the	 data
event	should	only	be	emitted	once	rather	than	multiple	times.

Clients	can	use	the	 send	method	on	the	returned	 call	object	to	send	requests	to	the	server
(see	bi-direction	example	below).

file:///Users/tobyealden/code/pdf-docs/api/volt_api.html


Clients	use	the	 end	method	of	the	returned	 call	object	to	indicate	to	the	server	that	the	call
has	ended.

Bi-directional	streaming	calls

As	expected,	bi-directional	calls	are	a	combination	of	client	and	server	streaming	calls,
whereby	the	data	event	is	emitted	for	each	response	from	the	server,	and	the	client	can	send
multiple	requests	using	the	call	object	send	method.

const	sub	=	voltApi.SubscribeWire({	wireId	});
sub.on("error",	(err)	=>	console.error(err.message));
sub.on("data",	(response)	=>	console.log(response.chunk));
sub.on("end",	()	=>	console.log("subscription	ended"));
////	...//
//	Some	time	later,	ask	the	server	to	end	the	
subscriptionsub.send({	stop:	true	});

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cli.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html


Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Command	line	interface
Although	not	strictly	a	client	library	as	such,	the	 tdx	Volt	command	line	interface	(CLI)
exposes	several	aspects	of	the	core	tdx	Volt	API	for	use	in	shell	scripts	and	other	terminal-
based	processes.	This,	in	combination	with	the	tdx	Volt	wire	functionality,	provides
opportunities	for	useful	and	succinct	workflows.

The	tdx	Volt	CLI	can	also	act	as	a	server,	and	can	be	daemonised	to	run	one	or	more	Volts	in
the	background.

The	tdx	Volt	CLI	supports	several	commands,	and	the	arguments	and	syntax	of	each
command	varies.	The	basic	format	to	invoke	a	command	is:

./volt	<command>	[options]

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cli.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cpp.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/web.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Help	is	available	for	each	command	using	the	 -h	or	--help	switch,	for	example:

./volt	create	--help

Terminal	window

tdx	Volt	management	commands
The	commands	in	this	section	relate	to	 tdx	Volt	management	tasks,	such	as	creating	and
running	Volts.

battery	options

There	are	some	options	that	are	common	to	the	 tdx	Volt	management	commands,	including
those	to	do	with	configuration	of	the	Battery	in	which	the	tdx	Volt	is	contained.

The	Battery	name	can	be	configured	using	the	 -b	switch.	If	this	switch	is	omitted,	the	default
Battery	is	used.

For	example,	to	create	a	 tdx	Volt	in	a	Battery	named	Household:

./volt	create	Alice	-b	Household

Terminal	window

Use	the	--bp	switch	to	specify	an	encryption	passphrase	and	create	a	secure	Battery:

./volt	create	Alice	-b	Household	--bp	foobar

Terminal	window

As	above,	but	using	 --bp	.	to	request	a	passphrase	prompt:

./volt	create	Alice	-b	Household	--bp	.

Terminal	window

Note	that	once	an	Battery	is	encrypted,	the	passphrase	will	be	required	for	any	subsequent
tdx	Volt	command.	For	example	to	start	a	 tdx	Volt	that	is	stored	in	a	passphrase-protected
Battery:

./volt	run	449a3385-f380-41f7-bd0a-e60caaa403cb	-bp	foobar

create	command

The	command	to	create	a	Volt.

In	the	following	example,	the	 tdx	Volt	will	be	created	in	the	default	Battery,	with	no
passphrase	protection	or	encryption	on	either	the	Battery	storage	or	the	tdx	Volt	itself.

./volt	create	"Alice's	laptop"

Terminal	window

To	avoid	having	to	copy	and	paste	the	UUID	when	subsequently	referring	to	the	 tdx	Volt,
you	can	give	it	an	alias	using	the	-a	switch:

./volt	create	"Alice's	laptop"	-a	alice

Terminal	window

The	alias	can	be	substituted	for	the	UUID,	by	prefixing	it	with	 @:

./volt	run	@alice

Terminal	window

Create	a	secure	Volt

Use	the	-p	switch	to	specify	a	passphrase	that	will	be	used	to	encrypt	the	 tdx	Volt	root	key



and	storage.

By	default,	the	tdx	Volt	will	auto-generate	a	new	key	at	creation	and	encrypt	it	with	the	given
passphrase.	The	tdx	Volt	will	not	store	the	passphrase	so	you	must	remember	it.

It	is	recommended	to	use	a	phrase	rather	than	a	single	word	for	the	passphrase,	for	example	"I
like	cheese".

./volt	create	"Alice's	laptop"	-p	secret

Terminal	window

Use	a	period	with	the	passphrase	switch	( -p	.)	to	force	the	CLI	to	prompt	for	the	passphrase
rather	than	include	it	explicitly	in	the	command	line.

./volt	create	"Alice's	laptop"	-p	.

Terminal	window

There	is	currently	no	way	to	recover	or	reset	the	**tdx	Volt**	passphrase	so	if	you	lose	it	you
will	not	be	able	to	access	the	Volt.

Create	a	tdx	Volt	using	a	fixed	host

By	default	when	a	tdx	Volt	is	created	its	certificate	is	bound	to	the	current	(or	first)	ipv4
network	interface	address.	If	you	would	like	to	bind	a	tdx	Volt	to	a	specific	IP	address	or
domain	name	use	the	host	and	port	command	line	switches.

./volt	create	"Alice's	server"	--host	aliceserver.com	--port	
40725

Terminal	window

Create	a	tdx	Volt	with	a	file-based	key

By	default	the	tdx	Volt	key	is	stored	with	the	 tdx	Volt	configuration	in	the	Battery.	If	the
Battery	is	encrypted	with	a	strong	passphrase	this	is	a	fairly	safe	option.

Alternatively	you	can	create	a	 tdx	Volt	using	a	key	stored	on	the	local	file	system.

./volt	create	"Alice's	laptop"	-k	/path/to/key/file

Terminal	window

If	/path/to/key/file	does	not	exist	it	will	be	created.

If	the	key	is	encrypted	(recommended)	you	can	specify	or	prompt	for	the	passphrase	using	the
-p	switch	as	described	above.

./volt	create	"Alice's	laptop"	-k	/path/to/key/file	-p	.

Terminal	window

See	the	key	strategy	section	for	more	information.

For	full	usage	information:

./volt	create	--help

Terminal	window

run	command

Use	the	run	command	to	start	a	Volt.

This	command	can	be	used	to	daemonise	an	instance	of	a	Volt,	using	an	 init.d	script	or
similar.

To	run	a	 tdx	Volt	that	is	in	the	default	Battery	and	is	not	passphrase-protected:

./volt	run	f902f0f7-b9b7-4d2a-b05a-2d4e76a16ded

file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html


Terminal	window

To	run	a	passphrase-protected	Volt,	use	the	 -p	.	option	to	prompt	for	a	passphrase:

./volt	run	f902f0f7-b9b7-4d2a-b05a-2d4e76a16ded	-p	.

Terminal	window

If	the	tdx	Volt	is	not	in	the	default	Battery,	specify	the	path	to	the	Battery	using	the	 -l
option:

./volt	run	f902f0f7-b9b7-4d2a-b05a-2d4e76a16ded	-p	.	-b	
Household

Terminal	window

For	full	usage	information:

./volt	run	--help

Terminal	window

config	command

The	config	command	can	be	used	to	show	the	available	 tdx	Volt	configurations,	or	see	the
detail	of	a	particular	tdx	Volt	configuration.

To	list	all	Volts	in	the	default	Battery:

./volt	config

Terminal	window

To	list	all	Volts	in	a	given	Battery:

./volt	config	-b	Household

Terminal	window

To	view	the	full	configuration	for	a	given	Volt,	specify	the	 tdx	Volt	id	or	alias:

./volt	config	@alice

Terminal	window

For	full	usage	information:

./volt	config	--help

Terminal	window

Client	commands
The	commands	in	this	section	are	classed	as	 tdx	Volt	client	commands,	and	as	such	they
require	client	credentials	in	order	to	authenticate	with	the	target	Volt.

There	are	two	ways	to	specify	the	client	credentials,	either	via	a	well-known	file	named	
volt.config.json,	or	using	a	custom	file	name	and	passing	it	via	the	command	line	switch
-c.

See	the	connection	section	for	more	details	about	client	credentials.

The	following	examples	assume	that	the	client	credentials	have	been	placed	in	the	
volt.config.json	file.

download	command

Download	a	file	or	folder	from	the	 tdx	Volt	to	the	local	disk:

./volt	download	./shares/images	volt-downloads

file:///Users/tobyealden/code/pdf-docs/reference/connection.html


Terminal	window

In	the	example	above,	the	 .	prefix	of	./shares/images	indicates	that	the	path	is	relative	the
‘home’	folder	of	the	client.

To	specify	a	path	relative	to	the	root	of	the	 tdx	Volt	itself,	use	a	/	prefix:

./volt	download	/documents/reports	volt-downloads

Terminal	window

For	full	usage	information:

./volt	download	--help

Terminal	window

upload	command

Upload	a	file	or	folder	to	the	Volt.

./volt	upload	~/Documents/images	./shares

Terminal	window

The	.	prefix	on	./shares	indicates	the	target	resource	is	relative	to	the	‘home’	folder	of	the
client.

To	upload	to	a	resource	relative	to	the	root	of	the	 tdx	Volt	itself,	use	a	/	prefix:

./volt	upload	~/Documents/images	/documents/images

Terminal	window

For	full	usage	information:

./volt	upload	--help

Terminal	window

list	command

List	resources	on	the	 tdx	Volt	(similar	to	ls	or	dir	shell	commands).

./volt	list	./shares

Terminal	window

For	full	usage	information:

./volt	list	--help

Terminal	window

wire	command

Subscribe	or	publish	to	wire	resources.

publish

To	publish	to	a	wire,	specify	the	wire	identifier	or	alias:

./volt	wire	@sensor-feed

Terminal	window

The	wire	data	is	read	from	 STDIN.	This	enables	flows	such	as:

curl	www.google.com	|	./volt	wire	bcc778cd-04b0-4e5e-803c-
dcca143790e1cat	somefile	|	./volt	wire	bcc778cd-04b0-4e5e-
803c-dcca143790e1



Terminal	window

subscribe

To	subscribe	to	a	wire,	add	the	 -s	switch	to	the	command	line:

./volt	wire	9c797959-eafe-4d2a-8005-1e5ef66c29ac	-s

Terminal	window

All	wire	data	will	be	written	to	STDOUT.	This	enables	flows	such	as:

./volt	wire	-s	bcc778cd-04b0-4e5e-803c-dcca143790e1	|	wire-
data.log

Terminal	window

For	full	usage	information:

./volt	wire	--help

Terminal	window

Utility	commands

logger	command

Split	data	arriving	on	a	wire	or	 STDIN	into	files	on	the	local	disk.

This	command	was	developed	for	use	with	the	 Protobuf	Database	Sync	utility,	but	it	may	be
useful	in	other	scenarios.

The	logger	command	listens	for	incoming	data	on	a	Volt	wire	or	 STDIN,	splitting	the	input
into	multiple	files	of	a	configured	maximum	size	in	a	configured	folder.	It	makes	no	attempt
to	interpret	the	incoming	data.

If	a	header	is	given	as	part	of	the	 tdx	Volt	Logger	configuration	it	will	populate	and	write	a	
ProtobufSyncConfigurationHeader	message	to	the	start	of	each	file	it	creates.

Once	a	file	reaches	the	configured	size	( logFileSize)	it	will	be	moved	to	the	ingestion
folder,	where	it	will	get	picked	up	by	the	protoDbSync	process	if	one	is	running.	The	logger
will	then	create	a	new	file	to	continue	logging	the	incoming	data.

This	enables	scenarios	such	as:

#	Continuously	pipe	data	from	a	producer,	splitting	it	into	
log	files.>	fs20PacketProducer	|	volt	logger	-c	
fs20.logger.json

Terminal	window

#	Continuously	pipe	data	from	a	tdx	Volt	Wire	(grpc	stream),	
splitting	it	into	log	files.>	volt	logger	-c	
zwave.logger.json	-w	d1cc1560-9b58-4bdf-a2cf-7d65a2db0c01

Terminal	window

#	Load	data	from	a	URL.>	curl	https://somedata.endpoint	|	
volt	logger	-c	snapshot.logger.json

Terminal	window

An	example	logger	configuration	when	reading	from	 STDIN	is	shown	below.

file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html


{		"logger":	{				"headerId":	"tcpdump-logger",				
"headers":	[						{								"messageName":	"TCPDumpPacket",								
"messageProto":	"syntax	=	\"proto3\";\n\npackage	
tranforms;\n\nmessage	TCPDumpPacket	{\n		string	timestamp	=	
1;\n		string	source_mac_address	=	2;\n		string	
source_manufacturer_id	=	3;\n		bool	is_broadcast	=	4;\n		
bool	is_arp	=	5;\n		string	target_mac_address	=	6;\n		string	
target_manufacturer_id	=	7;\n		string	ether_type	=	8;\n		
string	unknown_1	=	9;\n		int32	length	=	10;\n		string	
source_address	=	11;\n		string	target_address	=	12;\n		
string	payload	=	13;\n}\n",								"name":	"header0",								
"tableName":	"tcpdump"						}				],				"logFileExtension":	
"pdat",				"logFilePath":	"./logs",				"logFilePrefix":	
"tcpdump-log-",				"logFileSize":	64000		}}

If	reading	from	a	wire,	the	configuration	should	include	details	of	a	 standard	client
connection,	as	shown	below.	The	credentials	given	should	have	 subscribe	access	to	the
source	wire.

{		"logger":	{				"headerId":	"tcpdump-logger",				
"headers":	[						{								"messageName":	"TCPDumpPacket",								
"messageProto":	"syntax	=	\"proto3\";\n\npackage	
tranforms;\n\nmessage	TCPDumpPacket	{\n		string	timestamp	=	
1;\n		string	source_mac_address	=	2;\n		string	
source_manufacturer_id	=	3;\n		bool	is_broadcast	=	4;\n		
bool	is_arp	=	5;\n		string	target_mac_address	=	6;\n		string	
target_manufacturer_id	=	7;\n		string	ether_type	=	8;\n		
string	unknown_1	=	9;\n		int32	length	=	10;\n		string	
source_address	=	11;\n		string	target_address	=	12;\n		
string	payload	=	13;\n}\n",								"name":	"header0",								
"tableName":	"tcpdump"						}				],				"logFileExtension":	
"pdat",				"logFilePath":	"./logs",				"logFilePrefix":	
"tcpdump-log-",				"logFileSize":	64000		},		"client_name":	
"CLI",		"crypto":	{				"cert":	"-----BEGIN	CERTIFICATE-----
\nMIIDWzCCAkOgAwIBAgIEQ7J4qTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4zODAzYzIzOS1mZmM2LTQwYTMtYjg1Yy0xZGE3OTg5\nNDVjM2MwHhcNMjIxMDI1MDcyNDM2WhcNMjMxMDI1MDcyNDM3WjBuMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMS0wKwYDVQQDDCQ1NzZkM2YwNy0wYWFiLTRjZWQtYjEwZi0wODUyMjBj\nMmIxZmYwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCmVwOOkfIN95Sr\nmqKGPUTNdfFbuz7R0SIXzTuAI+tOiBmhH3QRadSOq58/3OgozW/xJ1jaiSGJKmi+\nMm44dNsCdi5O5HJboBER7A6FKn+R0YWJGmeT9jfzpK/ygUfF2qvRZ622odSVUm+m\n04DP1ZJya22wy9Y3SNvpLI1BqGsWUdjuSyzog246Tt0Dt3OC+VvG3xWCPJdgXyvq\nB1FuLm6l6F60soo+MJ6lWEcZ/oXUdeqTEac56+H8c6ol5raru0oJlawA6vXCfN6h\nRx+VjeFhSBBSIa7b99+7yBLa7xLzpX/Eb2mccUTMSenHG/TxnW5ftbzrXKLEhlDx\n0/SFRW6dAgMBAAEwDQYJKoZIhvcNAQELBQADggEBAKbVpTl+ZIHgSSzOntuo9Ezd\nu3mKx/xWS+RPmXnHU9KsZjCJN00F84pf/a7SNlUJv/Mwob8gTpawVByoFjl6iV7o\nZJc+1op9aYHlmrqumCXairY//dlsGXJ2F7Wl2dqckn+Wqk4Jgk83NucAl5JgxLmR\nB9UwL81pzeXHjSPkaF17BzAxB42fIpDJ1Uies/4BjjwFWn2ebSyC/z3flB2YBF3c\nS1Gak8I56iyTCdjT0LkUoMVHNxFXg6xsorbBN4qy5CM5V5rbTJmZBYzZNIlTusBA\ngqPDsgRCNYGxsbDVB71thOSKzR0mltx2ICqV360MET0II8P3WYS4o7aFegk3OIY=\n
-----END	CERTIFICATE-----\n",				"client_id":	"576d3f07-0aab-
4ced-b10f-085220c2b1ff",				"key":	"-----BEGIN	PRIVATE	KEY--
---
\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCmVwOOkfIN95Sr\nmqKGPUTNdfFbuz7R0SIXzTuAI+tOiBmhH3QRadSOq58/3OgozW/xJ1jaiSGJKmi+\nMm44dNsCdi5O5HJboBER7A6FKn+R0YWJGmeT9jfzpK/ygUfF2qvRZ622odSVUm+m\n04DP1ZJya22wy9Y3SNvpLI1BqGsWUdjuSyzog246Tt0Dt3OC+VvG3xWCPJdgXyvq\nB1FuLm6l6F60soo+MJ6lWEcZ/oXUdeqTEac56+H8c6ol5raru0oJlawA6vXCfN6h\nRx+VjeFhSBBSIa7b99+7yBLa7xLzpX/Eb2mccUTMSenHG/TxnW5ftbzrXKLEhlDx\n0/SFRW6dAgMBAAECggEBAIdTp1soNWtTjyqFZdAcrIsTd0cP8S22HSyMFepMTrXX\nWDKTalR4ayufSLImQOJhML9bKZixlA0J6alDUhSwTTWVfFtG1BrjAMA58h440wyJ\nD0DZsIbZ++9GframowO+waZd2SAKTO8m4BszW0q7EKfx6o25aBAWQINVcZ6HLIg8\nwphpPaZJzMZCnSssAqA26x+yHzyiGBwECuKM382+jjTcasnxh5zh7JvxtWyOXjQM\n3EpCFLlGKCz2UWAxDThoyCqGVIVtkBR2b230TB5mjeI1slDy2iKHDfYXy+AWcDku\naYfQBLo96Fr2jPIBOkRXv91KMsyzNukrYwZzeRrN38ECgYEA0Uukd1F/8Vg0Ie9e\nHh5kXFOn9cB3CU+v9djF9LYxjrw3h/E74AT4ZuPl1PRyDXE6OUWWa7ouH0NhmBUU\nz7U6tlRdeW65S1aUoCkRzGB1nU9LQ0tz3lUKQ3P6SMusqErbJdLiCkXBCapTYr8n\nfliRwKU4CKf4wdH32hRlRs4CaLUCgYEAy3V2HnutXXteDvhhS5PqjVF8BPYq5h84\n5p70bsnCwkz9bDC7WJQwU6b9a4nofWhp3uGwSG/fji5MeRJzSf05Y5KUeZ0Lcvcn\nhGKpOGwE9BDlEedSAchYl6zdTrjo78ZOZ7QHjiuH0dgEc7A+E6S49Z6OaZtos37r\nKx6CAtVaJ0kCgYBT5p7ntiQz+8fqUqrIKCbTXDXYrm8JrIg9Zcj1cJQtRAZ+2JXI\nGDX8CR/5XoTaHqnYi6zhQqF6puhYrxrIqT4AGZHfPCPLr8mk6tHXvFNp3H+vWm/4\nkN6sa7HJvNxaGqf/Yap7s7rOxRjoXPjYDWlgcNslnTB7glB5e/OdjrgogQKBgD/6\nL6pmOZ2rrWgHspCRcq/9b4If5l12c+4RDcvIpfVzQD1FFaRE9O1ZFVc7hl/o9WGg\nlk4w35tV87YelyIs/l7RON8FAxSjo0l9vLiBPw2AQofetWraFQGc2fpnKtg7A2yY\nr8eE6LCTvNKkGOEUaxTRRvbuZ34J6ukkLr21WSQBAoGAeZJfkWCeX+14Qorb48Oq\nS32hYEzxYj2v3/4xUUqh9x9l1OsIUXWsc4c0Ya/D9bnoC3DQZFbwI7dtjhXRfwqj\nXSpFJv7+xq67hEnL2L5Y9s+HslpnM7uko+1bqrkMQ+XWcVSgqnWgQSPsbFia/FdL\npq+eQLE2/TcqWaM7hCWxjoc=\n
-----END	PRIVATE	KEY-----\n"		},		"volt":	{				"ca_pem":	"--
---BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIENzfzHjANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4zODAzYzIzOS1mZmM2LTQwYTMtYjg1Yy0xZGE3OTg5\nNDVjM2MwHhcNMjIxMDA2MDY0MTQ5WhcNMjMxMDA2MDY0MTUwWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4zODAzYzIzOS1mZmM2LTQwYTMtYjg1Yy0xZGE3\nOTg5NDVjM2MwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC685OWXJgG\ndBcmOFd0bKGBbH+JCVscnL2UahdO2i1exxVT0buVhI5gsATbvoiYShz8Vqi5H+EX\nTACSBO1ojDMRT+tLvqx61vqFvwpA5iNcN2IpnA72pK5hklS5MBiUQ/R02kqCIX3D\nz0F2ZsWuGo2TWsMGrcCkR8a/1oCLwTa3oO9JZhXckzrYiQZyWWtRG7vmJXz1Enrh\nZ0pXPGa94H7Hrm/q+J6Uy5c1r/sRK5pJH79Z+sTZuM71ooGbMScKfVx/+bd70MWB\nQK1o1vMUjEBACzizietpLXgT8xBYw2QwMGiMZsj4LKiYvDiUrniL5yQlmHTIWI5g\n9v3soaZFp4LRAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBQaa1NBh69uMVMOsXKBA4cR/h57HTANBgkqhkiG9w0BAQsF\nAAOCAQEAteNPjx7+9SsnSOs+LE9DdbyvcOOpqbcfSH6PDMyQoNs5o+K+yCTe2GOy\nkB4BMJQq3d+I17ivisQI1/bS6Pn364aO8B+9KeWCQq5MteoLJF4pscM5+R3sxkat\nPmWHHTum/lE1XSG5V2ytaXZvML/spWB7kSKMw7uOWjvr0dZ1Nq+dN1hmLb6p72Ir\n5Gwl2Byqvofet8/Dqx+hMXw5I+v9b3XXzay1mDhL40zgC/WYBsG0nJJwqHmdS8IN\nQrlxJ3fk2HCfQFnVue1h/2LHLM+MnEExdULB/BNp7MS1VeQ135eXfkhHd2fl7LKf\nwBSLRoniDb1gvtKSHuAZ5PaJELswJg==\n
-----END	CERTIFICATE-----\n",				"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI=",				"id":	
"3803c239-ffc6-40a3-b85c-1da798945c3c",				"address":	
"192.168.1.139:40265"		}}

STDIN	logger	performance

Reading	asynchronously	from	STDIN	is	surprisingly	difficult.	The	method	used	by	the	logger
command	involves	a	background	thread	that	reads	data	from	STDIN	one	byte	at	a	time,	and
when	the	accumulated	data	reaches	the	configured	log	size	the	data	is	flushed	to	disk.

On	its	own	this	approach	causes	problems	whereby	a	flush	might	occur	in	the	middle	of	an
incoming	packet,	thus	breaking	the	protobuf	binary	format.

To	guard	against	this,	the	Volt	logger	uses	a	second	thread	thread	which	is	responsible	for
flushing	the	buffer,	and	will	only	do	so	after	50ms	of	inactivity	on	STDIN	(the	interval	is
configurable	via	the	flushIdleInterval	property	in	the	configuration	file).	As	a
consequence,	the	produced	log	file	size	may	slightly	exceed	that	configured	in	
logFileSize.

The	flushing	thread	described	above	helps	reduce	the	frequency	of	split	packets,	but	they	can
still	occur	due	to	network	latency	or	other	timing	blips	on	the	incoming	data.	Fortunately	the
protoDbSync	utility	can	recover	from	these	split	packets	the	majority	of	the	time.

Support	for	more	commands	in	the	Volt	CLI	is	coming	soon...

Skip	to	Content

file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cpp.html#article
file:///Users/tobyealden/code/index.html


tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cli.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/cpp.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/web.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

C++	client
The	C++	API	is	in	a	constant	state	of	flux	at	the	moment,	documentation	will	appear	in	the
near	future.

Coming	soon…
Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource

file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/faq.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html


File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/faq.html


Coming	soon
Roadmap

FAQ
Frequently	asked	questions	and	trouble-shooting	tips	are	shown	below.

Errors

I	get	Volt	IP	invalid	error	when	starting	a	 tdx	Volt

This	usually	means	there	is	no	network	connection.

I	get	invalid	argument	errors	when	attempting	to	bind	or	connect	to	a	 tdx	Volt

This	usually	means	target	 tdx	Volt	has	no	knowledge	of	your	public	key	and	you	didn’t
provide	any	further	credentials	or	the	challenge	code.	Add	the	correct	challenge_code
property	to	the	volt	configuration	section.

Linked	Volt	connections	and	Relays	are	broken

Currently	Relay	and	Linked	Volt	connections	are	based	on	IP	address.	If	one	of	the	Volts	has
recently	changed	IP	address	it	will	cause	any	connections	to	it	to	fail.	This	will	change	when
the	universal	identity	resolution	mechanism	is	in	place,	in	the	mean	time	you	can	work
around	it	by	deleting	the	‘shared	with	me	on	xxxxx’	folder	and	re-discovering	the	Volt.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html


How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Connect	to	a	tdx	Volt
The	tdx	Volt	command	line	interface	(CLI)	and	all	client	libraries	make	use	of	a	JSON	object
stored	in	a	local	file	to	persist	the	details	of	a	client	connection	to	the	Volt.

A	full	description	of	the	client	connection	JSON	format	and	how	to	obtain	or	create	one	can
be	found	in	the	connection	section.

api
The	VoltAPI.Authenticate	API 	enables	clients	to	authenticate	on	a	Volt	and	obtain	credentials
for	subsequent	API	calls.

cli
Use	the	auth	command.

./volt	auth	-help

Terminal	window

To	authenticate	on	a	Volt	with	the	DID	 did:volt:a06e10d1-3fa4-445a-948f-
7e7c5ee36262	use	the	following	command:

./volt	auth	did:volt:a06e10d1-3fa4-445a-948f-7e7c5ee36262	
"Bob"

Terminal	window

By	default,	the	configuration	details	will	be	stored	in	a	file	called	 volt.config.json	in	the
current	working	directory.	You	can	specify	a	different	file	using	the	-c	switch:

./volt	auth	did:volt:a06e10d1-3fa4-445a-948f-7e7c5ee36262	
"Bob"	-c	bob.config.json

Terminal	window

You	can	use	the	discovery	URL	of	the	Volt	instead	of	the	DID:

./volt	auth	https://acme.com	"Bob"	-c	bob.config.json

Terminal	window

javascript
Use	the	Authenticate	API,	the	response	will	contain	the	generated	credentials	on	success.

grpc

It’s	not	normally	necessary	to	explicitly	use	the	 Authenticate	API	when	using	the	grpc
client	library,	as	the	library	will	automatically	authenticate	if	required	when	initialise	is
called.

It’s	worth	noting	that	the	 initialise	call	will	not	return	until	either	a	‘permit’	or	‘deny’
decision	is	received	from	the	Volt.	This	means	that	the	initialise	call	will	block	if	there	is
a	‘prompt’	decision,	which	will	occur	if	the	Volt	is	configured	to	require	user	interaction	for
authentication.

file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#Authenticate
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#Authenticate


import	{	VoltClient	}	from	"@tdxvolt/volt-client-
grpc";import	grpc	from	"@grpc/grpc-js";
//	This	is	the	path	where	we'd	like	to	store	the	generated	
configuration.const	configPath	=	"./volt.config.json";
const	voltConfig	=	{};
//	This	is	the	name	we'd	like	to	use	for	our	
client.voltConfig.client_name	=	"Alice";
//	This	is	the	DID	of	the	Volt	we'd	like	to	connect	
to.voltConfig.volt	=	"did:volt:a06e10d1-3fa4-445a-948f-
7e7c5ee36262";
//	Alternatively,	you	can	use	the	URL	of	the	Volt	instead	of	
the	DID.voltConfig.volt	=	"http://192.168.1.195:49824";
const	voltClient	=	new	VoltClient(grpc);
voltClient		.initialise(configPath,	voltConfig)		
.then((response)	=>	{				console.log(response);		})		
.catch((err)	=>	{				console.error(err.message);		})		
.finally(()	=>	{				console.log("finished");		});

Once	the	client	has	been	initialised,	the	configuration	will	be	stored	in	the	file	specified	by	
configPath.	The	next	time	the	client	is	initialised,	the	configuration	will	be	read	from	this
file.

If	you’d	rather	manage	the	persistence	of	the	configuration	yourself,	you	can	pass	a
configuration	object	directly	to	the	initialise	method	rather	than	a	file	path:

import	{	VoltClient	}	from	"@tdxvolt/volt-client-
grpc";import	grpc	from	"@grpc/grpc-js";
//	Initialise	or	load	the	configuration	here.const	
voltConfig	=	{};
//	This	is	the	name	we'd	like	to	use	for	our	
client.voltConfig.client_name	=	"Alice	2";
//	This	is	the	DID	of	the	Volt	we'd	like	to	connect	
to.voltConfig.volt	=	"did:volt:a06e10d1-3fa4-445a-948f-
7e7c5ee36262";
const	voltClient	=	new	VoltClient(grpc);
voltClient		.initialise(voltConfig)		.then((response)	=>	{				
//	Persist	the	configuration	here.				console.log(response);		
})		.catch((err)	=>	{				console.error(err.message);		})		
.finally(()	=>	{				console.log("finished");		});

web

		const	sub	=	client.Authenticate({				client_name:	"Bob",				
"public_key":	"<PEM	encoded	key>"		});

C++
examples	coming	soon...

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html


Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


FAQ
Questions

Coming	soon
Roadmap

Establish	a	connect	stream

api
The	VoltAPI.Connect	API 	enables	clients	to	establish	a	Volt	 connect	stream.	Note	that
clients	will	not	need	to	call	this	API	directly	as	it	is	encapsulated	in	the	various	‘Connection’
classes	in	the	client	libraries.

cli
The	CLI	automatically	uses	 connect	streams	to	implement	certain	commands,	in	particular
the	wire	publish	and	subscribe	commands.	This	means	that	when	you	subscribe	to	a	wire
using	the	CLI,	the	subscription	will	automatically	be	restarted	if	the	connection	to	the	Volt	is
lost	and	subsequently	re-established.

fusebox
The	fusebox	always	establishes	a	 connect	stream	to	the	target	Volt,	and	this	is	used	to	reflect
the	connection	status	to	the	user	and	to	receive	notification	of	changes	to	resources	that	are	in
view.

javascript	[grpc]
Use	the	VoltClient.connect	method	to	establish	a	Volt	 connect	stream,	and	register	to
receive	connected	events	for	notifications.

import	grpc	from	"@grpc/grpc-js";import	{	VoltClient	}	from	
"@tdxvolt/volt-client-grpc";
const	client	=	new	VoltClient(grpc);
const	config	=	"./volt.config.json";
//	Register	to	receive	connection	
events.client.on("connected",	(connected)	=>	{		if	
(connected)	{				console.log("connected");		}	else	{				
console.log("disconnected");		}});
//	Register	to	receive	error	events.client.on("error",	(err)	
=>	{		console.log("error:	%s",	err.message);});
client		.initialise("connect-example",	config)		.then(()	=>	
{				return	client.connect();		})		.then(()	=>	{				
console.log("client	waiting	for	events");		})		.catch((err)	
=>	{				console.log("failure	in	client	[%s]",	err.message);				
process.exit(1);		});

Javascript	[web]
This	is	a	work	in	progress.

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#Connect


import	{	VoltClient	}	from	"@tdxvolt/volt-client-web";import	
{	config	}	from	"./client-configuration.js";
let	client;
try	{		client	=	new	VoltClient(WebSocket,	config);
		await	client.initialise();		console.log("client	
initialised");
		const	connectStream	=	client.connect(				{						hello:	{},				
},				(err,	resp)	=>	{						if	(err)	{								
console.log("received	error	on	connect:	"	+	err.message);						
}	else	{								console.log(JSON.stringify(resp));						}				
}		);		await	connectStream.responsePromise;}	catch	(err)	{		
console.log("failure	in	connect	example	[%s]",	
err.message);}	finally	{		console.log("finished");		
client.close();}

C++
#include	<volt_client/volt_api_client.h>
...
tdx::volt_client::VoltConnectCallbacks	
voltCallbacks;voltCallbacks.onConnection	=	[](bool	
connected)	{		//	Perform	connect/disconnect	logic	here.		
std::cout	<<	"connected:	"	<<	connected	<<	std::endl;};
//	Create	and	initialise	the	Volt	client	connection	with	the	
configuration//	details	and	the	key	passphrase.auto	volt	=	
std::make_unique<tdx::volt_client::VoltConnection>();if	
((result	=	volt->initialise(config,	passphrase))	!=	
tdx::error_code::ok)	{		std::cout	<<	"failure	initialising	
connection:	"	<<	result	<<	std::endl;		return	result;}
//	Wait	for	the	Volt	connection	to	initialise	successfully	
(this//	may	fail	if	the	Volt	is	offline	or	
unreachable).result	=	tdx::error_code::notInitialised;while	
(!result.empty())	{		if	((result	=	volt-
>connect(voltCallbacks))	!=	tdx::error_code::ok)	{				
std::cout	<<	"failure	connecting	to	Volt:	"	<<	result	<<	
std::endl;				std::cout	<<	"retrying	in	10	seconds......"	<<	
std::endl;				
std::this_thread::sleep_for(std::chrono::milliseconds(10000))
;		}}
//	Once	the	initial	connection	is	successfully	established,	
the	`onConnection`//	callback	will	be	called,	including	for	
subsequent	disconnection/connection//	events.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html


Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ

file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


Questions

Coming	soon
Roadmap

Subscribe	to	wire
Error	handling	is	omitted	from	example	code	for	brevity.

api
The	WireAPI.SubscribeWire	API 	enables	clients	to	subscribe	to	a	wire.

cli
Use	the	wire	command.

./volt	wire	--help

Terminal	window

Subscribe	to	a	wire	using	the	cli	 wire	command	along	with	the	 -s	or	--subscribe	switch:

./volt	wire	<wire	id>	-s

Terminal	window

All	wire	data	will	be	written	to	STDOUT.	This	enables	flows	such	as:

./volt	wire	@demo-wire	-s	|	wire-data.log

Terminal	window

fusebox
Navigate	to	the	wire	in	the	resource	explorer	and	use	the	‘subscribe’	button	on	the	bottom
panel,	which	contains	a	‘headphones’	icon.

javascript
Use	the	SubscribeWire	API ,	the	callback	will	be	called	every	time	new	data	arrives.

grpc

import	grpc	from	"@grpc/grpc-js";import	{	VoltClient	}	from	
"@tdxvolt/volt-client-grpc";
const	client	=	new	VoltClient(grpc);
const	configPath	=	"./volt.config.json";
client		.initialise(configPath)		.then(()	=>	{				return	new	
Promise((resolve,	reject)	=>	{						const	sub	=	
client.SubscribeWire({	wire_id:	"@wire-demo"	});
						sub.on("error",	(err)	=>	{						reject(err);						});
						sub.on("data",	(response)	=>	{						
console.log(Buffer.from(response.chunk,	
"base64").toString());						});
						sub.on("end",	()	=>	{						resolve();						});				});		
})		.catch((err)	=>	{				console.error("failure	in	
subscribe-wire	[%s]",	err.message);		});

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html#SubscribeWire
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html#SubscribeWire


web

		const	sub	=	client.SubscribeWire({	wireId	});		
sub.on("error",	(err)	=>	{				console.error(err);		});
		sub.on("data",	(response)	=>	{				
console.log(atob(response.chunk));		});
		sub.on("end",	()	=>	{				console.log("subscription	
ended");		});

C++
examples	coming	soon...

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html


Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Start	a	Volt
A	tdx	Volt	can	be	started	using	either	the	command-line	interface	(CLI)	or	the	 fusebox.

cli
Use	the	run	cli	command:

./volt	run	--help

Terminal	window

The	most	simple	way	to	start	a	 tdx	Volt	is	using	the	id:

./volt	run	did:volt:449a3385-f380-41f7-bd0a-e60caaa403cb

Terminal	window

file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


If	the	tdx	Volt	has	been	given	an	alias	you	can	use	this	instead	of	the	GUID:

./volt	run	@alice

Terminal	window

If	the	tdx	Volt	is	secure	you	will	also	need	to	specify	the	passphrase,	using	the	 -p	switch:

./volt	run	did:volt:449a3385-f380-41f7-bd0a-e60caaa403cb	-p	
foobar

Terminal	window

To	avoid	specifying	the	passphrase	on	the	command	line,	you	can	force	a	prompt	using	 -p	.:

./volt	run	did:volt:449a3385-f380-41f7-bd0a-e60caaa403cb	-p	

.

Terminal	window

See	the	CLI	section 	for	more	details	about	starting	a	 tdx	Volt.

fusebox
The	fusebox	can	be	used	to	run	local	 tdx	Volts.

Simply	click	on	the	name	of	the	 tdx	Volt	in	the	slide-out	menu	panel	on	the	left-hand	side:

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt

file:///Users/tobyealden/code/pdf-docs/clients/cli.html#run-command
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html


Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Approve	authenticate	request

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


When	a	client	attempts	to	authenticate	on	a	 tdx	Volt,	the	policy	engine	will	determine	if	it	has
any	rules	that	relate	to	the	public	key	or	credentials	presented	in	the	authentication	request.

If	the	policy	does	not	find	any	rules	applicable	to	the	presented	credentials,	it	will	prompt	the
owner	of	the	tdx	Volt	to	approve	or	reject	the	request.

Managing	authentication	requests
The	fusebox	can	be	used	to	manage	authentication	requests,	using	the	‘sessions’	button,
highlighted	below:

Clicking	on	the	button	highlighted	above	will	display	the	list	of	pending	requests	on	the	 tdx
Volt.

You	can	use	the	‘egg	timer’	button	to	restrict	the	list	to	only	show	pending	requests.

Clicking	on	a	request	in	the	list	will	prompt	you	to	either	permit	or	deny	the	request.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html


Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Publish	to	wire

api
The	WireAPI.PublishWire	API 	enables	clients	to	publish	to	a	wire.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html#PublishWire


cli
Use	the	wire	command.

./volt	wire	--help

Terminal	window

Publish	to	a	wire	using	the	cli	 wire	command:

./volt	wire	<wire	id>

Terminal	window

The	wire	data	is	read	from	STDIN.	This	enables	flows	such	as:

curl	www.google.com	|	./volt	wire	@demo-wirecat	somefile	|	
./volt	wire	@demo-wire./volt	wire	@demo-wire	<	anotherfile

Terminal	window

fusebox
Navigate	to	the	wire	in	the	resource	explorer	and	use	the	‘publish’	button	on	the	bottom
panel,	which	contains	a	‘microphone’	icon.

javascript
Use	the	PublishWire	API	write	data	to	the	wire.

web

const	pub	=	voltApi.PublishWire({	wire_id:	"@demo-wire"	});
pub.on("error",	(err)	=>	console.error(err.message));
pub.on("data",	(response)	=>	console.log(response));
pub.on("end",	()	=>	console.log("publication	ended"));
pub.send({	chunk:	"hello"	});pub.send({	chunk:	"world"	});

C++
		volt_client::WirePublishCallbacks	publishCallbacks;		
volt_client::WirePublishClient*	publishRpc	=	nullptr;
		publishCallbacks.onEnd	=	[](bool	serverSide)	{				//	
Publish	call	ended.		};
		publishCallbacks.onResponse	=						[]
(tdx::volt_api::volt::v1::PublishResponse	const&	response)	{								
if	(response.has_status()	&&												
response.status().message()	!=	error_code::ok)	{										//	
Publication	ended	with	an	error.								}	else	{										//	
Publication	ended	OK.								}						};
		publishCallbacks.onDestroyed	=	[]
(tdx::grpc::CallClientBase*	rpcClient)	{						//	Publication	
RPC	has	died.		};
		//	Start	the	publish	RPC.		if	((result	=	volt()-
>serviceApi()->publishWire(											publishCallbacks,	
&publishRpc))	!=	error_code::ok)	{				//	Failed	to	start	
wire	publish	RPC				return	result;		}
		//	Send	the	initial	request	containing	the	wire	id.		
tdx::volt_api::volt::v1::PublishRequest	startReq;		
startReq.set_wire_id("@demo-wire");		publishRpc-
>send(startReq);

Skip	to	Content

file:///Users/tobyealden/code/pdf-docs/api/wire_api.html#PublishWire
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html#article
file:///Users/tobyealden/code/index.html


tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Execute	SQL

api
The	SqliteDatabaseAPI.Execute	API 	enables	clients	to	execute	SQL	against	databases.

cli
Use	the	db	command.

./volt	db	--help

Terminal	window

To	execute	a	statement	against	a	database	resource	with	alias	 db-demo:

./volt	db	@db-demo	"select	*	from	tcpdump	limit	10"

Terminal	window

You	can	also	write	to	the	database	if	you	have	the	appropriate	permissions:

./volt	db	@db-demo	"create	table	foobar	(id	integer	primary	
key,	key	text,	value	text)"

Terminal	window

./volt	db	@db-demo	"insert	into	foobar	(key,value)	values	
('hello','world')"

Terminal	window

./volt	db	@db-demo	"select	*	from	foobar"

Terminal	window

file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html#Execute


fusebox
The	fusebox	has	a	built-in	SQL	terminal.	Select	the	database	resource	and	then	click	the	
view	button	on	the	toolbar.

javascript

grpc

The	following	example	runs	an	SQL	SELECT	statement	against	a	database	resource	with
alias	db-demo.	It	assumes	the	client	configuration	is	stored	in	the	 volt.config.json	file	in
the	current	working	directory.

import	grpc	from	"@grpc/grpc-js";import	{	VoltClient	}	from	
"@tdxvolt/volt-client-grpc";
const	client	=	new	VoltClient(grpc);
const	configPath	=	"./volt.config.json";
client		.initialise(configPath)		.then(()	=>	{				return	
client						.SqlExecuteJSON({								database_id:	"@db-
demo",								statement:	"select	*	from	tcpdump	limit	10",						
})						.then((response)	=>	{								
console.log(JSON.stringify(response,	null,	2));						});		})		
.catch((err)	=>	{				console.error("failure	in	database-
execute	[%s]",	err.message);		});

web

The	following	example	runs	a	parameterised	query	against	the	resource	with	alias	 @query-
example,	substituting	the	value	%cage%	into	the	first	parameter.	It	assumes	the	configuration
is	store	in	localStorage.

import	{	VoltClient	}	from	"@tdxvolt/volt-client-web";
const	configJSON	=	localStorage.getItem("config");const	
config	=	JSON.parse(configJSON);
const	client	=	new	VoltClient(WebSocket,	config);
client		.initialise()		.then(()	=>	{				return	
client.SqlExecuteJSON({						database_id:	"@query-example",						
parameter:	[{	string:	"%cage%"	}],				});		})		.then((rows)	
=>	{				console.log(JSON.stringify(rows,	null,	2));		})		
.catch((err)	=>	{				console.log("failure	[%s]",	
err.message);		})		.finally(()	=>	{				
console.log("finished");				client.close();		});

C++
		volt_client::SqliteDatabaseExecuteCallbacks	
executeCallbacks_;		
volt_client::SqliteDatabaseExecuteClient*	executeRpc_	=	
nullptr;
		tdx::volt_api::data::v1::SqlExecuteRequest	req;		
req.set_database_id(resource_.id());		
req.set_statement("select	*	from	fs20Actuator");		
req.set_page_size(100);
		executeCallbacks_.onResponse	=						[this]
(tdx::volt_api::data::v1::SqlExecuteResponse	const&	
response)	{								//	Handle	response	here.						};
		executeCallbacks_.onEnd	=	[this](bool	serverSide)	{				if	
(serverSide)	{						//	The	server	ended	the	execution	rpc	-	
this	means	it	has	no	more	data	to						//	send	(i.e.	the	
cursor	is	at	then	end).				}		};
		executeCallbacks_.onError	=	[this](std::string	err)	{				
//	Handle	errors	here.		};
		if	((result	=	api_->executeDatabase(req,	
executeCallbacks_,	&executeRpc_))	!=	error_code::ok)	{				//	
Handle	failure	starting	call.		}



Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Create	a	Volt
A	tdx	Volt	can	be	created	using	either	the	command-line	interface	(CLI)	or	the	 fusebox.

cli
Use	the	create	cli	command:

./volt	create	--help

Terminal	window

The	most	simple	way	to	create	a	 tdx	Volt	from	the	command	line	is	shown	below.

In	this	example,	the	 tdx	Volt	will	be	created	in	the	default	Battery,	with	no	password
protection	or	encryption	on	either	the	Battery	storage	or	the	tdx	Volt	itself.

./volt	create	"Alice's	laptop"

Terminal	window

Using	a	YubiKey	Hardware	Security	Module	(HSM)

Use	the	hardware	key	strategy	to	create	a	 tdx	Volt	that	uses	a	YubiKey	HSM	to	store	the	root
key.

The	-k	switch	specifies	the	PKCS#11	engine	type,	module	path	and	slot	number	that
identifies	the	YubiKey	HSM.

The	-k	switch	takes	the	form	of	a	semicolon-separated	string	with	the	following	format:

<engine	id>;<module	path>;<slot	number>

For	example:

file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


pkcs11;/opt/homebrew/Cellar/opensc/0.24.0/lib/opensc-
pkcs11.so;01

You	will	need	to	adjust	the	path	to	the	 opensc-pkcs11.so	library	to	match	your	installation.

An	example	command	line	to	create	a	 tdx	Volt	using	a	YubiKey	HSM	on	macOS	that	has
installed	the	OpenSC	software	using	Homebrew	is	shown	below.	Here	we	are	using	the
default	PIN	for	the	YubiKey	HSM,	you	should	change	this	to	your	own	PIN	using	the	-p
switch.

./volt	create	"Alice"	-s	hardware	-k	
"pkcs11;/opt/homebrew/Cellar/opensc/0.24.0/lib/opensc-
pkcs11.so;01"	-p	123456

Terminal	window

See	the	PKCS#11	reference	for	more	information	about	configuring	the	 tdx	Volt	to	use	a
PKCS#11	HSM.

Using	an	encrypted	root	key

Use	the	p	switch	to	specify	a	password	that	will	be	used	to	encrypt	the	 tdx	Volt	storage.

By	default,	the	tdx	Volt	will	auto-generate	a	new	key	at	creation	and	encrypt	it	with	the	given
password.	The	tdx	Volt	will	not	store	the	password	so	you	must	remember	it.

./volt	create	"Alice's	laptop"	-p	secret

Terminal	window

Use	a	period	.	to	force	the	CLI	to	prompt	for	the	password	rather	than	include	it	explicitly	in
the	command	line.

./volt	create	"Alice's	laptop"	-p	.>	enter	Volt	passphrase:	
_

Terminal	window

There	is	currently	no	way	to	recover	or	reset	the	**tdx	Volt**	password	so	if	you	lose	it	you
will	not	be	able	to	access	the	Volt.

Using	a	file-based	key

By	default	the	tdx	Volt	key	is	stored	with	the	 tdx	Volt	configuration.	If	the	Battery	and	 tdx
Volt	itself	are	encrypted	this	is	a	fairly	safe	option.

Alternatively	you	can	create	a	 tdx	Volt	using	a	key	stored	on	the	local	file	system.

./volt	create	"Alice's	laptop"	-k	/path/to/key/file

Terminal	window

If	/path/to/key/file	does	not	exist	it	will	be	created.

If	the	key	is	encrypted	(recommended)	you	can	specify	or	prompt	for	the	password	using	the	
p	switch	as	described	above.

./volt	create	"Alice's	laptop"	-k	/path/to/key/file	-p	.

Terminal	window

It's	possible	to	use	this	option	to	create	a	**tdx	Volt**	using	a	key	stored	on	an	encrypted
USB	stick	for	example.	Of	course	the	key	file	must	be	available	to	the	**tdx	Volt**	when	it	is
started.

Create	a	tdx	Volt	using	a	fixed	host

By	default	when	a	tdx	Volt	is	created	its	certificate	is	bound	to	the	current	(or	first)	ipv4
network	interface	address.	If	you	would	like	to	bind	a	tdx	Volt	to	a	specific	IP	address	or
domain	name	use	the	host	and	port	command	line	switches.

file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


./volt	create	"Alice's	server"	--host	aliceserver.com	--port	
40725

Terminal	window

Create	a	tdx	Volt	with	a	Relay

Use	the	relay-address	and	relay-challenge	switches	to	create	a	 tdx	Volt	with	a	pre-
configured	relay.	This	is	useful	in	scenarios	where	the	tdx	Volt	is	created	on	remote	devices,
as	it	enables	the	configuration	of	a	remote	connection	to	the	tdx	Volt	via	the	fusebox	to
complete	the	commissioning.

Note	that	you	almost	certainly	want	to	use	the	 -k	switch	to	specify	the	file	in	which	the	 tdx
Volt	key	will	be	written.	This	is	because	you	will	need	the	key	to	be	able	to	configure	the
remote	fusebox	connection.

./volt	create	--name	"Alice's	NAS"	-k	./alice.key	--relay-
address	https://tdxvolt.com	--relay-challenge	letmein

Terminal	window

When	the	tdx	Volt	is	first	run	it	will	create	and	configure	the	Relay	connection	and	issue	a
bind	request	to	the	Relay	Volt.	The	Relay	Volt	owner/administrator	may	need	to	approve	the
bind	request	before	the	binding	is	complete.

fusebox
Creating	a	tdx	Volt	using	the	fusebox	is	straightfoward.	Use	the	‘new	Volt’	button	on	the
slide-out	menu	panel:

Then	fill	out	the	form:

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html


Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon

file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html


Roadmap

Import	data

api
The	SqliteDatabaseAPI.ImportCSV	API 	enables	clients	to	import	CSV	file(s)	into	a	database.

cli
Coming	soon…

fusebox
Use	the	‘Import	from	file’	button	on	the	database	terminal	toolbar,	which	is	visible	when	you
select	a	database	in	the	fusebox	and	click	the	‘View’	button.

Alternatively,	you	can	drag	a	CSV	file	using	the	OS	file	manager	and	drop	it	onto	the	‘SQL
statement’	edit	field	at	the	bottom	of	the	SQL	Terminal	window	(below	the	import	button
highlighted	above).

javascript
Use	the	ImportCSV	API .

examples	coming	soon...

C++
examples	coming	soon...

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials

file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html#ImportCSV
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html#ImportCSV
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html


Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ

file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


Questions

Coming	soon
Roadmap

Download	file	or	folder

api
The	FileAPI.DownloadFile	API 	enables	a	file	to	be	downloaded	from	a	resource	on	the	 tdx
Volt	to	the	local	disk.

Both	the	fusebox	and	the	cli	make	use	of	this	endpoint	to	also	support	downloading	folders
or	entire	trees	of	files.

cli
Use	the	download	cli	command.

./volt	download	--help

Terminal	window

Download	a	file	or	folder:

./volt	download	./share/pictures	./shared-images

Terminal	window

fusebox
Use	the	‘download’	button	on	the	folder	toolbar.

javascript

grpc

const	response	=	await	client.DownloadFileSync({		
resource_id:	"@download-demo",});
console.log(Buffer.from(response.buffer,	
"base64").toString());

web

Use	the	DownloadFile	API 	to	stream	the	resource	contents,	writing	each	chunk	received	to
memory	or	local	disk.

let	contents	=	"";
const	rpc	=	voltApi.DownloadFile({	resource_id:	resource.id	
});
rpc.on("error",	(err)	=>	{		console.log("Error	downloading	
file:	"	+	err.message);});
rpc.on("data",	(payload)	=>	{		contents	+=	
atob(payload.block	||	"");});
rpc.on("end",	()	=>	{		console.log("download	finished");		
console.log(contents);});

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html#DownloadFile
file:///Users/tobyealden/code/pdf-docs/api/file_api.html#DownloadFile


C++
auto	result	=	voltApi->downloadFileSync("@download-demo",	
"c:/temp/download-demo",	cancelCB);

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html


Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Create	database

api
The	SqliteServerAPI.CreateDatabase	API 	enables	clients	to	create	databases.

cli
Coming	soon…

fusebox
Use	the	‘New’	button	on	the	folder	toolbar.

javascript
Use	the	CreateDatabase	API .

examples	coming	soon...

file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html#CreateDatabase
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html#CreateDatabase


C++
examples	coming	soon...

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html


Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Upload	file	or	folder

api
The	FileAPI.UploadFile	API 	enables	a	file	to	be	uploaded	from	the	local	disk	to	a	resource	on
the	Volt.

Both	the	fusebox	and	the	cli	make	use	of	this	endpoint	to	also	support	uploading	folders	or
entire	trees	of	files.

cli
Use	the	upload	cli	command:

./volt	upload	--help

Terminal	window

Upload	the	local	folder	~/Pictures	to	the	 tdx	Volt	./share/pictures	folder	resource.

./volt	upload	~/Pictures	./share/pictures

Terminal	window

file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html#UploadFile


fusebox
Use	the	‘upload’	button	on	the	folder	toolbar,	or	drag	and	drop	files	from	the	OS	native	file
explorer.

javascript
Open	the	file	and	read	it	in	chunks,	passing	each	chunk	to	the	 UploadFile	API .

examples	coming	soon...

C++
auto	result	=	voltApi->uploadFileSync(resourceId,	
sourceFile.toStdString(),	cancelCB);

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream

file:///Users/tobyealden/code/pdf-docs/api/file_api.html#UploadFile
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html


Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Protobuf	Data	Synchronisation
This	utility	provides	a	means	of	synchronising	arbitrary	protobuf	data	streams	to	multiple
SQLITE	databases.

The	basic	concept	is	that	the	app	monitors	a	configured	folder	for	incoming	files.

When	a	new	file	arrives,	the	process	inspects	the	file	to	determine	the	types	of	protobuf
message	it	contains	(see	file	format	details	below).

The	process	ingests	the	file	and	builds	SQL	 CREATE	TABLE	IF	NOT	EXISTS	and	INSERT

file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


statements	from	the	contents.

The	protoDbSync	ingestor	uses	reflection	to	translate	the	protobuf	definition	to	the	equivalent
SQL	schema	and	statements.

It	then	uses	the	 tdx	Volt	API	to	run	the	SQL	on	any	number	of	configured	remote	databases.
A	separate	sync	status	is	kept	for	each	target	database.

File	Format
The	file	format	used	is	essentially	the	de-facto	standard	for	protobuf	data,	which	is	the	 length-
prefixed	binary	format.	This	can	easily	be	generated	from	most	protobuf	client	library	auto-
generated	stubs,	for	example	encodeDelimited	in	Javascript	and	
SerializeDelimitedToOStream	in	C++.

Note	that	currently	only	basic	protobuf	 message	structures	are	supported	-	messages	with
sub-message	types	or	those	that	make	use	of	oneof	or	optional	are	not	currently
supported.

Most	of	the	time	you	will	not	need	to	manually	create	files	in	this	format,	you	can	use	the	 Volt
Logger	command	to	do	it	for	you.

Each	file	must	have	a	header	present	which	is	a	serialisation	of	a	
ProtobufSyncConfigurationHeader	message,	as	defined	here .	The	serialisation	of	the
header	must	include	a	length	prefix.

This	header	contains	a	configuration	entry	(an	instance	of	 ProtobufSyncConfiguration)	for
each	message	type	that	will	appear	in	the	file.

For	example,	consider	a	data	producer	that	is	creating	two	types	of	message,	tcp	packets	and
udp	packets,	which	are	defined	by	the	protobuf	message	types	TcpPacket	and	UdpPacket
respectively.	In	this	scenario	the	ProtobufSyncConfigurationHeader	will	contain	two	
ProtobufSyncConfiguration	instances,	the	first	describing	 TcpPacket	and	the	second
describing	UdpPacket.

Each	ProtobufSyncConfiguration	instance	contains	the	actual	protobuf	that	describes	the
data	type.	The	main	fields	of	the	header	are	message_proto,	which	is	the	protobuf	definition
of	the	target	messages	(as	a	string),	and	table_name,	which	is	the	name	of	the	table	into
which	the	data	should	be	inserted.	See	ProtobufSyncConfiguration	for	full	details.

As	well	as	the	header	format	described	above,	each	message	in	the	file	must	be	wrapped	in	a
ProtobufSyncWrapper	instance	and	serialised	to	the	file	using	a	length	prefix.

Logger	integration
The	tdx	Volt	CLI	has	a	 ‘logger’	command 	which	can	automatically	create	protoDbSync
compatible	files,	taking	input	from	STDIN	or	a	wire	subscription.

To	be	clear,	the	 tdx	Volt	Logger	will	blindly	write	whatever	data	is	on	STDIN,	splitting	the
input	into	multiple	files	of	a	configured	maximum	size	in	a	configured	folder.	It	makes	no
attempt	to	interpret	the	incoming	data.

If	a	header	is	given	as	part	of	the	 tdx	Volt	Logger	configuration	it	will	populate	and	write	a	
ProtobufSyncConfigurationHeader	message	to	the	start	of	each	file	it	creates.

In	order	to	create	files	that	are	compatible	with	the	 protoDbSync	utility,	data	producers	must
output	data	in	protobuf	binary	format	as	serialised	instances	of	the	ProtobufSyncWrapper
message	type.

The	idea	is	to	eliminate	the	need	for	the	producer	process	to	know	about	the	nitty-gritty	of	the
sync	file	format.

So	an	arbitrary	process	can	write	data	(in	protobuf	binary	format	for	the	database	sync
scenario)	to	STDIN,	and	the	Volt	Logger	will	create	protoDbSync	compatible	files	in	a
configured	folder	and	pipe	the	data	from	STDIN	into	them	up	to	a	configured	log	size.

See	the	‘logger’	command 	documentation	for	more	details.

https://developers.google.com/protocol-buffers/docs/encoding#length-types
file:///Users/tobyealden/code/pdf-docs/clients/cli.html#logger-command
file:///Users/tobyealden/code/pdf-docs/api/sync.html#tdx.volt_api.sync.v1.ProtobufSyncConfigurationHeader
file:///Users/tobyealden/code/pdf-docs/api/sync.html#tdx.volt_api.sync.v1.ProtobufSyncConfiguration
file:///Users/tobyealden/code/pdf-docs/api/sync.html#tdx.volt_api.sync.v1.ProtobufSyncConfiguration
file:///Users/tobyealden/code/pdf-docs/api/sync.html#tdx.volt_api.sync.v1.ProtobufSyncWrapper
file:///Users/tobyealden/code/pdf-docs/clients/cli.html#logger
file:///Users/tobyealden/code/pdf-docs/clients/cli.html#logger


Configuration
The	process	can	sync	to	multiple	remote	databases.	The	configuration	takes	the	form	of	a	list
of	target	Volt	configurations.	See	the	Appendix	for	a	full	working	example.

The	basic	structure	of	the	configuration	file	is	as	follows:

{		"extension":	"<file	extension>",		"rootFolder":	"<folder	
to	watch>",		"targets":	{				"<target-database-id-1>":	
{<volt	connection	object>}				"<target-database-id-2>":	
{<volt	connection	object>}				...				"<target-database-id-
n>":	{<volt	connection	object>}		}}

The	configuration	is	made	up	of	following	properties:

extension	-	optional	file	extension	to	match	when	watching	for	incoming	data	( pdat	is
the	default)
rootFolder	-	the	folder	the	process	will	watch	for	incoming	files.
targets	-	the	list	of	target	database	configurations,	each	entry	defines	the	 tdx	Volt
connection	details.
target-database-id	-	this	is	the	id	of	the	target	database	resource	( 12439d48-4c0a-
4417-822a-e3db70a9d4d4	in	the	example	below),	and	contains	the	details	of	the	 tdx
Volt	on	which	the	database	is	hosted.	This	is	essentially	the	 normal	tdx	Volt	client
configuration	data,	optionally	with	the	addition	of	the	 sync	property.
sync	-	optional	configuration	for	the	sync	process.
sync.fullInitialSync	-	the	process	will	send	 all	the	data	it	has	seen	when	it	first
encounters	a	new	database	configuration.	The	default	is	‘true’.

The	example	below	shows	a	configuration	file	for	a	single	 tdx	Volt	target,	namely	resource	
12439d48-4c0a-4417-822a-e3db70a9d4d4	on	Volt	Local	RPi:

{		"extension":	"pdat",		"rootFolder":	
"/home/pi/dev/tdxvolt/tdxvolt-core/release/bin/fs20logs",		
"targets":	{				"12439d48-4c0a-4417-822a-e3db70a9d4d4":	{						
"client_name":	"RPi	proto	db	sync",						"credential":	{								
"key":	"<--REDACTED-->"						},						"volt":	{								
"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDnDCCAoSgAwIBAgIECZZpTjANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRhYjBkNWM2ZS0yMzdhLTQ1YTUtOWMyNy0yMTVkZmQ2ZGEw\nYjAwHhcNMjExMTI5MTg1NjAxWhcNMjIxMTI5MTg1NjAyWjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRhYjBkNWM2ZS0yMzdhLTQ1YTUtOWMyNy0yMTVkZmQ2ZGEw\nYjAwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCfoMpIBSt0kKFFU98S\n/28moM8dLsVlUl0lvuwjw7zHxdEYTqr+ZEuSmDFXARBTdww7bL50TKzSPcPljSW/\nA7uOf29B+OqPtQZQwzOWJ847yyRPSwLgyEgkiUX8lMYH001oriQAVw85RE/FjE+J\nGvRrP988LPpyZltg6P/3ofqiiDlmZ67MikZ0YuqZmbkZj4wH0OnTg1+SIE3coORa\npqd+cEeN7xlzgX98pLTs8bl8W9nd//IkWYiLiw3CTZHr14rg38K+GufJZVyG8R0v\nGwSNuGet/vGN+PZpSoL4GmKmKWfcActkUpJ9IKPpXNde5Evnh+hmtf+0JSoLiAp2\nMP8HAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0G\nA1UdDgQWBBTTWm6z1B197MQEm14StUwrHDK1jzANBgkqhkiG9w0BAQsFAAOCAQEA\nfCsHqtU7r0HAsfSdGbfWASnFgUVWi3dB/pewrPqKNTDflijRN2LdlOg1G22tCPYm\nGG7HuMjaostuHNMJ2gBz1N0Ssptz2+veGvdt5M9gErPiNJoK1zJyPADW7mplbe3G\n97S1nv210erAfnXfriwjbiPw5edlpkMdv16V0QxWowIZytmpdHSiq8xX4S90LBMc\nmym9CVFQcwbtPhFg+vcbErtL4C/nE9TAhyG75j+mO1gZzumrrtGuC3CdVKKM+9+g\nQvFsmW9xXEj0lf4RHVibYBlE6Ur1me3BsxaemFIwYPTLOn+MNugJD29BtaHiRtUB\nBA2tApMqeE7CnnBobxmnWA==\n
-----END	CERTIFICATE-----\n",								"id":	"ab0d5c6e-237a-
45a5-9c27-215dfd6da0b0"						},						"relay_url":	
"https://tdxvolt.com",						"sync":	{								
"fullInitialSync":	true						}				}		}}

Sync	algorithm
Possibly	‘sync’	is	a	misnomer	as	currently	it	is	essentially	a	one-way	upload.	The	main
objective	is	to	only	send	any	given	data	file	once.

It	does	this	using	a	set	of	sub-folders	that	are	dynamically	created	and	managed	off	of	the	
rootFolder	property,	an	example	of	which	is	shown	below.

.├──	fs20logs│			├──	12439d48-4c0a-4417-822a-e3db70a9d4d4│			
│			├──	sync-2021-12-10T06:31:27.724Z.pdat│			│			├──	
archive│			│			│			├──	sync-2021-12-01T14:06:38.421Z.pdat│			
│			│			├──	sync-2021-12-01T14:30:30.498Z.pdat│			│			│			
└──	sync-2021-12-01T18:22:59.301Z.pdat│			│			├──	duplicate│			
│			└──	error│			├──	archive│			│			├──	sync-2021-12-
01T14:06:38.421Z.pdat│			│			├──	sync-2021-12-
01T14:30:30.498Z.pdat│			│			└──	sync-2021-12-
01T18:22:59.301Z.pdat│			├──	sync-2021-12-
10T06:31:27.724Z.pdat│			└──	sync-2021-12-
10T06:47:57.196Z.pdat.lock

For	example,	considering	the	above	example	configuration	file,	the	following	directory
structure	is	used:

fs20logs	-	the	root	folder,	which	is	essentially	the	‘pending’	folder	-	incoming	data	should
be	placed	here
12439d48-4c0a-4417-822a-e3db70a9d4d4	-	the	target-specific	‘pending’	folder,	a	sub-

file:///Users/tobyealden/code/pdf-docs/reference/connection.html


folder	like	this	will	be	created	for	each	target	configured.	When	a	new	file	arrives	in	the
root	folder,	it	is	copied	into	this	folder	for	each	target	configured.
archive	-	the	files	that	are	successfully	processed	are	moved	here.	Each	target	also	has	an
‘archive’	folder	to	keep	track	of	the	sync	status	of	that	target.
duplicate	-	any	new	file	that	already	exists	in	 archive	are	skipped	and	moved	here
error	-	any	files	that	fail	to	transmit	are	moved	here

The	process	that	is	creating	the	data	(producer)	should	only	place	a	file	matching	the	pattern
in	the	root	folder	when	it	is	complete	and	ready	for	transmission.	The	example	producer
achieves	this	by	writing	to	a	<timestamp>.pdat.lock	file,	and	then	renames	the	file	to
remove	the	.lock	when	it	has	reached	the	desired	size.	If	you’re	using	the	 Volt	logger
command	it	will	do	this	for	you.

File	size
The	particular	maximum	file	size	isn’t	mandated,	but	bear	in	mind	that	by	default	each	file	is
transmitted	as	a	single	GRPC	call	in	the	form	of	a	bulk	SQL	INSERT	statement.	There
doesn’t	seem	to	be	any	hard	data	on	this,	but	it	seems	the	optimal	protobuf	message	size	is
around	64	kB,	although	I’ve	used	1	MB	without	any	apparent	issues.

Appendix

Configuration	file	example

This	example	shows	a	sync	to	3	databases	on	3	different	Volts.

{		"extension":	"pdat",		"rootFolder":	
"/home/pi/dev/tdxvolt/tdxvolt-core/release/bin/fs20logs",		
"targets":	{				"05847828-799a-4cc5-975b-03f2908d1443":	{						
"client_name":	"protoDbSync",						"credential":	{								
"cert":	"-----BEGIN	CERTIFICATE-----
\nMIIDWDCCAkCgAwIBAgIERpkVdzANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRmODI5NzE4MC1iY2NkLTRjNDktYjRlNS0wY2I0ZTU3Mzhk\nMTUwHhcNMjIwMTI2MTUwMDAzWhcNMjMwMTI2MTUwMDA0WjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRkZTVlMGQ4MC0yZWI4LTRlN2YtYTRkMC1kMDgwYTIwY2Vk\nZjUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDbXcT1Syhg4OpN6+kS\nGjvPN8Dq2ZuraMMmmK+8Kc/Efkwr7p83rS/brIyu6R8Hw4ZsQMOFJpa0IhrE2KfJ\nOIn4yLyOJng1ivk8YvE1BvddMoHhamf2OMAQgmKYgZVhLdhA6iJu64gDy//ktrNF\nT3Dt8fOWG6rFtYRtA/SUL+9csIxUW3cSUnQ+BknmrYW2+EeS4GPkVKrVAozIz778\n/d+ceBRItR2p8iC0N3u/VGd3+jwBjjCq3Z1qqzyRzKPHiV7HmmvfrvzBnYqheP13\nolq4OccbJpBTvjQQcb7gXSTVqaGxcGStzYB+8ioGLKpUfBy58xf2odz+lFSsM6vP\nRLIFAgMBAAEwDQYJKoZIhvcNAQELBQADggEBAHfD9br8Bi8ZYOq1AGzqwi1DLEmF\nut4RMK9vlssqHyWNsctoEQPJsABXFm37glOvxp5xAxNjE+KkoURjPG+W8PsxgLi6\nO7/TFLkCQ4TESDzzKG+r8+vRF4kqa5UBHv1SBdN1UhCRALFxvgE5JGWOOPA9ivkY\nbhtn22Bfcf6ECm4r+glLoPXs2r16/Ux1qHCQ1frjoM/+IdVFGlBKouVxGw656DGz\niTq4adABfPOEj/ENdzfNsslDCgtEtS6DTZxNsH29bJoSzxXobht04JwaYtqijRx9\nOkMx1sodN+SoaVV0yYFqf3V64WBWoHGLuQzFnQpGb2VfoZlCNYi355Pe92k=\n
-----END	CERTIFICATE-----\n",								"client_id":	"de5e0d80-
2eb8-4e7f-a4d0-d080a20cedf5",								"key":	"<--REDACTED-->"						
},						"sync":	{								"fullInitialSync":	true						},						
"volt":	{								"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDnDCCAoSgAwIBAgIEdxBiBjANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRmODI5NzE4MC1iY2NkLTRjNDktYjRlNS0wY2I0ZTU3Mzhk\nMTUwHhcNMjIwMTI2MTQ0NTAwWhcNMjMwMTI2MTQ0NTAxWjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRmODI5NzE4MC1iY2NkLTRjNDktYjRlNS0wY2I0ZTU3Mzhk\nMTUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCfoMpIBSt0kKFFU98S\n/28moM8dLsVlUl0lvuwjw7zHxdEYTqr+ZEuSmDFXARBTdww7bL50TKzSPcPljSW/\nA7uOf29B+OqPtQZQwzOWJ847yyRPSwLgyEgkiUX8lMYH001oriQAVw85RE/FjE+J\nGvRrP988LPpyZltg6P/3ofqiiDlmZ67MikZ0YuqZmbkZj4wH0OnTg1+SIE3coORa\npqd+cEeN7xlzgX98pLTs8bl8W9nd//IkWYiLiw3CTZHr14rg38K+GufJZVyG8R0v\nGwSNuGet/vGN+PZpSoL4GmKmKWfcActkUpJ9IKPpXNde5Evnh+hmtf+0JSoLiAp2\nMP8HAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0G\nA1UdDgQWBBTTWm6z1B197MQEm14StUwrHDK1jzANBgkqhkiG9w0BAQsFAAOCAQEA\ncxKQxsCuYlCEm1FgZUgYZ75abPDeyTliD73FwMtktpwtYMqaoMiSaEbuuUZiYjkq\nes+uOA9HNhuAfny/ufhqWp/Hlf1KnLVplEEIoP9l67wXg+/qGMsDehMDcxsALh13\nzvT4a6sSbhFPP/SZ43rumhEA2ZVZMYlBpW937KHhw7aa9j517uR7rOq64aOLjPWf\nsl4xmjNME4e/gYRGoh8RpWQbBnq7Fsrnxc7KDzX6PyRLHSoPmTARC0wchJ42Y4dY\n6k3XrQrccfAd0SvrU/xAUOFLh0tShH1eEBzold7wRPYwTzibeDzU74BoBVRIyxaW\nUiY/O+n407iUSlav95yVTA==\n
-----END	CERTIFICATE-----\n",								"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI=",								"id":	
"f8297180-bccd-4c49-b4e5-0cb4e5738d15",								"address":	
"192.168.1.178:33325"						}				},				"6fd1f237-681c-4b58-
8d10-39238ac82db2":	{						"client_name":	"ProtoDbSync",						
"credential":	{								"cert":	"-----BEGIN	CERTIFICATE-----
\nMIIDWDCCAkCgAwIBAgIEUNJ8szANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ2ZmEyZGQ2Yi0wMmZhLTQ3ZGUtYjQ4OC1kYTJkODEzOWNl\nNGMwHhcNMjIwMTI2MTUxMjQ1WhcNMjMwMTI2MTUxMjQ2WjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRiNWRkY2ExOS0xZGIzLTRhZWItYWYzNy0yZDA1OTg2YmJi\nZTkwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDbXcT1Syhg4OpN6+kS\nGjvPN8Dq2ZuraMMmmK+8Kc/Efkwr7p83rS/brIyu6R8Hw4ZsQMOFJpa0IhrE2KfJ\nOIn4yLyOJng1ivk8YvE1BvddMoHhamf2OMAQgmKYgZVhLdhA6iJu64gDy//ktrNF\nT3Dt8fOWG6rFtYRtA/SUL+9csIxUW3cSUnQ+BknmrYW2+EeS4GPkVKrVAozIz778\n/d+ceBRItR2p8iC0N3u/VGd3+jwBjjCq3Z1qqzyRzKPHiV7HmmvfrvzBnYqheP13\nolq4OccbJpBTvjQQcb7gXSTVqaGxcGStzYB+8ioGLKpUfBy58xf2odz+lFSsM6vP\nRLIFAgMBAAEwDQYJKoZIhvcNAQELBQADggEBAGcTyC5Li4sZAeT1F2MLEPrPtZ9S\nSAzADemAbbuyGPQ6+MzBlf3TPPZFG4MicN3g9V0lZzfGPOAdCnXeXQtaMlNDlQua\nwnH94b7sUhZVbmxZ1exX3aHphVTU3ZndhrmRYdRv9UK8PkbL/H8mk07rfUDLo3Nq\nuQycooux3iShd/Hw0kDYVmEaf+nX9WGEpTiuGuIxlsRVj2PLp0G+1pRt0RALV+hj\nvqnyoiYI6BX86hu/Gk1zcxwkWof/RcCbzhyqzbqWzWsjej2bVJE1+LM5PbzXZR2o\nYxrTN6AXcje4T5+WSPD6fD/RWYUAdsj1PvfuFWCGTCEpOx6LEC7hdAiV7rM=\n
-----END	CERTIFICATE-----\n",								"client_id":	"b5ddca19-
1db3-4aeb-af37-2d05986bbbe9",								"key":	"<--REDACTED-->"						
},						"sync":	{								"fullInitialSync":	true						},						
"volt":	{								"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDnDCCAoSgAwIBAgIET8kUKTANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ2ZmEyZGQ2Yi0wMmZhLTQ3ZGUtYjQ4OC1kYTJkODEzOWNl\nNGMwHhcNMjIwMTEwMTU1ODMxWhcNMjMwMTEwMTU1ODMyWjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ2ZmEyZGQ2Yi0wMmZhLTQ3ZGUtYjQ4OC1kYTJkODEzOWNl\nNGMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC9+iq3yX4JLs/D/tWF\nlhfdz75l5j46KVBkidBKR7K7I7PjVckcsHfA9ifBrohLlHxpVpvKrw4q8xuxAXaC\nAN92kwbjQW1f8cuRrUrKiFAwEiJGm4/aDiRCScrwPSAWRUtxAuPPbIqmbPVAuTt1\nZ1xO4Q0O8DWhDRVo2gwccjILo1NC4ak1AfG50cZ7GX9MpxUQ6GCLNJg1QGh9sxKz\nBY6fxDPYVzIWU7ZNPw799VqFb8PPhsdPXHMozkbIxM9zfUwLCUbOpdM/AuiSgtZj\nBFb9tUn5p+cvIowKpyqG735Crr1WcNH/i2YoXIpCqm18R2GHbVIOz4IvpjiPARq+\nXp0TAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0G\nA1UdDgQWBBQYR+nfRdzG5rIdq2bYkZzVzm1ImDANBgkqhkiG9w0BAQsFAAOCAQEA\nu91BCHx0RrBpweP61Q69CefI0xv+yDXz3nDKhkwHbjR9Bp7+6fF5nwp5X0xbFFED\nCt4/JEGZlDf/kAG7WhU8coJc+gufzQuFbwGimNKIWNd6M683Hbp3wtPd2msPVtn9\nlDf/8CarU5+BrYOeTKnjU9CCgHJthxaz/L+S21Y+lu4NSPzKFqRujT9CLhgTQ7pY\nJZ2TJ73QnWuCiG5zLl9lRbHJKTwfOJZsNR0lzHJmhMcFy2J61+iQ8Z5Qt//53F8e\narYP2qxNGev1AIhoRBOboCWOTuWmU4rkHkxBwGJWqVV1SuaNSjYW94omEUonk+bb\nhP3eCDv28hw9UlFveF4Ocw==\n
-----END	CERTIFICATE-----\n",								"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI=",								"id":	
"6fa2dd6b-02fa-47de-b488-da2d8139ce4c",								"address":	
"tdxvolt.com:40725"						}				},				"f3a968df-58c2-44d7-b39c-
97a5fa78ba90":	{						"client_name":	"ProtoDbSync",						
"credential":	{								"cert":	"-----BEGIN	CERTIFICATE-----
\nMIIDWDCCAkCgAwIBAgIEL7VkHjANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ3ODI2Mzc2NS03MzBiLTQ1MTQtOGZkOS0xYzc2MmViODFh\nYTIwHhcNMjIwMTI2MTUyMjUzWhcNMjMwMTI2MTUyMjU0WjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCRlMWFmYzIwYi0yYmE3LTQxMDMtOGYzNS0yNmMzY2RjNTFi\nY2UwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDbXcT1Syhg4OpN6+kS\nGjvPN8Dq2ZuraMMmmK+8Kc/Efkwr7p83rS/brIyu6R8Hw4ZsQMOFJpa0IhrE2KfJ\nOIn4yLyOJng1ivk8YvE1BvddMoHhamf2OMAQgmKYgZVhLdhA6iJu64gDy//ktrNF\nT3Dt8fOWG6rFtYRtA/SUL+9csIxUW3cSUnQ+BknmrYW2+EeS4GPkVKrVAozIz778\n/d+ceBRItR2p8iC0N3u/VGd3+jwBjjCq3Z1qqzyRzKPHiV7HmmvfrvzBnYqheP13\nolq4OccbJpBTvjQQcb7gXSTVqaGxcGStzYB+8ioGLKpUfBy58xf2odz+lFSsM6vP\nRLIFAgMBAAEwDQYJKoZIhvcNAQELBQADggEBAEeVgRvcOFfK+f8/IsPN/gX3nMfW\nKsh9BKTCYJR/66b1goRJljXN7cT1zbwxOq2qpDvWhpj8cjMJGbrhE0+OaRe4EThN\nDTBOJ9FgloLqaNpqHAHcmHj/sEdwshogWxxfJk1K0ynpRQjY8zGcATTza7SNdFxO\n3+WFqhn9LcniatP+lcFAqjrKBXCfnFNGi9cALx5UV/WFdLZ1GuA0p/nAymNuARqj\nq8TXah7BqH5YADafsjwOmp/QIC86wtI2yRIn9iTZW4WmeCEQo6gUXWnZ0dpSNORa\nQ1BODiDAlbx7UBz470mAfU5X2Ck/y/mBzJB07r6s8WHTI85CeoGfHOVnfaM=\n
-----END	CERTIFICATE-----\n",								"client_id":	"e1afc20b-
2ba7-4103-8f35-26c3cdc51bce",								"key":	"<--REDACTED-->"						
},						"sync":	{								"fullInitialSync":	true						},						
"volt":	{								"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDnDCCAoSgAwIBAgIELyHuBTANBgkqhkiG9w0BAQsFADBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ3ODI2Mzc2NS03MzBiLTQ1MTQtOGZkOS0xYzc2MmViODFh\nYTIwHhcNMjIwMTI2MTUxMzE4WhcNMjMwMTI2MTUxMzE5WjBuMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMS0wKwYDVQQDDCQ3ODI2Mzc2NS03MzBiLTQ1MTQtOGZkOS0xYzc2MmViODFh\nYTIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC9F99FlMUxTaso+R11\nhP28bT4t9Q3aJFVU/5tpRz6zqD1ocxYs/URaER74iwjK7Z0DHuwpXm9jNOD4t2ef\nOsZ5Vq9iBQcqZCRZ3T6s6Em78ag3OQ2l3VVFBcKh8U4zZqFU2QAHtFHHXH3F3CbX\nuGhweiS6AQ4R479GGVJuoK9+rMQ9YLBG33hmb/XxMMR52i2xkQPa2sX+xGKnsPEY\n1T6vneRTVXHBQHxcScSfOk2fEi3/LX+rkbMTHRScbp7onWmwhc5VtpMpuYuiywxv\nm4TFiSeTJDvk3I1ujgQtcRRJ4ugZNppgh2wBxd8n0/CacC8ssfGtUm20NOdH+OIr\nRuEjAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0G\nA1UdDgQWBBRpwpS3YxFTyBXkloz8ryBT5dZ3tzANBgkqhkiG9w0BAQsFAAOCAQEA\nAHUuXJPTqucD4J099M1kqZZn/j5dQn3BfTooeFRqIljT0TXKaNMpBLt5qmfOrKUw\nXR/e7YhaMsHBrHGSwe4drIz/KwmfV1kstWUZbMbF5UQVbyM/vfMlia0CSki9Vy7G\nilA1OxztHMLbV/ToZkbtpBfWZJuXYM8fvA5T929IVr004J1fDot0KeQWxa/eaRVh\nv6OoTfUJnF6QzD5QvS0ZPy9oWiI0LQ4r762MihqtiEwEZ/mcqbvFNnWrsrs37NvL\nbtmQLwgEnnvzYyPA1koHE3rNIPhCjaOZQF08yC5Gjsrccwx+xOubBaXmALBMV457\nnMJq05nWZLkW9irryuIsRw==\n
-----END	CERTIFICATE-----\n",								"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI=",								"id":	
"78263765-730b-4514-8fd9-1c762eb81aa2",								"address":	
"192.168.1.69:59969"						}				}		}}

Skip	to	Content

file:///Users/tobyealden/code/pdf-docs/clients/cli.html#logger-command
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite-server.html#article


tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Stand-alone	SQLite	server
The	tdx	Volt	has	built-in	support	for	arbitrary	Sqlite	databases	via	the	 SqliteServerAPI	and
SqliteDatabaseAPI	APIs.

This	utility	provides	the	same	implementation	as	the	built-in	support	in	a	stand-alone
executable.

This	demonstrates	how	a	3rd	party	could	provide	a	database	implementation	to	all	 tdx	Volt
clients,	either	in	the	form	of	an	augmented	Sqlite	implementation,	or	perhaps	an
implementation	of	a	completely	different	database.

Since	the	`sqliteServer`	binary	implements	the	 SqliteServerAPI	and	SqliteDatabaseAPI
APIs,	it	is	interchangeable	with	the	built-in	support	in	any	scenario.

Usage
The	sqliteServer	connects	to	the	 tdx	Volt	like	any	other	client.	In	order	to	connect	you
will	need	a	tdx	Volt	configuration,	as	outlined	here .	Assuming	you	have	a	configuration	in	a
file	called	db.config.json	for	example,	you	can	then	run	the	 sqliteServer	using:

./sqliteServer	--config	./db.config.json

Terminal	window

When	the	server	first	starts,	it	will	create	a	resource	on	the	 tdx	Volt	that	represents	it’s
internal	grpc	server,	and	registers	that	as	a	service	with	the	tdx	Volt.

Clients	can	then	use	 DiscoverServices	to	obtain	the	details	of	all	running	SqliteServers	and
choose	which	one	to	connect	to.

In	order	for	the	standalone	server	to	be	able	to	create	databases	in	any	given	folder,	it	will
need	`create	in`	permission	on	that	folder,	which	you	can	assign	via	the	fusebox.

file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#DiscoverServices


Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire-transform.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html


API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Wire	Transform
The	wireTransform	utility	is	a	demonstration	of	a	generic	wire	‘transform’	concept,	in
which	the	input	is	taken	from	a	wire	subscription,	transformed	into	a	different	format,	and
either	published	onto	a	different	wire,	or	written	to	STDOUT.

Note	that	the	source	and	target	wires	can	be	located	on	different	Volts	and	located	anywhere
on	the	internet.

Currently	the	only	supported	transform	is	from	 tcpdump	text	output	to	a	protobuf	format
matching	the	definition	below,	and	wrapped	in	a	ProtobufSyncWrapper	message	suitable	for
input	in	to	the	protoDbSync	utility.

syntax	=	"proto3";
package	tranforms;
message	TCPDumpPacket	{		string	timestamp	=	1;		string	
source_mac_address	=	2;		string	source_manufacturer_id	=	3;		
bool	is_broadcast	=	4;		bool	is_arp	=	5;		string	
target_mac_address	=	6;		string	target_manufacturer_id	=	7;		
string	ether_type	=	8;		string	unknown_1	=	9;		int32	length	
=	10;		string	source_address	=	11;		string	target_address	=	
12;		string	payload	=	13;}

Usage
Begin	by	dumping	the	tcpdump	command	output	to	a	wire:

tcpdump	<filter>	|	volt	wire	-w	@tcpdump-text

Terminal	window

The	wireTransform	utility	is	then	used	(potentially	on	a	different	machine	from	that
running	the	tcpdump	command)	to	transform	the	incoming	text	format	 tcpdump	output	(on
wire	@tcpdump-text)	into	a	binary	protobuf	format,	and	then	publish	this	transformed

file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html#tdx.volt_api.sync.v1.ProtobufSyncWrapper
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html


output	onto	the	@tcpdump-binary	wire:

./wireTransform	--source-config=source.config.json	-s	
@tcpdump-text	--target-config=target.config.json	-t	
@tcpdump-binary

Terminal	window

If	both	the	source	and	target	wires	are	on	the	same	Volt	you	can	omit	the	 --target-config
option.

To	write	the	transformed	output	to	 STDOUT	rather	than	another	wire,	simply	omit	the	 -t
switch:

./wireTransform	--source-config=source.config.json	-s	
@tcpdump-text

Terminal	window

The	format	of	the	configuration	files	is	a	plain	Volt	client	connection	format	 as	described
here.

protoDbSync	integration
The	wireTransform	utility	transforms	textual	tcpdump	data	into	a	format	compatible	with
the	protoDbSync	utility.

In	order	to	make	the	output	available	to	 protoDbSync,	use	the	 volt	logger	command.	In	the
example	below,	we	run	wireTransform	so	that	it	writes	the	transformed	data	to	 STDOUT,	and
then	redirect	that	output	into	the	volt	logger	command.

./wireTransform	--source-config=source.config.json	-s	
@tcpdump-text	|	./volt	logger	-c	tcpdump.logger.json

The	volt	logger	command	will	generate	the	appropriate	format	files	required	by	the	
protoDbSync	utility,	according	to	the	configuration	contained	in	the	
tcpdump.logger.json	file,	an	example	of	which	is	shown	below.

{		"logger":	{				"headerId":	"tcpdump-logger",				
"headers":	[						{								"messageName":	"TCPDumpPacket",								
"messageProto":	"syntax	=	\"proto3\";\n\npackage	
tranforms;\n\nmessage	TCPDumpPacket	{\n		string	timestamp	=	
1;\n		string	source_mac_address	=	2;\n		string	
source_manufacturer_id	=	3;\n		bool	is_broadcast	=	4;\n		
bool	is_arp	=	5;\n		string	target_mac_address	=	6;\n		string	
target_manufacturer_id	=	7;\n		string	ether_type	=	8;\n		
string	unknown_1	=	9;\n		int32	length	=	10;\n		string	
source_address	=	11;\n		string	target_address	=	12;\n		
string	payload	=	13;\n}\n",								"name":	"header0",								
"tableName":	"tcpdump"						}				],				"logFileExtension":	
"pdat",				"logFilePath":	"./logs",				"logFilePrefix":	
"tcpdump-log-",				"logFileSize":	64000		}}

See	the	protoDbSync	utility	for	more	details.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome

file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html#logger-command
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/quick-start.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html


Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html


Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Quick	Start
To	get	started	quickly,	use	the	section	below	that	corresponds	to	your	operating	system	to
download	the	tdx	Volt	installer,	then	follow	the	install	instructions.

Windows

Click	on	the	link	to	download	the	package.

Windows	(64bit)

Once	downloaded,	use	the	File	Explorer	to	locate	the	downloaded	file	named	 voltUp.exe,
and	then	double-click	on	it	and	follow	the	on-screen	instructions.

You	may	be	prompted	to	confirm	that	you	wish	to	run	an	application	from	an	unknown
publisher,	click	run	to	continue.

MacOS	-	M1,	M2,	M3

Click	on	the	link	to	download	the	package.

macOS	(Apple	Silicon)

Once	downloaded,	open	a	terminal	window	and	navigate	to	the	downloaded	file.

For	example,	if	you	downloaded	the	file	to	your	 Downloads	folder:

cd	~/Downloads

Terminal	window

It	is	necessary	to	change	some	of	the	package	attributes	to	allow	it	to	be	executed:

chmod	+x	./voltUp	&&	xattr	-d	com.apple.quarantine	./voltUp

Terminal	window

These	steps	are	necessary	because	the	package	isn't	currently	signed	with	an	Apple	developer
certificate.	This	will	be	fixed	in	an	upcoming	release.

You	can	then	run	the	installer	directly	from	the	terminal	and	follow	the	on-screen
instructions:

./voltUp

Terminal	window

MacOS	-	Intel

file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
https://release.tdxvolt.com/0.17/windows-x86_64/voltUp.exe
https://release.tdxvolt.com/0.17/macos-arm64/voltUp


Click	on	the	link	to	download	the	package.

macOS	(Intel)

Once	downloaded,	open	a	terminal	window	and	navigate	to	the	downloaded	file.

For	example,	if	you	downloaded	the	file	to	your	 Downloads	folder:

cd	~/Downloads

Terminal	window

It	is	necessary	to	change	some	of	the	package	attributes	to	allow	it	to	be	executed:

chmod	+x	./voltUp	&&	xattr	-d	com.apple.quarantine	./voltUp

Terminal	window

These	steps	are	necessary	because	the	package	isn't	currently	signed	with	an	Apple	developer
certificate.	This	will	be	fixed	in	an	upcoming	release.

You	can	then	run	the	installer	directly	from	the	terminal	and	follow	the	on-screen
instructions:

./voltUp

Terminal	window

Ubuntu

Click	on	the	link	to	download	the	package.

Ubuntu	(20.04	-	x86_64)

Ubuntu	(24.04	-	x86_64)

Ubuntu	(23.04	-	arm64)

Once	downloaded,	open	a	terminal	window	and	navigate	to	the	downloaded	file.

For	example,	if	you	downloaded	the	file	to	your	 Downloads	folder:

cd	~/Downloads

Terminal	window

It	is	necessary	to	change	some	of	the	package	attributes	to	allow	it	to	be	executed:

chmod	+x	./voltUp

Terminal	window

You	can	then	run	the	installer	directly	from	the	terminal	and	follow	the	on-screen
instructions:

./voltUp

Terminal	window

Android

Android	APK	Android

A	pre-release	version	of	a	 tdx	Volt	client	application	is	available	for	Android.	This	is	a	self-
contained	APK	that	must	be	side-loaded	onto	your	device.

This	is	a	pre-release	version	of	the	Android	client.	It	is	not	yet	available	on	the	Google	Play
store.

To	install	the	APK,	download	it	to	your	device	and	then	open	it	using	the	Android	package
installer.	You	may	need	to	enable	the	installation	of	apps	from	unknown	sources	in	your
device	settings.

https://release.tdxvolt.com/0.17/macos-x86_64/voltUp
https://release.tdxvolt.com/0.17/ubuntu-x86_64/voltUp
https://release.tdxvolt.com/0.17/ubuntu24-x86_64/voltUp
https://release.tdxvolt.com/0.17/ubuntu-arm64/voltUp
https://expo.dev/accounts/toby.ealden/projects/tdxvolt-dynamo/builds/8501624d-b425-4d33-8de0-85b537e1b228


SDK	packages

For	headless	systems	such	as	routers,	Raspberry	Pis	and	cloud	servers,	it	might	be	desirable	to
install	the	platform	without	using	a	GUI-based	installer.	In	this	case,	the	SDK	is	available	as	a
set	of	packages	that	can	be	installed	via	the	command	line.

See	the	links	below	for	the	available	packages:

Debian	arm64
MacOS	(Apple	silicon)
MacOS	(Intel)
Omnia	Turris
Raspberry	Pi	buster/32	bit
Ubuntu	20.04/x86_64
Ubuntu	24.04/x86_64
Ubuntu	23.04/arm64
Windows

With	the	exception	of	Windows,	the	SDK	is	currently	distributed	in	the	form	of	a	self-
extracting	archive.	To	install	the	SDK,	navigate	to	the	downloaded	file	in	a	terminal	and
execute	it,	then	follow	the	prompts.	Note	you	may	need	to	add	‘execute’	permissions	to	the
downloaded	file	in	order	to	be	able	to	run	it,	see	the	chmod	command	in	the	example	below.

The	Windows	installation	is	an	NSI	package.	To	install	it,	download	the	package	and	then
double-click	on	the	downloaded	file	and	follow	the	on-screen	instructions.

Use	the	--help	switch	to	see	the	full	instructions.	For	example,	assuming	the	downloaded
SDK	is	called	pi-buster.sh	and	is	in	the	folder	 ~/Downloads:

cd	~/Downloadschmod	+x	./pi-buster.sh./pi-buster.sh	--help

Terminal	window

Typically,	it	makes	sense	to	first	create	a	folder	to	receive	the	extracted	SDK,	and	then	run	the
extraction	using	the	--prefix	option:

mkdir	voltSDK./pi-buster.sh	--prefix=./voltSDK

Terminal	window

Run
There	are	two	tools	that	help	with	managing	and	interacting	with	a	 tdx	Volt.	The	most
straightforward	(and	recommended	for	beginners)	option	is	via	the	fusebox,	a	graphical	user
interface	(GUI).

The	alternative	is	using	the	 volt	command	line	interface	(CLI).	This	is	a	powerful	tool	that
can	operate	in	both	‘client’	and	‘server’	modes.	It	is	useful	when	peforming	tasks	at	the	script
level,	or	for	running	a	tdx	Volt	on	a	limited	resource	or	headless/embedded	device.

Both	of	the	above	binaries	are	located	in	the	installation	folder.

It	is	possible	to	run	a	 tdx	Volt	on	a	headless	device	using	the	command	line	(or	as	a	daemon)
and	connect	to	it	via	the	fusebox	from	another	machine	on	the	network	(similar	to	remote
desktop	applications).

fusebox

You	can	launch	the	 fusebox	from	the	command	line	or	using	the	usual	operating	system	file
explorer	or	finder.

Assuming	you	installed	the	 tdx	Volt	in	the	~/Downloads/volt	folder,	you	can	launch	the
fusebox	from	the	command	line	as	follows:

cd	~/Downloads/volt./fusebox

Terminal	window

If	you're	running	Ubuntu	18.04	you	may	see	an	error	about	`libstdc++6`	and	`GLIBCXX`.

https://release.tdxvolt.com/0.17/0.17-packs/debian-arm64.sh
https://release.tdxvolt.com/0.17/0.17-packs/macos-arm64.sh
https://release.tdxvolt.com/0.17/0.17-packs/macos-x86_64.sh
https://release.tdxvolt.com/0.17/0.17-packs/openwrt.sh
https://release.tdxvolt.com/0.17/0.17-packs/pi-buster.sh
https://release.tdxvolt.com/0.17/0.17-packs/ubuntu-x86_64.sh
https://release.tdxvolt.com/0.17/0.17-packs/ubuntu24-x86_64.sh
https://release.tdxvolt.com/0.17/0.17-packs/ubuntu-arm64.sh
https://release.tdxvolt.com/0.17/0.17-packs/windows-x86_64.exe


This	indicates	an	updated	version	of	`libstdc++6`	is	required.	You	can	install	this	using	the
command	below:

sudo	add-apt-repository	ppa:ubuntu-toolchain-r/test	&&	sudo	
apt	upgrade	libstdc++6

Terminal	window

When	the	fusebox	first	starts	it	will	prompt	for	you	to	create	and	confirm	a	password.

This	password	can	not	currently	be	recovered	or	reset.	Future	versions	may	provide	the
ability	to	pre-rotate	your	key.

After	creating	the	password,	you	can	go	ahead	and	create	your	first	 tdx	Volt	by	clicking	on
the	big	create	Volt	button:

Enter	a	name	for	the	Volt,	ignore	the	other	options	and	click	 create	(you	may	need	to	scroll
down	to	see	the	create	button):

You	have	now	created	your	first	 tdx	Volt	-	click	on	the	 tdx	Volt	in	the	left	column	to	navigate
to	the	tdx	Volt	browser.

Command	line

You	can	also	create	and	start	volts	using	the	command	line	tool.

Volts	created	and	run	via	the	command	line	are	fully	functional	in	the	same	way	as	those
created	via	the	fusebox.	However	there	are	currently	limited	management	options	exposed	by
the	command	line	interface.	The	options	available	will	be	increased	in	the	near	future.

show	CLI	create	options

Assuming	you	installed	the	 tdx	Volt	in	the	~/Downloads/volt	folder,	you	can	view	the
available	options	for	the	create	command	as	follows:

cd	~/Downloads/volt./volt	create	--help

Terminal	window

create	a	Volt

To	create	a	 tdx	Volt	from	the	command	line,	it’s	as	simple	as:

./volt	create	"Alice's	MacBook"

Terminal	window

It’s	advisable	to	specify	an	alias	when	creating	a	 tdx	Volt	from	the	command	line.	This	will
make	it	easier	to	refer	to	the	tdx	Volt	in	future	commands.

./volt	create	"Alice's	MacBook"	--alias	alice

Terminal	window

start	a	Volt

You	can	then	use	the	alias	to	start	the	 tdx	Volt:

./volt	run	@alice

Terminal	window



list	Volts

You	can	list	the	available	 tdx	Volts	on	the	system	using	the	 config	command:

./volt	config

Terminal	window

See	the	CLI	documentation	for	more	details	of	the	command	line	interface.

Next	steps
You	now	have	a	 tdx	Volt	running	on	your	machine.	You	can	use	the	 fusebox	to	manage	the
tdx	Volt	and	create	additional	 tdx	Volts.

Learn	about	uploading	files	to	your	 tdx	Volt	in	the	uploading	files	guide.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html


Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Wire
A	Wire	is	a	type	of	resource	that	enables	clients	to	publish	and	subscribe	to	opaque	streams	of
data.

Authentication	and	authorisation
Clients	wishing	to	publish	or	subscribe	to	a	wire	must	authenticate	with	the	 tdx	Volt	in	the
normal	way.

In	order	to	publish	to	a	wire,	the	authenticated	identity	will	require	 tdx:resource-publish
permission,	subscribing	to	a	wire	requires	the	tdx:resource-subscribe	permission.	These
permissions	can	be	set	from	the	fusebox	‘share’	panel.

file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html


Format	and	Transforms
By	default	the	wire	stream	is	raw	binary.	It	is	anticipated	that	clients	will	use	the	 resource
‘kind’	field	to	indicate	the	format	of	data	that	is	published	on	any	given	wire.	For	example,	a
wire	that	streams	an	FS20	feed	might	indicate	this	by	using	a	resource	‘kind’	of	tdx:wire	
fs20:feed.

Some	scenarios	may	require	transformation	of	wire	data,	for	example	conversion	of	text	data
(e.g.	tcpdump	output)	into	a	serialised	protobuf	serialisation	format.

In	the	following	scenario,	output	of	a	 tcpdump	filter	is	being	piped	(published)	into	a	wire.
This	process	is	running	on	the	network	router.

tcpdump	<filter>	|	./volt	wire	-w	<tcpdump-id>

On	a	different	machine	another	process	is	subscribed	to	the	 tcpdump-id	wire	and	transforms
the	text	data	it	contains	into	a	raw	protobuf	data	stream,	and	re-publishes	it	onto	another	wire:

./volt	wire	-w	<tcpdump-id>	-s	|	tcpdump-transform	|	./volt	
wire	-w	<transformed-wire-id>

On	a	third,	or	multiple	other	machines,	a	process	subscribes	to	the	transformed	wire	and
pushes	it	into	a	database	synchronisation	file	cache:

./volt	wire	-w	<transformed-wire-id>	-s	|	./volt	logger	-c	
tcpdump.logger.json

See	the	protoDbSync	utility	for	a	more	detailed	analysis	of	this	approach.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html#kinds
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html


Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Verifiable	credentials

file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


The	tdx	Volt	supports	the	W3C	Verifiable	Credentials 	data	model	for	issuing,	presenting,	and
verifying	credentials.	Verifiable	credentials	are	a	way	to	express	and	exchange	credentials	in
a	way	that	is	cryptographically	secure	and	privacy-preserving.

What	is	a	verifiable	credential?
A	verifiable	credential	is	a	tamper-evident	credential	that	has	cryptographic	proof	of	its
authenticity.	It	is	a	digital	representation	of	a	credential	that	can	be	used	to	prove	claims	about
a	subject.	Verifiable	credentials	are	issued	by	an	issuer	to	a	holder,	and	can	be	presented	to	a
verifier	to	prove	a	claim.

A	verifiable	credential	consists	of	three	main	parts:

Issuer:	The	entity	that	issues	the	credential.
Holder:	The	entity	that	holds	the	credential.
Subject:	The	entity	that	the	credential	is	about.

Within	the	tdx	Volt	architecture,	the	Issuer	is	typically	(although	not	limited	to)	a	 tdx	Volt
instance,	the	Holder	is	the	tdx	Volt	instance	or	identity	that	holds	the	credential,	and	the
Subject	is	the	identity	that	the	credential	is	about.

Usage	within	the	tdx	Volt
The	tdx	Volt	uses	verifiable	credentials	to	represent	claims	about	the	identity	of	the	holder.
These	claims	can	be	used	to	prove	the	identity	of	the	holder	to	other	entities	in	the	tdx	Volt
ecosystem,	and	to	define	rules	and	policies	that	govern	the	access	permissions	and	behavior
of	the	holder	to	the	various	resources	and	services	within	the	tdx	Volt.

The	identities	and	claims	within	the	verifiable	credential	leverage	the	 Decentralized
Identifiers	(DIDs)	and	DID	Registries	to	provide	a	secure	and	decentralized	way	to	manage
and	verify	the	identity	of	the	holder.

Example	credential
Below	is	an	example	of	a	Verifiable	Credential,	issued	by	the	DVLA,	that	contains	a	claim
that	the	subject	is	over	18:

{		"@context":	[				
"https://www.w3.org/2018/credentials/v1",				
"https://tdxvolt.com/credentials/v1"		],		
"credentialSubject":	{				"id":	"did:volt:0847915a-6bdf-
478c-9d82-f96df58c7856",				"isOver18":	true		},		"id":	
"http://192.168.1.195:62597/credential/c590d690-e665-428e-
8cbc-d47a1b405f06",		"issuanceDate":	"2024-05-30T16:12:43",		
"issuer":	{				"id":	"did:volt:0847915a-6bdf-478c-9d82-
f96df58c7856",				"name":	"DVLA"		},		"proof":	{				
"created":	"2024-05-30T15:12:43Z",				"jws":	
"eyJhbGciOiJFZERTQSIsImI2NCI6IGZhbHNlfQ..JeByn3x1XpcQ3OmookNy
-
V4v079xpOoqBE8Nkf0298vRmYGstMvqFyAR661k46SgBMsWDGXZJcxvCvW9bLU6BQ"
,				"proofPurpose":	"assertionMethod",				"type":	
"Ed25519Signature2018",				"verificationMethod":	
"did:volt:0847915a-6bdf-478c-9d82-f96df58c7856#key-1"		},		
"type":	["VerifiableCredential",	"AgeVerification"]}

Let’s	break	down	the	parts	of	the	Verifiable	Credential	shown	above:

@context

The	context	in	which	the	credential	is	issued.	This	is	a	list	of	URIs	that	define	the	terms
used	in	the	credential.

credentialSubject

The	subject	of	the	credential,	along	with	the	claims	made	about	the	subject.

https://www.w3.org/TR/vc-data-model/
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html#decentralized-identifiers-dids
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html


In	this	case	the	subject	is	the	DID	 did:volt:0847915a-6bdf-478c-9d82-
f96df58c7856,	and	the	credential	contains	a	claim	that	the	subject	is	over	18.

id

The	identifier	of	the	credential.	This	is	a	URI	that	uniquely	identifies	the	credential.

issuanceDate

The	date	and	time	the	credential	was	issued.

issuer

The	entity	that	issued	the	credential.	This	includes	the	ID	of	the	issuer	and	the	name	of
the	issuer.

In	this	case	the	issuer	is	the	DID	 did:volt:0847915a-6bdf-478c-9d82-
f96df58c7856,	and	the	name	of	the	issuer	is	 DVLA.

proof

The	cryptographic	proof	of	the	authenticity	of	the	credential.

type

The	type	of	the	credential.	This	is	a	list	of	URIs	that	define	the	type	of	the	credential.

Verifying	a	credential
In	order	for	a	verifier	to	trust	the	authenticity	of	the	credential,	a	verifier	must	be	able	to
verify	the	cryptographic	proof	provided	in	the	proof	section.	This	proof	is	generated	using
the	private	key	of	the	issuer,	and	can	be	verified	using	the	public	key	of	the	issuer.

Within	the	tdx	Volt	ecosystem,	peers	and	entities	make	use	of	the	 DID	Registry	to	resolve
the	DIDs	of	the	subject	and	issuer,	and	to	acquire	their	public	keys	in	order	to	verify	the	proof
and	securely	communicate.

Policy-based	access	control
Policy	rules	within	the	 tdx	Volt	can	be	created	to	allow	or	deny	access	to	a	resource	based	on
the	presence	of	a	verifiable	credential	that	meets	certain	criteria.

For	example,	a	policy	rule	could	be	created	to	allow	access	to	a	resource	only	if	the	holder	of
the	credential	is	over	18,	and	the	credential	is	issued	by	a	trusted	issuer	such	as	the	DVLA.
This	policy	rule	would	be	evaluated	at	runtime,	and	the	access	decision	would	be	made	based
on	the	verifiable	credential	presented	by	the	holder.

Non-DID	subjects
Verifiable	Credential	subjects	do	not	necessarily	have	to	reference	a	DID.	For	example,	the
following	Verifiable	Credential	is	issued	by	coreid.com	and	contains	an	email	address	and
public	key	as	the	subject:

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html


{		"@context":	[				
"https://www.w3.org/2018/credentials/v1",				
"https://tdxvolt.com/credentials/v1"		],		
"credentialSubject":	{				"email":	"alice@example.com",				
"id":	"alice@example.com",				"keyId":	
"BG4EZ1fgP7FoEyRycniTZKPneddSLxv8wkhvHv5nXcdo",				
"publicKey":	"-----BEGIN	PUBLIC	KEY-----
\nMCowBQYDK2VwAyEAotWPJoA/nQ6gaIbsu77u5vQ/auhV717aEN1o/0ZJoio=\n
-----END	PUBLIC	KEY-----\n"		},		"id":	
"https://coreid.com/credential/d662fbfa-986d-4505-9367-
6e2c10b01809",		"issuanceDate":	"2024-05-21T07:00:50",		
"issuer":	{				"id":	"did:volt:bed919ab-6081-40e7-9677-
88d1cd37a0c0",				"name":	"coreid.com"		},		"proof":	{				
"created":	"2024-05-21T06:00:50Z",				"jws":	
"eyJhbGciOiJFZERTQSIsImI2NCI6IGZhbHNlfQ..TWCHI2_LG8xYbx6-
EYBEnBLf2D_6pdFowzH2fdxuaw2z3Im8gOTv3hL3l-
Urz3_3rZt5hG_iMB7Hjzy-R-4ECA",				"proofPurpose":	
"assertionMethod",				"type":	"Ed25519Signature2018",				
"verificationMethod":	"did:volt:bed919ab-6081-40e7-9677-
88d1cd37a0c0#key-1"		},		"type":	[				
"VerifiableCredential",				"VoltIdentityCredential",				
"VoltEmailCredential"		]}

The	credential	was	issued	by	 https://coreid.com	after	verifying	that	the	holder	of	the	public
key	also	has	control	over	the	email	address	alice@example.com.

This	credential	could	be	used	to	prove	the	identity	of	the	holder	in	a	variety	of	scenarios,	such
as	authenticating	to	a	service	or	a	web	application.

The	flow	would	involve	the	browser	or	client	creating	a	key	pair	using	the	web	crypto	API,
and	then	presenting	the	public	key	and	email	address	to	the	coreid.com	identity	provider
service,	along	with	a	signature.	The	service	would	then	send	an	email	to	the	address
containing	a	verification	link,	which	the	holder	would	then	click	and	return	to	the	service.	The
service	would	then	issue	the	credential	to	the	holder.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

https://coreid.com
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html


How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Database
The	tdx	Volt	offers	built-in	support	for	Sqlite	database	resources.	This	enables	the	creation	of
an	arbitrary	number	of	databases,	each	governed	by	the	tdx	Volt	policy.

Encryption
As	with	the	 tdx	Volt	metadata	store,	database	resources	support	encryption	at	rest.	The	key	is
derived	from	the	tdx	Volt	root	key,	but	can	be	configured.

Policy
The	policy	can	be	applied	to	database	resources	as	either	read	or	write	permission	to	the
entire	database.	Read	permission	enforces	that	only	SELECT	statements	can	be	executed	on
the	database,	whereas	write	permission	permits	execution	of	any	SQL	statement.

Audit
Database	resources	can	be	configured	to	audit	reads	and/or	writes.

Locks
Sqlite	does	not	support	multi-threaded/mult-process	access	very	well,	however	the	 tdx	Volt
database	API	implementation	essentially	acts	as	a	gatekeeper	of	the	underlying	database	and
as	such	is	able	to	marshal	access.

The	implementation	utilises	the	 write-ahead	logging	mode	of	Sqlite,	which	supports
unlimited	concurrent	‘read’	clients	along	with	a	single	‘write’	client.	The	tdx	Volt	SQLite
grpc	server	exposes	this	functionality	through	a	simple	protobuf	interface.

In	summary:

The	tdx	Volt	SQLite	server	supports	multiple	clients	executing	 SELECT	statements
concurrently.
A	SELECT	statement	will	never	block,	even	if	a	write	statement	is	executing.
A	single	client	can	successfully	execute	any	statement	other	than	 SELECT,	(e.g.	INSERT,	
UPDATE,	DELETE	etc).
A	non-SELECT	statement	will	succeeed	even	if	there	are	in-flight	 SELECT	statements
running	for	other	clients.
If	two	or	more	clients	attempt	to	write	concurrently,	the	server	will	block	the	clients	until
the	write-lock	is	free	and	then	complete	each	pending	statement.	This	is	an	improvement
over	the	standard	SQLite	interface,	which	will	create	an	SQL_BUSY	error	in	this	scenario.

Stand-alone	server
The	tdx	Volt	core	has	built-in	support	for	SQLite	databases	as	described	above.	There	is	also
a	stand-alone	version	of	the	server	available	as	a	utility.	This	enables	configurations	whereby
the	database	server	is	running	on	a	different	machine	from	the	tdx	Volt	itself.

The	**tdx	Volt**	offers	clients	the	ability	to	register	services	for	consumption	by	other	clients
and	it	is	anticipated	that	support	for	other	types	of	databases	will	be	gradually	increased	as
the	need	arises,	both	as	built-in	services	and	stand-alone	servers.

Skip	to	Content

tdx	Volt
putting	you	in	charge

https://www.sqlite.org/wal.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html#article
file:///Users/tobyealden/code/index.html


Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html


SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Resource
One	of	the	main	functions	of	the	 tdx	Volt	is	the	storage	of	resource	metadata.

Almost	all	the	entities	exposed	by	the	various	 tdx	Volt	APIs	are	represented	internally	by	a
resource	in	the	metadata	store,	including	identities,	files,	folders,	databases,	wires,	3rd	party
services	and	so	on.

The	metadata	store	is	implemented	as	an	 SqlCipher	database,	a	secure,	encrypted-at-rest
version	of	Sqlite.

Full	details	of	the	resource	schema	can	be	found	in	the	 protobuf	definition

Kinds
Resources	are	classified	using	a	simple	text-based,	free-form	taxonomy,	represented	by	the	
kind	property.

This	is	implemented	as	an	ordered	list	of	strings,	where	each	entry	in	the	list	describes	a
‘kind’.

There	is	a	limited	set	of	reserved	kinds	for	use	by	the	system.

All	resources	must	have	a	top-level	‘kind’	that	matches	one	of	the	reserved	system	‘kinds’.

Most	of	the	reserved	‘kinds’	are	self-explanatory.	They	are	listed	in	the	table	below.

file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
https://www.zetetic.net/sqlcipher/
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.Resource


Kind Description

tdx:cloud-
connection Represents	a	connection	to	a	cloud-based	tunnel.

tdx:database A	database.
tdx:file A	file.
tdx:folder A	folder.
tdx:group A	group	of	identities.
tdx:home-folder The	home	folder	of	a	given	identity.
tdx:http-proxy An	HTTP	forward	proxy	resource.
tdx:http-server An	HTTP	server	resource.
tdx:identity An	identity	resource.
tdx:service The	top-level	service	kind.
tdx:sqlite-database A	sub-kind	of	Database,	representing	an	Sqlite	database.
tdx:sqlite-server SqliteServer
tdx:symbolic-link A	file	or	folder	that	is	linked	directly	to	the	local	file	system.
tdx:volt-link Used	by	the	 fusebox	to	store	links	to	other	Volts

tdx:web-view Used	by	the	 fusebox	to	display	web	pages.	Experimental,	macOS
only.

tdx:wire A	wire	resource.

A	resource	can	reflect	multiple	‘kinds’,	for	example:

An	SQLite	database	is	represented	by	tdx:database,	tdx:sqlite-database.
When	a	new	identity	is	created	in	a	Volt,	the	underlying	resource	is	classified	using	the
‘kinds’	tdx:identity,	tdx:folder,	tdx:home-folder.

Clients	can	augment	the	default	resource	‘kind’	with	custom	kinds	that	suit	their	domain,	but
they	must	not	use	the	tdx:	prefix.	For	example	tdx:wire,	fs20:feed.

It	is	anticipated	that	the	 kind	property	of	a	resource	will	often	reflect	a	‘type’	hierarchy	along
the	lines	of	generic	->	specific,	but	this	isn’t	enforced	in	any	way	and	there	will	be	use	cases
where	this	is	not	applicable.

Service	description
The	service	description	of	a	resource	describes	a	grpc	server,	and	is	only	applicable	to
resources	that	expose	a	grpc	server.

A	single	grpc	server	can	expose	multiple	services,	where	each	service	is	described	by	the
protobuf	definition	language.

All	resources	that	expose	a	grpc	server	have	the	`tdx:service`	kind.

Within	the	Volt,	each	resource	is	hosted	by	one	and	only	one	grpc	server.

All	built-in	resources	are	hosted	by	the	 tdx	Volt	itself,	which	exposes	a	single	grpc	server	that
implements	the	following	APIs:	tdx.volt_api.volt.v1.VoltAPI,	
tdx.volt_api.volt.v1.FileAPI,	tdx.volt_api.volt.v1.WireAPI,	
tdx.volt_api.data.v1.SqliteServerAPI,	
tdx.volt_api.data.v1.SqliteDatabaseAPI.

If	a	client	registers	a	service	with	the	Volt,	the	details	of	where	the	service	is	running	and	the
APIs	it	supports	are	supplied	by	the	client	as	part	of	the	registration	process.

The	service_api	field	within	the	resource	can	be	useful	to	discover	services	that	expose	a
given	interface.	For	example,	the	DiscoverServices	API	can	be	used	to	find	all	servers	that
expose	the	tdx.volt_api.data.v1.SqliteDatabaseAPI	service.

To	better	illustrate	this	concept,	consider	the	following:

the	tdx	Volt	exposes	the	tdx.volt_api.data.v1.SqliteServerAPI,	among	others.
when	a	database	is	created	via	the	 fusebox,	a	‘use	 tdx	Volt	database	server’	checkbox
can	be	used	to	indicate	if	the	database	should	be	hosted	by	the	tdx	Volt	or	if	the	 fusebox
should	try	and	discover	other	services	that	support	the	

file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.ServiceDescription
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#DiscoverServices


tdx.volt_api.data.v1.SqliteServerAPI.
selecting	‘use	tdx	Volt	database	server’	means	that	any	operations	on	that	database	are
handled	by	the	tdx	Volt	grpc	server
however,	the	SQLite	Server	utility	also	exposes	
tdx.volt_api.data.v1.SqliteServerAPI
when	the	Sqlite	Server	utility	connects	to	the	 tdx	Volt	it	registers	it’s	server	with	the	Volt
if	a	database	is	then	created	with	‘use	 tdx	Volt	database	server’	not	selected,	the	 fusebox
will	ask	the	Sqlite	Server	utility	to	create	the	database
any	operations	on	that	database	are	handled	by	the	utility	and	 not	the	Volt.	If	the	Sqlite
Server	utility	is	not	online	then	it	will	not	be	possible	to	interact	with	that	database
resource.

Attributes
The	resource	schema	is	fixed	as	described	by	the	 protobuf	definition.

However,	clients	can	use	the	attributes	field	of	the	resource	to	associate	an	arbitrary
number	of	ResourceAttributes	with	any	given	resource.

A	resource	attribute	is	an	advanced	form	of	name-value	pair.	Each	attribute	is	identified	by	a
unique	identifier	and	is	of	a	specified	data	type.	A	single	attribute	instance	can	take	multiple
values.

For	example,	http	proxy	forwarder	resources	will	have	the	following	attributes	attached	when
they	are	created	via	the	fusebox:

Attribute	Id Data	Type Description Example

tdx:http-proxy-domain string The	sub-domain	to	proxy	on. “docs”
tdx:http-proxy-host string The	host	to	proxy	to. “localhost”
tdx:http-proxy-port integer The	port	to	proxy	to. 3000

Clients	can	add	attributes	using	identifiers	that	match	their	domain.

Attribute	identifiers	with	the	tdx:	prefix	are	reserved.

The	GetResources	API	can	be	used	to	find	resources	based	on	the	associated	attributes.

Resource	attributes	are	a	good	fit	for	the	**tdx	Volt**	policy	engine,	which	uses	attribute-
based	rules	rather	than	the	traditional	role-based	approach.	This	means	that	policy	rules	can
be	defined	for	arbitrary	attributes.

Ownership
Each	resource	is	assigned	an	owner	at	creation	time,	which	by	default	is	the	currently
authenticated	identity	that	issued	the	command.

The	resource	owner	can	perform	any	operation	on	the	resource.

By	default	the	tdx	Volt	policy	states	that	the	Volt	owner	can	also	perform	any	operation	on
any	resource,	irrespective	of	the	owner.

This	differs	from	the	standard	TDX,	which	has	no	concept	of	an	over-arching	owner,	and	by
default	resources	are	only	accessible	to	their	owners.	The	**tdx	Volt**	operates	in	a	peer-to-
peer	model.	If	Alice	grants	Bob	permission	to	use	her	Volt,	and	Bob	uploads	some	data	to
Alice's	Volt,	he	does	so	in	the	knowledge	that	Alice	has	full	access	to	that	data.	If	Bob	wanted
to	restrict	the	access	Alice	has	to	his	data,	he	should	create	it	on	his	own	**tdx	Volt**	and
invite	Alice	to	connect,	with	the	appropriate	policy	rules	in	place.

Hierarchy
Resources	can	be	organised	hierarchically.

All	resources	are	descended	from	the	 tdx	Volt	root	resource.

When	a	client	creates	a	resource,	they	indicate	the	parent	resource	that	should	contain	the	new

file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.ResourceAttribute
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#GetResources


resource.	If	a	client	does	not	specify	a	parent	resource,	the	authenticated	identity’s	Home
folder	will	be	used.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html


Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Fundamentals
The	tdx	Volt	is	comprised	of	4	central	facets:

security	policy
identity	management
resource	management	(service,	file	and	data	sharing)
service	registration	and	discovery

Security	policy
The	security	policy	is	attribute-based	and	borrows	heavily	from	the	 XACML	standard	in
terms	of	functionality.

It	provides	an	extremely	versatile	and	extensible	framework	for	controlling	who	can	access
what	and	when.

For	example	it	is	possible	to	express	rules	such	as	‘Nick	can	access	my	geolocation	service
and	view	my	current	location	between	9am	-	5pm	Monday	to	Friday’.

Learn	more	about	the	security	policy .

Identity	Management
Identities	are	centred	around	asymetrical	cryptography	in	the	form	of	public/private	key
pairs.	They	form	the	bedrock	of	the	tdx	Volt	infrastructure.	Security	policy	rules	are
expressed	in	terms	of	permitting	or	denying	resource	access	to	one	or	more	identities.

file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html


Learn	more	about	 tdx	Volt	identities.

Resource	Management
A	resource	is	the	fundamental	entity	in	the	 tdx	Volt.	Various	kinds	of	resource	exist	out	of	the
box,	including	services,	folders,	files,	and	databases.	Custom	resource	types	are	also
supported.

A	simple,	clean	hierarchical	taxonomy	is	used	to	classify	resources.

A	single	file	or	entire	folder	hierarchies	can	easily	be	uploaded	or	linked	to	the	 tdx	Volt	and
made	available	from	anywhere,	given	the	correct	authentication	and	authorisation	as
determined	by	the	security	policy.

Databases	can	quickly	be	created	and	data	ingested	using	a	drag-and-drop	interface.	This	too
can	then	be	made	available	for	reading	or	writing	anywhere	using	the	appropriate	security
policy	rules.

SQL	databases	currently	have	built-in	support	in	 tdx	Volt,	but	other	flavours	will	be	coming
soon.	The	tdx	Volt	is	not	opinionated	about	the	database	system	or	format	-	it	just	sees
databases	as	another	service.

Learn	more	about	 tdx	Volt	resources.

Service	Registration	and	Discovery
One	of	the	main	functions	of	the	 tdx	Volt	is	to	allow	services	to	be	registered,	shared,
discovered	and	accessed	by	others.

Once	an	identity	has	successfully	bound	and	connected	to	the	 tdx	Volt	it	can	register	a
service	for	others	to	discover,	and/or	discover	and	utilise	services	that	others	have	registered.
This	is	all	strictly	governed	by	the	security	policy	imposed	by	the	tdx	Volt	owner.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html


How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Identity
The	following	explores	in	depth	how	identities	are	represented	in	 tdx	Volt	and	describes	the
interactions	with	other	elements	in	the	architecture.

The	tdx	Volt	identity	model	is	based	on	the	principles	of	 self-sovereign	identity	(SSI) ,	which
is	a	model	for	managing	digital	identities	in	a	way	that	is	secure,	private,	and	decentralized.

Public	key	cryptography
At	the	heart	of	the	identity	management	(and	 tdx	Volt	itself)	is	public	key	cryptography.

All	identities	known	to	a	 tdx	Volt	are	associated	with	one	or	more	public/private	key	pairs.
By	default,	the	tdx	Volt	never	stores	or	even	sees	the	private	portion	of	the	key,	which	must
be	kept	private	by	the	identity.	The	tdx	Volt	has	a	copy	of	the	public	key(s).

In	order	to	perform	any	interaction	with	 tdx	Volt,	an	identity	must	prove	that	it	is	in
possesion	of	the	private	key	corresponding	to	one	of	the	public	keys	the	tdx	Volt	is	holding
for	that	identity.

This	proof	is	usually	achieved	by	the	identity	signing	some	message	or	claim	with	its	private
key,	which	tdx	Volt	can	then	verify	using	the	public	portion	of	the	key.	Another	method	is	via
an	x509	certificate-backed	TLS	connection,	which	includes	the	key	verification	as	part	of	the
handshake.

The	tdx	Volt	uses	the	Edwards-curve	Digital	Signature	Algorithm	(EdDSA) 	by	default.	This
is	a	modern,	secure,	and	efficient	algorithm	that	is	well-suited	to	the	requirements	of	the	tdx
Volt.

Decentralized	Identifiers	(DIDs)
Internally,	an	identity	is	represented	by	an	immutable	unique	identifier	rather	than	its	public
key.	This	is	known	as	a	‘decentralised	identifier’	or	DID.	This	level	of	indirection	ensures	that
an	identity	can	easily	periodically	change	keys	as	a	security	precaution	or	in	case	of
compromise.	This	also	allows	for	an	identity	to	utilise	more	than	one	key	pair	which	might	be
useful	in	certain	scenarios	to	limit	exposure.

A	decentralized	identfier,	or	DID,	is	a	new	type	of	identifier	that	enables	verifiable,	self-
sovereign	digital	identity.	DIDs	are	fully	under	the	control	of	the	DID	subject,	independent	of
any	centralized	registry,	identity	provider,	or	certificate	authority.	DIDs	are	URIs	that	relate	a
DID	subject	to	means	for	trustable	interactions	with	that	subject.

For	more	information,	see	the	 W3C	Decentralized	Identifiers	(DIDs)	specification .

Each	tdx	Volt	maintains	a	database	or	registry	of	DIDs	and	their	associated	documents,
which	in	turn	contains	their	public	key(s).	This	registry	is	used	to	look	up	the	public	key	of	an
identity	when	it	is	presented	to	the	tdx	Volt.	See	the	DID	Registry	section	for	more
information.

Authentication
The	core	authentication	mechanism	is	based	on	standard	public	key	infrastructure	(PKI)
technology.

The	tdx	Volt	acts	as	a	certificate	authority	(CA),	issuing	verifiable	credentials	or	certificates
to	clients	that	request	access.

Any	client	wanting	to	access	resources	or	services	on	the	 tdx	Volt	must	present	a	credential
that	has	been	issued	by	the	tdx	Volt	CA,	or	by	some	other	 tdx	Volt	that	is	trusted.

Each	tdx	Volt	maintains	a	list	of	public	keys	that	it	knows	about,	and	each	public	key	has	a
mapping	to	a	unique	identity	within	the	tdx	Volt.	This	is	known	as	a	 DID	Registry.

There	are	varying	degrees	of	trust	implemented,	for	example	a	 tdx	Volt	may	be	configured	to
trust	a	public	key	to	connect	to	and	use	services,	or	it	may	trust	a	public	key	to	sign	additional

https://en.wikipedia.org/wiki/Self-sovereign_identity
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/EdDSA
https://www.w3.org/TR/did-core/
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html


public	keys	for	access	to	the	Volt.	The	latter	is	achieved	in	combination	with	Verifiable
Credentials.

This	provides	a	flexible	and	scalable	mechanism	of	establishing	trust,	whereby	a	 tdx	Volt	can
decide,	on	a	case-by-case	basis,	to	trust	any	client	that	presents	a	credential	signed	by	its	own
key	or	that	of	another	trusted	identity.

The	following	notes	relate	to	the	core	 tdx	Volt	management	interface	as	well	as	any	service
registered	with	the	tdx	Volt	by	other	applications/clients.

The	Authenticate	step
For	the	purposes	of	this	discussion,	a	client	is,	for	example,	an	application	that	wants	to
access	some	resource	or	service.

When	a	client	first	starts	it	must	obtain	a	credential	from	the	 tdx	Volt	in	order	to	be	able	to
connect	to	any	service	or	resource.	It	does	this	by	sending	an	authentication	request	to	the
Volt.

The	authentication	request	includes	the	public	key	of	the	client,	and	a	signature.	Upon	receipt
of	this	request,	the	tdx	Volt	can	infer	that	the	client	is	in	possession	of	the	corresponding
private	key.

When	submitting	an	authentication	request,	a	client	may	also	supply	one	or	more	additional
certificates	or	Verifiable	Credentials	that	can	be	used	to	help	the	Volt	decide	whether	or	not	to
issue	a	credential.	For	example,	a	Samsung	device	may	submit	a	certificate	that	chains	to	the
Samsung	CA.	If	the	tdx	Volt	has	been	configured	to	permit	the	Samsung	CA	to	authenticate
clients,	it	might	automatically	issue	the	credential.

Once	in	possession	of	a	credential,	the	client	can	connect	to	the	Volt.	As	part	of	the	default
TLS	mechanism,	the	client	provides	one	or	more	root	certificates	that	it	trusts.	If	the	tdx	Volt
server	does	not	present	a	certificate	that	chains	to	one	of	these	root	certificates	the	client	will
abort	the	call.

For	example,	Bob	(the	client)	wants	to	access	a	resource	on	Alice’s	 tdx	Volt.

Alice’s	tdx	Volt	starts	its	grpc	service	using	a	certificate	issued	by	her	 tdx	Volt	CA
Bob	issues	a	call	to	Alice’s	 tdx	Volt	service.	As	part	of	the	call	Bob	mandates	that	the
server	must	present	a	credential	issued	by	the	tdx	Volt	CA.	Bob	also	sends	his	own
credential	to	the	server,	which	has	been	issued	by	Alice’s	tdx	Volt	CA.
Alice’s	tdx	Volt	receives	Bob’s	request	and	verifies	that	a	credential	was	presented,	and
that	it	chains	to	the	tdx	Volt	CA.
Alice’s	tdx	Volt	extracts	the	public	key	from	Bob’s	credential	and	looks	it	up	in	the	DID
Registry.	If	no	matching	identity	is	found	(or	the	identity	has	been	revoked)	the	call	is
rejected.
Alice’s	tdxVolt	can	now	provide	this	identifier	to	the	policy	engine,	which	will
determine	if	Bob	has	permission	to	access	the	resource	or	service	he	has	requested.

Token	authentication
Some	grpc	platforms	do	not	support	client	certificate	inspection	from	server
implementations.	In	these	scenarios,	the	client	presents	a	certificate	and	grpc	will	enforce	and
verify	the	certificate	requirement,	but	the	actual	service	implementation	has	no	visibility	of
the	client	certificate	that	was	presented.

This	makes	it	impossible	for	the	service	to	identify	the	client	without	further	information
provided	with	the	call.

This	isn’t	a	problem	for	the	 tdx	Volt	itself	which	is	implemented	in	C++	and	can	access	the
client	certificate.	However	grpc	is	platform	agnostic	and	third-party	services	that	are
registered	with	the	tdx	Volt	may	be	implemented	in	any	language.	These	third-party	services
need	to	be	able	to	identify	the	client	in	order	to	determine	if	they	have	permission	to	access
the	service,	among	other	things.

To	address	this	the	 tdx	Volt	supports	additional	authentication	by	way	of	a	JSON	Web	Token
(JWT)	that	is	sent	as	part	of	the	grpc	call	metadata,	which	is	available	on	all	platforms.



The	JWT	contains	a	claim	that	identifies	the	client,	which	is	the	resource	id	that	was	assigned
to	the	client	at	the	authentication	stage.	The	JWT	is	then	signed	by	the	client	private	key.

Upon	receipt	of	the	token,	a	server	can	decode	it	to	extract	the	resource	id	and	then	verify	the
signature	using	the	client	public	key,	which	will	be	stored	alongside	the	resource	id	in	the	tdx
Volt	DID	Registry.

This	is	conceptually	very	similar	to	an	x509	certificate	in	the	sense	that	it	is	binding	a	public
key	to	some	identifier.	The	key	difference	is	that	the	use	of	a	client	certificate	(as	used,	for
example,	in	TLS)	requires	the	client	to	be	in	possession	of	the	private	key,	whereas	a	token
does	not.	Tokens	are	typically	obtained	through	some	authentication	step	that	requires	the
private	key	or	similar	verification,	and	is	then	used	subsequently	for	repeated	calls	to	an	API.
It	is	therefore	possible	that	if	a	token	is	misplaced	or	stolen	it	can	be	abused.

There	are	ways	of	limiting	the	vulnerability	of	tokens	such	as	adding	additional	claims	for
expiry	and	such.	In	some	situations	a	token	is	preferable	to	full-	blown	PKI,	such	as	when
securely	storing	a	private	key	is	impossible	or	impractical.	As	such,	tdx	Volt	services	can
support	a	combination	of	authentication	mechanisms	tailored	to	suit	their	individual
requirements.

Client
Authentication

Server
Authentiation Supported Notes

certificate certificate yes This	is	the	default	configuration	in	which
mutual	certificate	authentication	is	used

certificate	+
token certificate yes The	client	provides	both	a	certificate	and

JWT.

token certificate yes

The	client	only	presents	a	JWT	with	no
client	certificate.	This	is	useful	in
scenarios	where	storing	a	private	key	is
impractical

none certificate no The	client	must	always	provide	some
authentication

certificate none no The	server	must	always	present	a
certificate.

token none no The	server	must	always	present	a
certificate.

none none no Insecure

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html


Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html


Coming	soon
Roadmap

Key	strategy
Various	strategies	are	available	for	securing	the	 tdx	Volt	root	key.

Hardware
This	strategy	enables	the	use	of	a	PKCS#11-compliant	hardware	security	module	(HSM)	to
secure	the	tdx	Volt	key.	The	encryption	key	is	never	exposed	outside	the	HSM,	providing	a
high	level	of	security.

For	more	information	about	configuring	the	 tdx	Volt	to	use	a	PKCS#11	HSM,	see	the
PKCS#11	reference.

Battery
In	this	key	strategy,	the	 tdx	Volt	key	is	encrypted	using	AES-256	in	CBC	mode	with	the
passphrase	given	to	the	Battery	by	the	owner.	The	encrypted	key	is	then	stored	in	the	Battery
storage.

A	Battery	stores	configurations	details	required	to	locate	and	start	a	Volt.	A	passphrase	is
specified	when	the	Battery	is	created.	The	Battery	storage	is	encrypted	by	a	key	derived	from
the	passphrase	using	PBKDF2-HMAC-SHA512.

Password
The	tdx	Volt	key	is	encrypted	using	AES-256	in	CBC	mode	with	the	passphrase	assigned	to
the	tdx	Volt	by	its	owner.

The	difference	between	the	'Battery'	and	'Password'	strategies	is	that	the	'Battery'	strategy
means	that	all	Volts	contained	in	the	Battery	will	have	their	key	encrypted	by	the	same
passphrase.	The	'Password'	strategy	uses	a	passphrase	unique	to	each	**tdx	Volt**	to	encrypt
the	key.

File
The	‘File’	key	strategy	indicates	that	the	key	is	stored	somewhere	on	a	local	file	system.	This
can	include,	for	example,	a	removable	encrypted	drive.	The	key	can	also	be	encrypted	using	a
passphrase.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome

file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html


Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html


Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

File
The	tdx	Volt	has	comprehensive	built-in	file	support.

Files	can	be	uploaded	from	the	local	file	system	to	a	 tdx	Volt	running	anywhere	in	the	world.
The	CLI	and	fusebox	also	support	recursive	uploading	of	entire	sub-trees	of	folders	and
files.

Policy	and	file	modes
The	tdx	Volt	supports	3	modes	of	file	storage:

standard	-	in	this	mode	a	 tdx	Volt	resource	is	created	for	each	file	and	folder	that	is
uploaded.	The	file	contents	are	then	encrypted	and	stored	locally	in	the	Volt.
mirrored	-	the	mirrored	mode	is	similar	to	standard	mode	in	that	a	 tdx	Volt	resource	is
created	for	each	file	and	folder,	however	the	contents	of	the	file	are	not	uploaded	to	the
Volt.	Instead	the	resource	stores	a	path	to	the	original	file	on	the	local	disk.
linked	-	linked	mode	is	a	continuation	of	mirrored	mode.	A	single	resource	is	created	on
the	tdx	Volt	that	reflects	the	‘root’	folder	that	was	uploaded,	and	the	entire	sub-tree	is
still	exposed	as	descendants	of	the	root	folder	but	implementation	wise	they	are	loaded	at
runtime	rather	than	being	cached	as	resources	in	the	Volt.

Standard	mode	exactly	reflects	the	local	file	system	as	a	snapshot	at	the	time	of	uploading.
The	resource	hierarchy	will	match	that	of	the	local	file	system,	and	policy	rules	can	be	applied
at	any	level	of	the	hierarchy,	e.g.	sharing	a	sub-folder	several	levels	deep	in	the	file	tree.	If	a
file	is	added	or	deleted	or	modified	on	the	local	file	system	this	will	not	be	reflected	in	the	tdx
Volt	until	a	sync	is	run.

Mirrored	mode	also	reflects	the	local	file	system	as	a	snapshot	in	time,	however	when	a	file	is
read	or	downloaded	it	will	fetch	the	data	from	the	local	disk	rather	than	from	the	Volt.	Policy
rules	can	still	be	applied	at	any	level	in	the	hierarchy.	As	a	result	of	this	the	file	contents	will
always	appear	in	sync	with	the	local	disk,	but	file	additions	and	deletions	will	not	be	reflected
in	the	tdx	Volt	resource	tree	until	a	sync	is	run.

Linked	mode	on	the	other	hand	totally	reflects	the	local	file	system	at	all	times.	Additions,
deletions	and	updates	will	immediately	be	reflected	in	the	Volt.	However	it	is	only	possible	to
apply	policy	rules	at	the	level	of	the	root	folder,	i.e.	a	subject	can	either	see	the	entire	sub-tree
or	not.	It’s	a	trade-off	between	performance,	flexibility	of	sharing	and	staleness	of	data.

Note	that	'mirrored'	and	'linked'	modes	are	only	applicable	to	the	file	system	local	to	the	Volt,
i.e.	Alice	can	upload	a	folder	tree	to	Bob's	tdx	Volt	using	standard	mode,	but	she	cannot	do	so
using	mirrored	or	linked	mode	because	the	files	would	be	unavailable	when	Alice	is	offline	or
unreachable.	In	this	scenario,	Alice	would	mirror	or	link	the	folder	to	her	own	tdx	Volt	and
add	a	share	for	Bob.

file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Encryption
Files	uploaded	to	the	 tdx	Volt	are	encrypted	at	rest	using	a	key	derived	from	the	 tdx	Volt	root
key.

Sync
The	tdx	Volt	file	upload	and	download	commands	can	run	in	an	optimised	mode	such	that
they	will	not	upload	or	download	a	file	if	it	has	not	changed	since	the	last	operation,	and	the
upload	command	implements	a	‘watch’	function	that	can	upload	files	as	they	change	on	the
local	disk.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html


Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

DID	registry
A	DID	Registry	is	a	service	that	stores	and	retrieves	DIDs	and	DID	documents.	It	is	a	key
component	of	the	tdx	Volt	decentralized	identity	ecosystem,	as	it	allows	users	to	manage
their	DIDs	and	DID	documents	in	a	consistent,	reliable,	secure	and	decentralized	way.

What	is	a	DID?
A	decentralized	identfier,	or	DID,	is	a	new	type	of	identifier	that	enables	verifiable,	self-
sovereign	digital	identity.	DIDs	are	fully	under	the	control	of	the	DID	subject,	independent	of
any	centralized	registry,	identity	provider,	or	certificate	authority.

DIDs	are	presented	as	URIs	that	are	resolvable	to	a	DID	document,	which	is	a	JSON	object
that	contains	cryptographic	material,	authentication	suites,	and	service	endpoints.

Below	is	an	example	DID	document	for	the	DID	 did:volt:48c7e0bb-9c62-4db0-be2f-

file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


d2f46528ccdb.

{		"@context":	["https://www.w3.org/ns/did/v1",	
"https://tdxvolt.com/ns/did/v1"],		"authentication":	
["did:volt:48c7e0bb-9c62-4db0-be2f-d2f46528ccdb#key-1"],		
"controller":	"did:volt:ee300134-69c7-41b7-8736-
13959174d90d",		"id":	"did:volt:48c7e0bb-9c62-4db0-be2f-
d2f46528ccdb",		"verificationMethod":	[				{						"id":	
"did:volt:48c7e0bb-9c62-4db0-be2f-d2f46528ccdb#key-1",						
"publicKeyPem":	"-----BEGIN	PUBLIC	KEY-----
\nMCowBQYDK2VwAyEAmrsi5oMFVYWGt3mA6kvxpMIjMOLiylaTUQJelDsslQg=\n
-----END	PUBLIC	KEY-----\n",						"type":	
"Ed25519Signature2018"				}		]}

DID	documents	do	not	contain	any	sensitive	or	personal	information	about	the	DID	subject,
but	rather	contain	cryptographic	material	that	can	be	used	to	verify	the	identity	of	the	DID
subject.	It	simply	binds	an	opaque	identifier	to	a	set	of	cryptographic	keys	and	services.

For	more	information,	see	the	 W3C	Decentralized	Identifiers	(DIDs)	specification .

DID	Registry
The	DID	registry	is	a	database	that	stores	and	retrieves	DIDs	and	DID	documents.

The	tdx	Volt	ecosystem	is	designed	to	be	decentralized	and	self-sovereign,	so	each	 tdx	Volt
instance	maintains	its	own	DID	registry.	This	allows	each	tdx	Volt	instance	to	have	complete
control	over	its	own	identity	and	the	identities	of	other	peers	that	it	interacts	with.	As	well	as
this,	any	tdx	Volt	instance	can	be	configured	to	use	one	or	more	other	DID	registries	to	store
and	resolve	DIDs.

In	order	for	two	 tdx	Volt	instances,	or	any	two	entities	in	the	 tdx	Volt	ecosystem,	to
communicate	with	each	other,	they	must	be	able	to	resolve	each	other’s	DIDs.	This	is
necessary	in	order	to	acquire	the	public	key	or	the	other	peer	and	thereby	verify	their	identity
and	encrypt	the	communication	between	the	two	peers.

To	resolve	a	given	DID,	the	 tdx	Volt	or	client	will	begin	by	querying	the	local	DID	registry,
and	then	querying	any	other	DID	registries	that	are	configured.	If	the	DID	is	not	found	in	any
of	the	configured	DID	registries,	the	resolution	fails.

Hence	in	order	for	two	peers	to	verify	each	other’s	identity	and	encrypt/decrypt	data,	they
must	have	a	common	DID	registry	that	they	can	use	to	resolve	each	other’s	DIDs.

Currently	a	number	of	DID	registries	are	publicly	available,	and	can	be	used	by	any	 tdx	Volt
instance	to	resolve	DIDs.

coreid.com	-	a	public	DID	registry	operated	by	the	 tdx	Volt	community
tdxvolt.com	-	a	public	DID	registry	and	relay	operated	by	 nquiringminds	Ltd	in	the	UK
tdxid.com	-	a	development	DID	registry	based	in	the	nquiringminds	London	office

These	DID	registries	are	designed	to	be	highly	available	and	secure	and	are	typically	operated
by	trusted	third	parties,	such	as	those	run	by	the	community	or	a	foundation	of	some	sort.

The	idea	is	that	over	time	a	network	of	DID	registries	will	emerge,	each	operated	by	different
entities.	Some	may	interoperate	with	each	other,	some	may	not,	some	may	be	public,	some
may	be	private.	Each	tdx	Volt	instance	can	choose	which	DID	registries	to	use,	and	can	even
run	its	own	DID	registry	if	it	wishes.	This	will	allow	for	a	highly	decentralized	and	self-
sovereign	identity	ecosystem	that	is	not	dependent	on	any	single	entity	or	organization,	and
enables	a	high	degree	of	flexibility	and	interoperability	between	different	tdx	Volt	instances.

Resolution	API
Applications	and	services	of	the	 tdx	Volt	platform	can	resolve	and	register	DIDs	using	the
various	APIs.

The	DID	Registry	resolution	is	exposed	as	an	 HTTP	endpoint,	as	well	as	the	grpc
ResolveDID	and	SearchDIDRegistry	APIs.

https://www.w3.org/TR/did-core/
https://coreid.com/did-registry
https://tdxvolt.com/did-registry
https://nquiringminds.com
https://tdxid.com/did-registry
https://coreid.com/did-registry
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html#ResolveDID
http://localhost:4321/en/api/ssi_api#SearchDIDRegistry


The	HTTP	endpoint	is	a	simple	GET	request	that	takes	a	DID	as	a	query	parameter	and
returns	the	DID	document	as	a	JSON	object	-	example.

The	grpc	API	is	a	more	advanced	API	that	allows	for	more	complex	queries	and	operations	on
the	DID	registry.

Registration	API
In	order	to	register	a	DID	in	the	DID	registry,	use	the	 Authenticate	API.

There	is	no	HTTP	endpoint	for	registering	a	DID	directly.

It	is	also	possible	for	the	client	must	first	create	a	DID	document	and	then	submit	it	to	the
DID	registry	using	the	RegisterDIDDocument	API.

The	DID	registry	will	validate	the	DID	document	and	store	it	in	the	database.	The	DID
document	will	then	be	available	for	resolution	by	other	tdx	Volt	instances	and	clients.

Synchronisation
DID	registries	can	elect	to	synchronise	with	each	other	in	order	to	maintain	a	consistent	view
of	the	DID	registry	across	several	tdx	Volt	instances.	This	also	provides	a	level	of	fault
tolerance	and	availability,	including	the	ability	to	resolve	DIDs	when	offline	or	only	partially
connected	to	the	network	or	intranet.

In	this	configuration,	each	 tdx	Volt	instance	maintains	its	own	copy	of	the	DID	registry,	and
the	DID	registry	is	designed	to	be	eventually	consistent	across	all	tdx	Volt	instances.

When	a	new	DID	is	registered	in	the	DID	registry,	the	 tdx	Volt	instance	that	registered	the
DID	will	broadcast	the	new	DID	to	all	other	tdx	Volt	instances	in	the	network.	Each	 tdx	Volt
instance	will	then	update	its	local	copy	of	the	DID	registry	to	include	the	new	DID.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

https://coreid.com/did/did:volt:bed919ab-6081-40e7-9677-88d1cd37a0c0
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#Authenticate
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html#RegisterDIDDocument
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html


How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Relay
A	tdx	Volt	Relay	enables	Volts	to	bypass	firewall	and	NAT	systems	and	make	data	and
services	available	to	clients	on	the	wider	internet.

A	Relay	is	implemented	as	‘tunnel’	or	bi-directional	grpc	stream	that	is	initiated	from	the
‘client’	to	the	Relay	Volt.	Once	a	session	is	established,	the	Relay	can	then	proxy	grpc	calls
over	the	bi-direction	byte	stream.

For	example,	consider	Alice’s	Volt,	which	is	behind	a	firewall,	wishes	to	invoke	functions	on
a	service	exposed	by	Bob’s	Volt,	which	is	itself	behind	a	firewall.	If	both	Alice	and	Bob
establish	a	session	with	a	third	Relay	Volt,	then	Alice	is	able	to	send	the	invocation	request	to
Bob	via	the	intermediate	Relay	Volt.

A	Volt	may	establish	connections	to	many	Relay	Volts	concurrently.

Obviously	for	the	Relay	 tdx	Volt	to	be	reachable	it	will	need	to	be	visible	on	the	public
internet.	However	there	may	be	scenarios	where	it’s	desireable	to	enable	Relay	on	a	tdx	Volt
that	is	not	on	the	public	internet,	for	example	to	take	advantage	of	the	discovery	capabilities	it
brings	(see	below).

Encryption
The	Relay	 tdx	Volt	has	no	visibility	of	the	payload,	other	than	the	identity	fingerprint	of	the
recipient.

All	data	that	passes	through	the	Relay	is	encrypted	before	it	enters	the	Relay	using	the
intended	recipients	public	key.	When	the	payload	is	received	it	is	decrypted	and	processed
before	the	response	is	encrypted	using	the	originating	callers	public	key	and	sent	back	via	the
Relay.

Authentication
By	default	the	Relay	will	require	both	ends	of	the	‘pipe’	to	be	authenticated.	This	means	that
both	Alice	and	Bob	will	need	to	have	bound	to	the	Relay	Volt.

A	Relay	can	also	run	in	‘open’	mode,	which	means	that	any	client	can	use	the	Relay	with	no
authentation	required.	Note	that	this	only	applies	to	the	establishment	of	the	Relay	session,
authentication	and	policy	will	be	applied	as	normal	by	the	tdx	Volt	that	is	the	target	of	any
invocation,	and	the	Relay	payload	is	encrypted	no	matter	what	authentication	mode.

Discovery
The	Relay	 tdx	Volt	provides	a	discovery	function	that	allows	any	 tdx	Volt	connected	to	the
Relay	to	discover	the	configuration	of	any	other	tdx	Volt	connected	to	the	Relay.	A	 tdx	Volt
will	only	participate	in	this	discovery	function	if	it	has	set	‘discoverable’	on	in	the	tdx	Volt
settings.

Configuration
The	Relay	feature	is	optional	and	can	be	switched	on	and	off	from	the	‘settings’	in	the
fusebox	app.

The	tdx	Volt	may	need	to	be	restarted	for	any	Relay	configuration	change	to	take	effect.

Skip	to	Content

tdx	Volt
putting	you	in	charge

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html#article
file:///Users/tobyealden/code/index.html


Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html


SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Policy
The	tdx	Volt	security	policy	is	based	on	XACML.

XACML	is	an	attribute-based	policy	language.	Policy	rules	are	defined	in	terms	of	the
attributes,	and	in	the	case	of	the	tdx	Volt	the	4	main	attribute	types	are	subject	(the	identity),
resource,	action	and	environment.

This	document	won’t	go	into	full	details	of	how	XACML	works,	please	refer	to	the	 XACML
standard.

SSI	integration
Self-sovereign	identity	(SSI)	is	a	method	of	managing	digital	identities	in	a	way	that	is
independent	of	any	central	authority.	For	more	information,	see	SSI.

This	provides	a	powerful	and	flexible	way	to	define	policy	rules	that	are	based	on	the	identity
of	the	subject,	and	the	issuers	of	the	credentials	that	the	subject	holds.

For	example,	a	policy	rule	could	be	defined	that	permits	a	subject	to	perform	an	action	on	a
resource	if	they	hold	a	credential	that	was	issued	by	a	specific	issuer,	such	as	a	government
department.

For	more	information	on	how	the	 tdx	Volt	integrates	with	SSI,	see	the	 Verifiable	Credentials,
Decentralized	Identifiers	(DIDs)	and	DID	Registry	pages.

Implementation
The	tdx	Volt	policy	engine	is	a	stand-alone	library	that	implements	large	parts	of	the
XACML	standard,	as	well	as	the	multiple	decision	and	hierarchical	resource	profiles,	with
no	hardwiring	to	the	tdx	Volt	infrastructure.

Within	the	tdx	Volt	core	there	are	implementations	of	Policy	Information	Points	(PIPs)	for
subject,	resource	and	environment.

Hierarchy

file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://wikipedia.org/wiki/Self-sovereign_identity
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/identity.html#decentralized-identifiers-dids
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/did-registry.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-cd-03-en.html
https://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.pdf


The	policy	engine	supports	the	hierarchical	nature	of	the	 tdx	Volt	resource	tree	via	the
multiple	decision	and	hierarchical	resource	profiles.

This	allows	rules	that	are	applied	to	a	parent	resource	to	be	inherited	by	its	descendants,	and
greatly	simplifies	the	policy	rules	required	to	protect	the	Volt.

Persistence
The	tdx	Volt	uses	JSON	to	persist	policies	rather	than	XML,	but	the	underlying	semantics
are	the	same.

Note	that	a	‘root’	policy	set	is	created	when	the	 tdx	Volt	first	boots.	This	contains	the	general
rules	pertaining	to	tdx	Volt	ownership,	resource	ownership	and	so	on,	and	this	is	persisted	in
the	tdx	Volt	database.

Resource	sharing	rules	that	are	added	as	a	result	of	calls	to	 SaveAccess	are	dynamically
included	in	the	policy	at	runtime.

Examples
The	example	below	shows	a	policy	that	permits	the	 tdx	Volt	owner	to	perform	any	action,
irrespective	of	the	target	resource:

{		"id":	"volt-owner",		"ruleCombiningAlgorithm":	"first-
applicable",		"rules":	[				{						"description":	"permit	
**tdx	Volt**	owner	to	perform	any	action",						"effect":	
"permit"				}		],		"target":	{				"allOf":	[						{								
"anyOf":	[										{												"allOf":	[														{																
"attributeId":	"tdx:action",																"category":	
"action",																"dataType":	"string",																
"functionId":	"string-regexp-match",																"value":	
".*"														},														{																
"attributeId":	"tdx:identityId",																"category":	
"subject",																"dataType":	"string",																
"functionId":	"string-equal",																"value":	
"449a3385-f380-41f7-bd0a-e60caaa403cb"														}												
]										}								]						}				]		}}

This	example	shows	a	rule	that	permits	subjects	(identities)	to	perform	any	action	on	any
resource	they	own.	It	makes	use	of	a	‘condition’	to	dynamically	interrogate	the	resource	PIP
to	establish	the	owning	identity.	It	then	compares	this	to	the	currently	authenticated	identity
and	if	the	two	match,	it	permits	the	subject	to	perform	any	action:

{		"id":	"resource-owner",		"ruleCombiningAlgorithm":	
"first-applicable",		"rules":	[				{						"condition":	{								
"args":	[										{												"attributeId":	
"tdx:identityId",												"category":	"subject",												
"dataType":	"string",												"typeName":	
"AttributeDesignator"										},										{												
"attributeId":	"tdx:resourceOwner",												"category":	
"resource",												"dataType":	"string",												
"typeName":	"AttributeDesignator"										}								],								
"functionId":	"string-equal",								"typeName":	"Apply"						
},						"description":	"permit	resource	owner	
create/delete/read/write	access",						"effect":	"permit"				
}		],		"target":	{				"allOf":	[						{								"anyOf":	[										
{												"allOf":	[														{																
"attributeId":	"tdx:action",																"category":	
"action",																"dataType":	"string",																
"functionId":	"string-regexp-match",																"value":	
".*"														}												]										}								]						}				
]		}}

Skip	to	Content

tdx	Volt

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-cd-03-en.html
https://docs.oasis-open.org/xacml/3.0/hierarchical/v1.0/cs02/xacml-3.0-hierarchical-v1.0-cs02.pdf
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#SaveAccess
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#article
file:///Users/tobyealden/code/index.html


putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html


SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

DiscoveryAPI
Top

The	public	Volt	discovery	service.

This	is	exposed	by	the	Volt	battery	over	an	INSECURE	grpc	channel.

This	insecurity	is	ameliorated	by	the	fact	that	discovered	Volts	return	signatures	of	their
challenge	code	and	owner	credential.

Note	that	only	Volts	that	have	explicitly	set	'discoverable'	in	the	Volt	settings	will	be
discovered.

Discover()

Request:	DiscoverRequest
Response:	DiscoverResponse

DiscoverRequest

Field Type Description

require_relay bool Set	to	require	that	only	Volts	that	expose	a	Relay	be	included	in	the
response.

DiscoverResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#tdx.volt_api.volt.v1.DiscoverRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#tdx.volt_api.volt.v1.DiscoverResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#bool


Field Type Description
status Status

endpoint SignedEndpoint	repeated A	list	of	endpoints	that	match	the	request	criteria.

SignedEndpoint

Field Type Description

endpoint VoltEndpoint The	discovered	Volt
endpoint	information.

challenge_signature string

The	discovered	Volt's
challenge	code,	signed	by
the	Volt	private	key	and
base64	encoded.

If	a	client	knows	the	Volt
challenge	code	by	some	out-
of-band	means,	it	can	use
the	Volt	public	key
(contained	in	the	endpoint
information	above)	to
determine	that	the
discovered	Volt	also	knows
the	same	challenge	code.

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

Uses
variable-
length
encoding.
Inefficient

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#tdx.volt_api.volt.v1.SignedEndpoint
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#tdx.volt_api.volt.v1.VoltEndpoint
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html#string


int32

Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

Always

.proto
Type Notes C++ Java Python Go C# PHP



fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html


Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync

file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html


sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

SqliteDatabaseAPI
Top

The	Sqlite	Database	API	exposes	functions	that	enable	clients	to	manipulate	data	in	a	given
Volt	database.

Use	the	Sqlite	Server	API	to	create	the	database	resource.

BulkUpdate()

Execute	multiple	SQL	statements	in	a	single	transaction	via	a	single	RPC.

Request:	SqlBulkUpdateRequest
Response:	SqlBulkUpdateResponse

Execute()

Execute	a	single	SQL	statement.	Any	valid	SQL	is	accepted.	In	order	to	execute	non-
SELECT	statements,	the	caller	must	have	the	"write"	permission.

Request:	streaming	SqlExecuteRequest
Response:	streaming	SqlExecuteResponse

ImportCSV()

Import	CSV	data	into	a	table.

The	import	handler	will	inspect	the	incoming	CSV	data,	infer	the	columns	and	data	types
required,	and	create	and	populate	the	SQL	table.

The	CSV	must	contain	a	header	row	containing	the	column	names	and	at	least	one	row	of
data	so	that	the	types	can	be	inferred.

The	importer	assumes	all	data	in	any	given	CSV	file	relates	to	a	single	table.

The	data	can	either	be	streamed	in	chunks	or	retrieved	from	an	existing	resource.

If	the	data	is	streamed	in	chunks,	the	client	must	call	the	Close()	method	on	the	stream	to
indicate	that	it	has	finished.

Request:	streaming	SqlImportCSVRequest
Response:	streaming	SqlImportCSVResponse

file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlBulkUpdateRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlBulkUpdateResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlImportCSVRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlImportCSVResponse


SqlBulkUpdateRequest

Field Type Description

database_id string The	id	of	the	database	to
update.

statement string	repeated

The	SQL	statements	to
execute.	The	statements	will
be	executed	within	a
transaction	and	will	be
committed	if	all	statements
succeed.

Bear	in	mind	the	maximum
size	limit	of	a	single
message	is	64MB,	and
around	1MB	seems	to	be
optimal	in	terms	of
performance.

SqlBulkUpdateResponse

Field Type Description

status tdx.volt_api.volt.v1.Status Details	of	any	error	that	occurred	on	the	call.

SqlExecuteEnd

Ends	the	call.

Field Type Description

commit_transaction bool Set	to	commit	the	transaction.	If	not	set,	the	transaction	will
be	rolled	back.

SqlExecuteNext

Intentionally	empty.

SqlExecuteRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool


Field Type Description

start SqlExecuteStart

Initialise	the	request	with	the
database	id	and	whether	to
execute	within	a	transaction.

Also	includes	the	SQL
statement	to	execute.

next SqlExecuteNext To	retrieve	subsequent
pages,	send	a	`next`	request.

end SqlExecuteEnd

To	end	the	call,	send	an
`end`	request.	Only	really
necessary	for	transaction-
based	calls,	otherwise	clients
can	just	close	the	stream.

SqlExecuteResponse

One	of	the	following	fields	will	be	present	in	any	given	message.

Field Type Description

status tdx.volt_api.volt.v1.Status A	status	will	be	sent	on	error.

header RowHeader
The	initial	response	for	SELECT	statements
will	be	a	header	containing	the	column
names	and	types.

row VariantRow Each	row	in	the	result	set	will	be	sent	as	a
VariantRow.

affected_rows uint32 NYI	-	For	INSERT/UPDATE	statements	the
number	of	affected	rows	will	be	sent.

SqlExecuteStart

Field Type Description

database_id string The	id	of	the	database	to
execute	on.

transaction bool

Set	to	start	a	transaction.	If
not	set,	each	statement	will
be	executed	in	its	own
transaction.

statement string The	SQL	statement	to
execute.

This	can	be	used	to	limit
the	number	of	rows
returned	by	`SELECT`
statements	to	avoid
overloading	a	client.	It	is
similar	to	using

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteStart
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteNext
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.RowHeader
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.VariantRow
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


page_size uint32

similar	to	using
'LIMIT/OFFSET'	clauses
on	the	'SELECT'
statement,	but	this	method
is	easier	to	manage	and	the
entire	result	set	will	be
prepared	on	the	Volt,	and
the	client	can	then	page
through	it	by	sending
successive	messages.

can_cancel bool

Set	to	indicate	that	the
query	will	be	cancelled	if
the	client	disconnects.

This	is	useful	for	long
running	queries,	where	it
might	be	desirable	for	the
client	to	be	able	to	cancel
the	request	before	all	the
data	is	received.	However
this	requires	a	worker
thread	to	be	allocated	to
the	query	until	it
completes,	which	may
affect	performance	and
limit	the	number	of
concurrent	queries	that	can
be	executed	due	to	file
handle	limitations.

Only	applicable	to
`SELECT`	statements,
ignored	otherwise.

parameter SqlExecuteStart.ParameterEntry
repeated

The	values	to	set	for	each
parameter	defined	in	a
database	view.

This	field	is	only	relevant
to	'query'	databases,	i.e.
those	with	kind	`tdx:sqlite-
view`.

The	values	in	the	map
should	be	keyed	by
parameter	name.

A	query	may	have	no
parameters	defined,	in
which	case	leave	this	field
empty.

Field Type Description

SqlExecuteStart.ParameterEntry

Field Type Description
key string
value tdx.volt_api.volt.v1.AttributeValue

SqlImportCSVConfiguration

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlExecuteStart.ParameterEntry
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.AttributeValue


Field Type Description

database_id string
The	target	database	resource	id,	which	must	already	exist,
and	the	authenticated	account	must	have	write	access	to	the
resource.

table_name string The	target	table	name.

create_table bool Not	yet	implemented	-	flag	indicating	that	data	is	to	be
inserted	into	an	existing	table.

source_resource_id string

Optional	-	when	not	sending	the	data	via	this	RPC,	this
should	contain	the	id	of	a	resource	that	contains	the	CSV
data.	If	set,	the	authenticated	account	must	have	read	access
to	the	resource.

progress_interval uint32

Optional	-	the	interval	to	receive	progress	updates,	in
number	of	rows.	E.g.	set	to	1000	to	receive	progress
updates	every	1000	rows.	Set	to	0	to	disable	progress
updates.

schema_scan_limit uint32 The	number	of	rows	scanned	to	infer	the	schema.	Set	to	0	to
scan	the	entire	file.

SqlImportCSVRequest

Each	message	must	contain	one	and	only	one	of	the	following	fields.

Field Type Description

configuration SqlImportCSVConfiguration
The	initial	request	must	contain	the
configuration	parameters	for	the
import.

upload_complete bool Set	to	indicate	that	the	upload	is
complete.

block bytes

Subsequent	requests	may	contain	the
data	to	be	imported,	unless	importing
from	an	existing	resource	that	contains
the	CSV	data.	It	is	recommended	that
the	block	size	is	less	than	1MB.

abort bool Set	to	abort	the	import.

SqlImportCSVResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.SqlImportCSVConfiguration
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool


Field Type Description

status tdx.volt_api.volt.v1.Status The	status	will	contain	any	error	info.

row_count int64 The	number	of	rows	processed	-	this	will	be	sent
after	every	`progress_interval`	rows.

total_rows int64 The	total	number	of	rows	to	be	imported.

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Column

Field Type Description
name string
description string
type DataType

RowHeader

Field Type Description
column Column	repeated

Schema

Field Type Description
name string
description string
column Column	repeated

Variant

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.DataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.Column
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.Column


Field Type Description
text string
integer int64
real double
blob bytes
null bool

VariantRow

Field Type Description
column Variant	repeated

DataType

Just	reflect	SQLite	types	for	now.

Name Number Description
DATA_TYPE_UNKNOWN 0
DATA_TYPE_TEXT 1
DATA_TYPE_INTEGER 2
DATA_TYPE_REAL 3
DATA_TYPE_BLOB 4
DATA_TYPE_NULL 5

Access

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#double
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.data.v1.Variant


Field Type Description
id string

resource_id string The	resource	being	accessed.

resource_name string A	human-readable	short	identifier	of	the	resource.

resource_owner string The	identity	that	owns	the	resource.

resource_kind string	repeated The	kind	of	resource.

identity_did string The	identity	attempting	access.

credential_lookup string The	JSON	path	array	for	looking	up	verifiable
credentials.

identity_name string A	human-readable	short	identifier	of	the	subject.

identity_kind string	repeated The	kind	of	identity.

access string Requested	access.

extra string Optional	extra	data.

decision PolicyDecision Assigned	decision.

recursive bool

request_time int64 Time	at	which	the	request	was	made.

decision_time int64 Time	at	which	the	decision	was	taken.

request_count uint32 Counter	of	number	times	this	access	was	requested.

AttributeValue

Attribute	value	will	be	one	of	the	following	fields,	depending	on	the	data	type.

Field Type Description
string string
integer int64
real double
boolean bool
bytes bytes

Identity

A	Volt	identity	encompasses	a	Resource	and	a	set	of	identity	aliases.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#double
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bytes


Field Type Description
resource Resource
alias IdentityAlias	repeated

IdentityAlias

Field Type Description

id uint32 The	alias	id.

identity_did string The	corresponding	identity	id.

alias string The	actual	alias,	e.g.	a	common	name	or	key	fingerprint.

public_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key

private_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key,	and	the	key	is	stored	in	the	Volt.

alias_type string The	alias	type,	for	example	public	key,	email,	phone
number	etc.

issuer_id string The	identity	that	issued	this	alias.

authenticate PolicyDecision Indicates	if	this	alias	has	an	authenticate	policy	decision
assigned.

description string Optional	description	of	this	alias.

MethodDescription

Internal	use	only.

Field Type Description
path string
client_streaming bool
server_streaming bool

ProtoFile

Describes	a	single	protobuf	file	for	use	in	ServiceDescription.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool


Field Type Description

file_path string The	path	name	of	the	proto	file,	relative	to	the	'root'	of	the
namespace,	e.g.	"tdx/volt_api/volt/v1/volt.proto".

protobuf string The	actual	protobuf	file	contents.

service_name string
repeated

Optional	-	the	service(s)	contained	in	this	protobuf	file,	if
omitted	here	they	will	be	loaded	dynamically	from	the
protobuf.

ProxyConnection

Represents	an	outbound	connection	from	a	Volt	to	a	remote	service	that	will	act	as	a	proxy	for
that	Volt.

This	enables	Volts	to	bypass	firewall	and	NATs.

Example	-	connection	from	a	Volt	to	a	Relay	Volt	running	on	the	public	internet,	such	as
tdxvolt.com

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


Field Type Description

id string Unique	connection	id.

name string A	human-readable	name	for	the	connection.

address string The	remote	address	of	the	proxy	service.

ca_pem string The	certificate	authority	of	the	proxy	service.

enabled bool Indicates	this	connection	is	enabled.

connected bool Indicates	this	connection	is	currently	in	use.

enable_http_proxy bool Indicates	that	this	connection	will	handle	HTTP
proxying	as	well	as	GRPC.

disable_volt_api bool Set	to	indicate	the	Volt	API	itself	is	not
automatically	exposed	to	the	connection.

challenge string Optional	challenge	that	can	be	presented	in	the
authentication	request.

target_id string The	id	of	the	target	Volt	that	this	connection	is
bound	to.

sync_did_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

did_registry_sync_id uint64 The	id	of	the	last	DID	registry	operation	that	was
synchronised.

sync_vc_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

vc_registry_sync_timestamp uint64 The	timestamp	of	the	last	VC	registry	operation
that	was	synchronised.

session_id string
certificate string

Resource

The	core	Resource	metadata	schema.

Field Type Description

id string The	globally	unique
resource	id.

description string Optional	description.

Human-readable	resource

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


name string Human-readable	resource
name.

share_mode ShareMode Not	in	use.

volt_id string The	id	of	the	Volt	that	hosts
this	resource.

service_description ServiceDescription
Optional	description	of	any
services	exposed	by	this
resource.

attribute ResourceAttribute	repeated Attributes	assigned	to	the
resource.

platform_version Version The	version	of	the	platform.

version uint64 The	resource	version.

owner string The	identity	of	the	resource
owner.

created uint64 Creation	timestamp,
milliseconds	since	epoch.

modified uint64
Last	modification
timestamp,	milliseconds
since	epoch.

status ResourceStatus Not	in	use.

kind string	repeated The	taxonomy	of	the
resource.

online_status OnlineStatus

The	online	status.

For	most	kinds	of	resource
this	indicates	that	the	server
hosting	the	resource	is
online,	the	exception	being
identity	resources,	in	which
case	the	status	reflects
whether	or	not	the	identity
has	a	live	connection.

All	built-in	resources	are
hosted	by	the	Volt	itself	and
are	therefore	always	online
when	the	Volt	is	running.

Resources	hosted	by
external	servers	are	online	if
the	server	itself	is	online	and
has	registered	the	resource
as	online	using
`setServiceStatus`.

The	size	of	the	resource

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ShareMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ServiceDescription
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ResourceAttribute
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ResourceStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.OnlineStatus


size uint64 The	size	of	the	resource
store	in	bytes.

store string The	path	to	the	resource
store.

alias string	repeated

Alias(es)	that	can	be	used	to
refer	to	the	resource	rather
than	the	id.

Each	alias	must	be	unique	to
the	Volt,	this	is	enforced	by
the	API.

No	format	restrictions	are
currently	applied	to	alias,
but	this	may	change	in
future,	for	the	time	being	it
makes	sense	to	stick	to
alphanumeric	characters	and
'_'	or	'-'.

content_hash string
The	hash	of	the	resource
content	contained	in	the
store.

child Resource	repeated Not	yet	supported.

Field Type Description

ResourceAttribute

A	resource	attribute	enables	storing	arbitrary	data	associated	with	a	resource.

Field Type Description
id uint32
attribute_id string
resource_id string
data_type AttributeDataType
value AttributeValue	repeated

ServiceDescription

Describes	a	Volt	service.

Field Type Description

host_type ServiceHostType The	configuration	used	by	the	host	of	this
service.

host_client_id string

The	identity	of	the	client	that	is	exposing	the
service.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	first
authenticate	and	obtain	a	client	DID	and
credentials	in	order	to	be	able	to	create	service
resource(s).

Any	resources	that	are	owned	by	this	client
will	be	marked	as	online	if	the	client	itself	is
online,	i.e.	has	a	live	connection	to	the	Volt.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.AttributeDataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.AttributeValue
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ServiceHostType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


This	will	be	empty	if	the	service	is	a	built-in
Volt	service.

host_service_id string

The	id	of	the	resource	that	holds	the	protobuf
definition	for	this	resource.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	create	a
service	resource	that	holds	details	of	the
protobuf	methods	exposed	by	the	service.

For	built-in	services,	i.e.	those	hosted	by	the
Volt,	this	will	set	to	the	Volt	id.

host_address string

The	address	of	the	grpc	server	hosting	this
service.

Only	relevant	to	grpc-hosted	services.

host_ca_pem string

The	certificate	authority	(chain)	that	signed
the	service	server	certificate.

This	is	only	relevant	to	grpc-hosted	services.

host_public_key string

The	public	key	of	the	service	host,	which	is
used	to	encrypt	payloads.

This	may	change	as	the	service	comes	and
goes	online.

host_connection_id string The	connection	id	currently	used	to	host	this
service.

host_session_id string Internal	use	only.

discoverable DiscoveryMode The	discovery	mode.

ping_timestamp int64 The	ping	timestamp	of	the	server	hosting	this
service.

proto_file ProtoFile	repeated The	protobuf	definitions	of	the	APIs	exposed
by	this	service.

service_api string	repeated
The	fully	qualified	names	of	the	protobuf
services,	for	example
tdx.volt_api.webcam.v1.WebcamControlAPI.

method MethodDescription
repeated Internal	use	only.

Field Type Description

Session

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.DiscoveryMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.ProtoFile
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.MethodDescription


Field Type Description
id string
identity_did string
identity_name string
ip string
created uint64
modified uint64
expires uint64
credential SessionCredential	repeated
origin string
status SessionStatus

SessionCredential

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.SessionCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.SessionStatus


Field Type Description

id uint32 The	alias	id.

session_id string The	corresponding	session	id.

credential_type string The	credential	type,	for	example	public	key,	verifiable
credential,	challenge	etc.

description string Optional	description	of	this	credential.

vc_id string The	id	of	the	verifiable	credential,	if	the	credential	type	is
volt:vc-claim.

vc_json string The	verifiable	credential	in	JSON	format,	if	the	credential	type
is	volt:vc-claim.

vc_subject_id string The	subject	id	extracted	from	the	`vc_json`	field.

vc_issuer_id string The	issuer	id	extracted	from	the	`vc_json`	field.

vc_type string The	comma-separated	type(s)	extracted	from	the	`vc_json`
field.

challenge string The	challenge	string,	if	the	credential	type	is	volt:challenge.

key_fingerprint string The	key	fingerprint,	if	the	credential	type	is	volt:public-key.

public_key string The	PEM-encoded	public	key,	if	the	credential	type	is
volt:public-key.

private_key string
Optional	PEM-encoded	private	key,	if	the	credential	type	is
volt:public-key.	Only	used	for	ephemeral	REST-base	sessions
created	dynamically	after	OTP	authentication.

extra string Type-specific	extra	data	stored	with	the	credential.

extra_2 string More	type-specific	data	stored	with	the	credential.

Version

Using	`major`	and	`minor`	here	upsets	the	GNU	C	Library,	so	we	add	a	`version_`	prefix.

Field Type Description
version_major uint32
version_minor uint32
version_patch uint32

VoltEndpoint

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32


Field Type Description

id string The	globally	unique	Volt	id.

display_name string Human-readable	name	of	the	Volt.

local_address string The	actual	host/ip	the	volt	is	physically	running	on	(might
be	a	local	ip	if	behind	firewall).

http_address string The	address	of	the	endpoint	HTTP	server.

relay_address string

The	global	(Relay)	address	of	the	volt.	Any	given	volt	may
be	advertising	on	more	than	one	Relay	instance.	The	value
given	here	will	depend	on	the	Relay	instance	that	handled
the	endpoint	query	response.

relay_ca_pem string The	root	certificate	of	the	Relay	instance	referred	to	in
`relay_address`.

ca_pem string The	self-signed	certificate	used	by	the	volt	to	sign	client
certificates.

public_key string The	Volt	public	key	in	PEM	format.

fingerprint string The	base58	fingerprint	of	the	Volt	public	key.

online_status OnlineStatus The	online	status	of	the	Volt.

has_relay bool Indicates	that	this	Volt	acts	as	a	Relay.

api_version Version The	API	version	supported	by	the	endpoint.

description string Optional	description	of	the	endpoint.

did_registry string
repeated The	list	of	DID	registries	that	this	Volt	trusts.

VoltParameters

Encapsulates	the	various	Volt	parameters	that	are	configurable	by	the	Volt	owner.

Field Type Description
id string

name string The	name	of	the	Volt.

description string Human-readable
description	of	the	Volt.

db_driver string The	database	driver	in	use.

location string The	local	file	path	location

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.OnlineStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


location string The	local	file	path	location
of	the	Volt	storage.

key_strategy string
The	key	strategy	in	use,	this
determines	how	the	root
key	is	stored.

key_id string
The	identifier	for	the	key,
the	semantics	depend	on
the	key	strategy	in	use.

ca_pem string The	Volt	certificate
authority.

cert_pem string The	Volt	API	server
certificate.

fixed_host string

Optional	hostname	of	the
Volt	if	using	DNS	or	a
static	IP	address,	e.g.
tdxvolt.com

grpc_port int32 Port	to	use	for	hosting	the
Volt	management	service.

http_port int32 Port	to	use	for	hosting	the
Volt	grpc	service.

http_key_path string The	Volt	http	server	key
file	path.

http_cert_path string The	Volt	http	server
certificate	file	path.

http_ca_path string
The	Volt	http	server
certificate	authority	chain
file	path.

discoverable bool
Indicates	the	Volt	will	be
discoverable	by	clients
using	the	discovery	api.

authenticate_challenge string

Optional	challenge	code
that	can	be	used	aid	in	the
process	of	authenticating
clients.

require_authenticate_challenge bool

Indicates	that	clients	must
present	the	correct
challenge	code	in	order	to
be	able	to	authenticate.

confirm_stop bool Internal	use	only.

auto_start bool Internal	use	only.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool


enable_messaging bool Internal	use	only.

has_relay bool

Set	to	indicate	this	Volt	acts
as	a	Relay.

This	means	this	Volt	can	act
as	a	proxy	for	other	Volts
(or	in	fact	any	client)	that
connect	to	it.

relay_open bool

Set	to	run	the	Relay	open	to
any	client,	i.e.	clients	can
utilise	the	Relay	without
first	authenticating.

enable_http_server bool Determines	if	the	Volt
HTTP	server	is	enabled.

http_server_secure bool Determines	whether	the
HTTP	server	employs	TLS.

enable_http_forwarding bool
Determines	whether	the
HTTP	server	supports
forwarding.

enable_http_api bool
Determines	if	the	Volt
REST	API	is	exposed	via
the	HTTP	server.

enable_websocket_api bool
Determines	if	the	Volt
Websocket	API	is	exposed
via	the	HTTP	server.

address string
The	hostname:port	at
which	the	Volt	API	is
currently	running.

encrypt_file_store bool Set	to	indicate	the	Volt	file
store	is	encrypted.

connection_id string

This	is	a	unique	connection
id.

Indicates	that	these
parameters	refer	to	a
connection	to	a	remote	Volt
rather	than	a	local	Volt.

relay_ca_pem string
The	certificate	authority	of
the	Relay	if	this	is	a	remote
connection	via	a	Relay.

Optional	override	of	the
http	address,	rather	than
using	the	default	of
fixed_host:http_port.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string


http_address_override string

fixed_host:http_port.

This	is	useful	if	the	Volt	is
behind	a	firewall	or	NAT,
and	the	http	server	is
listening	on	a	different	port

from	80	or	443	but	this	is
hidden	by	the	proxy.	For
example,	if	the	`fixed_host`
is	`coreid.com`	and	http
server	is

listening	on	2115,	but	the
proxy	is	forwarding	443	to
2115,	then	the
http_address_override
would	be	set	to

`https://coreid.com`.

alias string

An	optional	alias	that	can
be	used	to	refer	to	the	Volt
rather	than	the	`id`	field.

This	alias	must	be	unique
within	the	scope	of	the
Battery	in	which	the	Volt	is
stored.

version Version The	runtime	version	this
Volt	is	running.

approve_on_challenge bool

If	set,	indicates	that	any
client	that	provides	the
correct	challenge	during
authentication	will
automatically	be	approved
to	access	the	Volt.

approve_on_did bool

If	set,	indicates	that	any
client	that	proves
ownership	of	a	DID	known
to	the	Volt	will
automatically	be	approved
to	access	the	Volt.

enable_did_registry bool
If	set,	indicates	that	clients
can	register	DIDs	with	this
Volt.

did_registry string	repeated Zero	or	more	URLs	of
trusted	peer	DID	registries.

enable_outbound_smtp bool If	set,	enables	outbound
SMTP.

outbound_smtp_host string The	SMTP	host	to	use	for
sending	emails.

outbound_smtp_port uint32 The	SMTP	port	to	use	for
sending	emails.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint32


sending	emails.

outbound_smtp_user string The	SMTP	username	to	use
for	sending	emails.

outbound_smtp_password string The	SMTP	password	to	use
for	sending	emails.

enable_anonymous_create bool

If	set,	enables	sessions	that
authenticate	using
credentials	rather	than	a
DID	to	create	resources	in
the	'anonymous'	system
folder.

catch_all_auth_decision PolicyDecision

The	decision	to	apply	to	all
authentication	requests	that
do	not	match	any	other
policy.

The	default	is	PROMPT.

enable_policy_cache bool If	set,	enables	caching	of
policy	decisions.

enable_terminal bool If	set,	enables	the	terminal
API.

start_time uint64 The	time	at	which	the	Volt
was	started.

Field Type Description

AttributeDataType

Attribute	data	types.

Name Number Description
ATTRIBUTE_DATA_TYPE_UNKNOWN 0
ATTRIBUTE_DATA_TYPE_STRING 1
ATTRIBUTE_DATA_TYPE_INTEGER 2
ATTRIBUTE_DATA_TYPE_REAL 3
ATTRIBUTE_DATA_TYPE_BOOLEAN 4
ATTRIBUTE_DATA_TYPE_BYTES 5
ATTRIBUTE_DATA_TYPE_IDENTITY 100
ATTRIBUTE_DATA_TYPE_RESOURCE 101

DiscoveryMode

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html#uint64


Name Number Description
DISCOVERY_MODE_UNKNOWN 0

DISCOVERY_MODE_TRUSTED 1
Only	local	identities	with
explicit	policy	PERMIT	can
discover.

DISCOVERY_MODE_PUBLIC 2 Any	bound	local	identity	can
discover.

DISCOVERY_MODE_TRUSTED_GLOBAL 3

Only	identities	with	explicit
policy	PERMIT	can	discover,
and	the	service	will	be
available	to	local	and	non-
local	(Relayed)	clients.

DISCOVERY_MODE_PUBLIC_GLOBAL 4

Any	bound	identity	can
discover,	and	the	service	will
be	available	to	local	and	non-
local	(Relayed)	clients.

OnlineStatus

Name Number Description
ONLINE_STATUS_UNKNOWN 0
ONLINE_STATUS_ONLINE 1
ONLINE_STATUS_OFFLINE 2

PolicyDecision

@todo	currently	this	must	align	with	AuthorisationDecision	enum	in	policy	library,	but	some
of	the	values	are	irrelevant	outside	of	the	public	API	so	we	need	a	public-facing	enum	and
some	translation.

Name Number Description
POLICY_DECISION_UNKNOWN 0
POLICY_DECISION_PROMPT 1
POLICY_DECISION_PERMIT 2
POLICY_DECISION_DENY 3
POLICY_DECISION_INDETERMINATE 4
POLICY_DECISION_NOT_APPLICABLE 5
POLICY_DECISION_APPLICABLE 6
POLICY_DECISION_PENDING 7

ResourceStatus

Not	used	ATM.

Name Number Description
RESOURCE_STATUS_UNKNOWN 0
RESOURCE_STATUS_LIVE 1
RESOURCE_STATUS_INACTIVE 2
RESOURCE_STATUS_DELETED 999

SecureMode



Name Number Description
SECURE_MODE_UNKNOWN 0
SECURE_MODE_INSECURE 1
SECURE_MODE_TLS 2

ServiceHostType

Name Number Description
SERVICE_HOST_TYPE_UNKNOWN 0

SERVICE_HOST_TYPE_BUILTIN 1 A	built-in	service	hosted	by	the
Volt.

SERVICE_HOST_TYPE_SERVER 2 A	service	hosted	by	a	grpc	server
other	than	the	Volt.

SERVICE_HOST_TYPE_RELAYED 3

A	service	hosted	by	a	Volt	client	via
a	relay	connection,	i.e.	the	service	is
not	exposed	by	a	server	as	such,
rather	a	Volt	client	implements	the
service	and	a	Volt	acts	as	a	proxy,
calling	back	to	the	client	to
implement	the	methods.

SessionStatus

Name Number Description
SESSION_STATUS_UNKNOWN 0
SESSION_STATUS_PENDING 1
SESSION_STATUS_LIVE 2
SESSION_STATUS_EXPIRED 3
SESSION_STATUS_REVOKED 4
SESSION_STATUS_REJECTED 5

ShareMode

Not	used	ATM.

Name Number Description
SHARE_MODE_UNKNOWN 0
SHARE_MODE_TRUSTED 1
SHARE_MODE_PUBLIC_READ 2

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative



int32
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

Always
four
bytes.
More

.proto
Type Notes C++ Java Python Go C# PHP



fixed32

More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html


Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

WireAPI
Top

The	Wire	API	allows	clients	to	subscribe	and	publish	to	Volt	wire	resources.

PublishWire()

Establishes	a	client-streaming	call	to	the	wire	resource.

Request:	streaming	PublishWireRequest
Response:	streaming	PublishWireResponse

SubscribeWire()

Establishes	a	bi-directional	streaming	call	to	the	wire	resource.

Although	we're	only	really	interested	in	receiving	data	from	the	wire,	a	bi-directional	stream
is	required	so	that	we	can	gracefully	stop	the	subscription.

Request:	streaming	SubscribeWireRequest
Response:	streaming	SubscribeWireResponse

PublishWireRequest

Because	the	publish	RPC	is	streaming,	the	policy	will	not	be	checked	until	the	first	message
arrives.	This	can	mean	that	the	`PublishWire`	call	appears	to	succeed	but	then	fails	after	the
first	attempt	to	publish	a	message.

To	avoid	this,	clients	can	immediately	send	a	message	with	the	`wire_id`	set	and	no	`chunk`
set.	This	will	establish	that	the	correct	permissions	are	in	place	and	fail	fast	if	not.

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.PublishWireRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.PublishWireResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.SubscribeWireRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.SubscribeWireResponse


Field Type Description

wire_id string Only	necessary	in	the	first
payload.

chunk bytes The	chunk	of	data	to
publish.

do_not_persist bool

Whether	to	persist	the
chunk.

This	is	only	valid	if	the	wire
is	configured	to	persist
messages,	i.e.	the	`volt:wire-
persist`	attribute	is	true.

PublishWireResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

SubscribeWireRequest

The	request	must	include	one	of	the	following	fields.

Field Type Description

wire_id string The	wire	id,	only	required	for	the	first	message.

stop bool Request	to	stop	the	subscription.

SubscribeWireResponse

One	of	the	following	fields	will	be	present	in	the	response.

Field Type Description

status Status Details	of	any	error	that	occured	on	the	call.

chunk bytes Data	received	from	the	wire.

Status

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#bytes


Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

int32

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

Uses

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html#string


uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass
A	string
must
always

.proto
Type Notes C++ Java Python Go C# PHP



string
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html


Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

SqliteServerAPI
Top

The	Sqlite	Server	API	provides	database	management	functions.

Use	the	VoltAPI	DeleteResource	function	to	delete	a	database.

CreateDatabase()

Create	a	new	database	resource.

file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#title


Request:	CreateDatabaseRequest
Response:	CreateDatabaseResponse

CreateDatabaseRequest

Field Type Description

name string The	name	of	the
database	to	create.

create_in_parent_id string

Optional	-	the	id	of	the
folder	resource	in
which	to	create	the
database.	If	omitted,
the	callers	home	folder
is	used.

encrypted bool

Set	to	encrypt	the
database.	The
encryption	key	will	be
generated	by	the	server,
the	internal	Volt	server
uses	the	root	volt	key.

read_audit bool
Set	to	audit	all
SELECT	database
operations.

write_audit bool

Set	to	audit	all
INSERT,	UPDATE,
and	DELETE	database
operations.

discoverable tdx.volt_api.volt.v1.DiscoveryMode
The	discovery	mode	of
the	underlying	Volt
resource.

alias string	repeated

Alias(es)	that	can	be
used	to	refer	to	the
database	rather	than	the
id.

Each	alias	must	be
unique	to	the	Volt,	this
is	enforced	by	the	API.

No	format	restrictions
are	currently	applied	to
alias,	but	this	may
change	in	future,	for
the	time	being	it	makes
sense	to	stick	to
alphanumeric
characters	and	'_'	or	'-'.

description string Optional	description	of
the	database.

CreateDatabaseResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.data.v1.CreateDatabaseRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.data.v1.CreateDatabaseResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.DiscoveryMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


Field Type Description

status tdx.volt_api.volt.v1.Status Any	error	message	will	be	returned	here.

resource tdx.volt_api.volt.v1.Resource The	new	database	resource	on	success.

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Access

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


Field Type Description
id string

resource_id string The	resource	being	accessed.

resource_name string A	human-readable	short	identifier	of	the	resource.

resource_owner string The	identity	that	owns	the	resource.

resource_kind string	repeated The	kind	of	resource.

identity_did string The	identity	attempting	access.

credential_lookup string The	JSON	path	array	for	looking	up	verifiable
credentials.

identity_name string A	human-readable	short	identifier	of	the	subject.

identity_kind string	repeated The	kind	of	identity.

access string Requested	access.

extra string Optional	extra	data.

decision PolicyDecision Assigned	decision.

recursive bool

request_time int64 Time	at	which	the	request	was	made.

decision_time int64 Time	at	which	the	decision	was	taken.

request_count uint32 Counter	of	number	times	this	access	was	requested.

AttributeValue

Attribute	value	will	be	one	of	the	following	fields,	depending	on	the	data	type.

Field Type Description
string string
integer int64
real double
boolean bool
bytes bytes

Identity

A	Volt	identity	encompasses	a	Resource	and	a	set	of	identity	aliases.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#double
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bytes


Field Type Description
resource Resource
alias IdentityAlias	repeated

IdentityAlias

Field Type Description

id uint32 The	alias	id.

identity_did string The	corresponding	identity	id.

alias string The	actual	alias,	e.g.	a	common	name	or	key	fingerprint.

public_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key

private_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key,	and	the	key	is	stored	in	the	Volt.

alias_type string The	alias	type,	for	example	public	key,	email,	phone
number	etc.

issuer_id string The	identity	that	issued	this	alias.

authenticate PolicyDecision Indicates	if	this	alias	has	an	authenticate	policy	decision
assigned.

description string Optional	description	of	this	alias.

MethodDescription

Internal	use	only.

Field Type Description
path string
client_streaming bool
server_streaming bool

ProtoFile

Describes	a	single	protobuf	file	for	use	in	ServiceDescription.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool


Field Type Description

file_path string The	path	name	of	the	proto	file,	relative	to	the	'root'	of	the
namespace,	e.g.	"tdx/volt_api/volt/v1/volt.proto".

protobuf string The	actual	protobuf	file	contents.

service_name string
repeated

Optional	-	the	service(s)	contained	in	this	protobuf	file,	if
omitted	here	they	will	be	loaded	dynamically	from	the
protobuf.

ProxyConnection

Represents	an	outbound	connection	from	a	Volt	to	a	remote	service	that	will	act	as	a	proxy	for
that	Volt.

This	enables	Volts	to	bypass	firewall	and	NATs.

Example	-	connection	from	a	Volt	to	a	Relay	Volt	running	on	the	public	internet,	such	as
tdxvolt.com

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


Field Type Description

id string Unique	connection	id.

name string A	human-readable	name	for	the	connection.

address string The	remote	address	of	the	proxy	service.

ca_pem string The	certificate	authority	of	the	proxy	service.

enabled bool Indicates	this	connection	is	enabled.

connected bool Indicates	this	connection	is	currently	in	use.

enable_http_proxy bool Indicates	that	this	connection	will	handle	HTTP
proxying	as	well	as	GRPC.

disable_volt_api bool Set	to	indicate	the	Volt	API	itself	is	not
automatically	exposed	to	the	connection.

challenge string Optional	challenge	that	can	be	presented	in	the
authentication	request.

target_id string The	id	of	the	target	Volt	that	this	connection	is
bound	to.

sync_did_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

did_registry_sync_id uint64 The	id	of	the	last	DID	registry	operation	that	was
synchronised.

sync_vc_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

vc_registry_sync_timestamp uint64 The	timestamp	of	the	last	VC	registry	operation
that	was	synchronised.

session_id string
certificate string

Resource

The	core	Resource	metadata	schema.

Field Type Description

id string The	globally	unique
resource	id.

description string Optional	description.

Human-readable	resource

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


name string Human-readable	resource
name.

share_mode ShareMode Not	in	use.

volt_id string The	id	of	the	Volt	that	hosts
this	resource.

service_description ServiceDescription
Optional	description	of	any
services	exposed	by	this
resource.

attribute ResourceAttribute	repeated Attributes	assigned	to	the
resource.

platform_version Version The	version	of	the	platform.

version uint64 The	resource	version.

owner string The	identity	of	the	resource
owner.

created uint64 Creation	timestamp,
milliseconds	since	epoch.

modified uint64
Last	modification
timestamp,	milliseconds
since	epoch.

status ResourceStatus Not	in	use.

kind string	repeated The	taxonomy	of	the
resource.

online_status OnlineStatus

The	online	status.

For	most	kinds	of	resource
this	indicates	that	the	server
hosting	the	resource	is
online,	the	exception	being
identity	resources,	in	which
case	the	status	reflects
whether	or	not	the	identity
has	a	live	connection.

All	built-in	resources	are
hosted	by	the	Volt	itself	and
are	therefore	always	online
when	the	Volt	is	running.

Resources	hosted	by
external	servers	are	online	if
the	server	itself	is	online	and
has	registered	the	resource
as	online	using
`setServiceStatus`.

The	size	of	the	resource

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ShareMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ServiceDescription
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ResourceAttribute
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ResourceStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.OnlineStatus


size uint64 The	size	of	the	resource
store	in	bytes.

store string The	path	to	the	resource
store.

alias string	repeated

Alias(es)	that	can	be	used	to
refer	to	the	resource	rather
than	the	id.

Each	alias	must	be	unique	to
the	Volt,	this	is	enforced	by
the	API.

No	format	restrictions	are
currently	applied	to	alias,
but	this	may	change	in
future,	for	the	time	being	it
makes	sense	to	stick	to
alphanumeric	characters	and
'_'	or	'-'.

content_hash string
The	hash	of	the	resource
content	contained	in	the
store.

child Resource	repeated Not	yet	supported.

Field Type Description

ResourceAttribute

A	resource	attribute	enables	storing	arbitrary	data	associated	with	a	resource.

Field Type Description
id uint32
attribute_id string
resource_id string
data_type AttributeDataType
value AttributeValue	repeated

ServiceDescription

Describes	a	Volt	service.

Field Type Description

host_type ServiceHostType The	configuration	used	by	the	host	of	this
service.

host_client_id string

The	identity	of	the	client	that	is	exposing	the
service.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	first
authenticate	and	obtain	a	client	DID	and
credentials	in	order	to	be	able	to	create	service
resource(s).

Any	resources	that	are	owned	by	this	client
will	be	marked	as	online	if	the	client	itself	is
online,	i.e.	has	a	live	connection	to	the	Volt.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.AttributeDataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.AttributeValue
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ServiceHostType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


This	will	be	empty	if	the	service	is	a	built-in
Volt	service.

host_service_id string

The	id	of	the	resource	that	holds	the	protobuf
definition	for	this	resource.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	create	a
service	resource	that	holds	details	of	the
protobuf	methods	exposed	by	the	service.

For	built-in	services,	i.e.	those	hosted	by	the
Volt,	this	will	set	to	the	Volt	id.

host_address string

The	address	of	the	grpc	server	hosting	this
service.

Only	relevant	to	grpc-hosted	services.

host_ca_pem string

The	certificate	authority	(chain)	that	signed
the	service	server	certificate.

This	is	only	relevant	to	grpc-hosted	services.

host_public_key string

The	public	key	of	the	service	host,	which	is
used	to	encrypt	payloads.

This	may	change	as	the	service	comes	and
goes	online.

host_connection_id string The	connection	id	currently	used	to	host	this
service.

host_session_id string Internal	use	only.

discoverable DiscoveryMode The	discovery	mode.

ping_timestamp int64 The	ping	timestamp	of	the	server	hosting	this
service.

proto_file ProtoFile	repeated The	protobuf	definitions	of	the	APIs	exposed
by	this	service.

service_api string	repeated
The	fully	qualified	names	of	the	protobuf
services,	for	example
tdx.volt_api.webcam.v1.WebcamControlAPI.

method MethodDescription
repeated Internal	use	only.

Field Type Description

Session

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.DiscoveryMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.ProtoFile
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.MethodDescription


Field Type Description
id string
identity_did string
identity_name string
ip string
created uint64
modified uint64
expires uint64
credential SessionCredential	repeated
origin string
status SessionStatus

SessionCredential

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.SessionCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.SessionStatus


Field Type Description

id uint32 The	alias	id.

session_id string The	corresponding	session	id.

credential_type string The	credential	type,	for	example	public	key,	verifiable
credential,	challenge	etc.

description string Optional	description	of	this	credential.

vc_id string The	id	of	the	verifiable	credential,	if	the	credential	type	is
volt:vc-claim.

vc_json string The	verifiable	credential	in	JSON	format,	if	the	credential	type
is	volt:vc-claim.

vc_subject_id string The	subject	id	extracted	from	the	`vc_json`	field.

vc_issuer_id string The	issuer	id	extracted	from	the	`vc_json`	field.

vc_type string The	comma-separated	type(s)	extracted	from	the	`vc_json`
field.

challenge string The	challenge	string,	if	the	credential	type	is	volt:challenge.

key_fingerprint string The	key	fingerprint,	if	the	credential	type	is	volt:public-key.

public_key string The	PEM-encoded	public	key,	if	the	credential	type	is
volt:public-key.

private_key string
Optional	PEM-encoded	private	key,	if	the	credential	type	is
volt:public-key.	Only	used	for	ephemeral	REST-base	sessions
created	dynamically	after	OTP	authentication.

extra string Type-specific	extra	data	stored	with	the	credential.

extra_2 string More	type-specific	data	stored	with	the	credential.

Version

Using	`major`	and	`minor`	here	upsets	the	GNU	C	Library,	so	we	add	a	`version_`	prefix.

Field Type Description
version_major uint32
version_minor uint32
version_patch uint32

VoltEndpoint

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32


Field Type Description

id string The	globally	unique	Volt	id.

display_name string Human-readable	name	of	the	Volt.

local_address string The	actual	host/ip	the	volt	is	physically	running	on	(might
be	a	local	ip	if	behind	firewall).

http_address string The	address	of	the	endpoint	HTTP	server.

relay_address string

The	global	(Relay)	address	of	the	volt.	Any	given	volt	may
be	advertising	on	more	than	one	Relay	instance.	The	value
given	here	will	depend	on	the	Relay	instance	that	handled
the	endpoint	query	response.

relay_ca_pem string The	root	certificate	of	the	Relay	instance	referred	to	in
`relay_address`.

ca_pem string The	self-signed	certificate	used	by	the	volt	to	sign	client
certificates.

public_key string The	Volt	public	key	in	PEM	format.

fingerprint string The	base58	fingerprint	of	the	Volt	public	key.

online_status OnlineStatus The	online	status	of	the	Volt.

has_relay bool Indicates	that	this	Volt	acts	as	a	Relay.

api_version Version The	API	version	supported	by	the	endpoint.

description string Optional	description	of	the	endpoint.

did_registry string
repeated The	list	of	DID	registries	that	this	Volt	trusts.

VoltParameters

Encapsulates	the	various	Volt	parameters	that	are	configurable	by	the	Volt	owner.

Field Type Description
id string

name string The	name	of	the	Volt.

description string Human-readable
description	of	the	Volt.

db_driver string The	database	driver	in	use.

location string The	local	file	path	location

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.OnlineStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


location string The	local	file	path	location
of	the	Volt	storage.

key_strategy string
The	key	strategy	in	use,	this
determines	how	the	root
key	is	stored.

key_id string
The	identifier	for	the	key,
the	semantics	depend	on
the	key	strategy	in	use.

ca_pem string The	Volt	certificate
authority.

cert_pem string The	Volt	API	server
certificate.

fixed_host string

Optional	hostname	of	the
Volt	if	using	DNS	or	a
static	IP	address,	e.g.
tdxvolt.com

grpc_port int32 Port	to	use	for	hosting	the
Volt	management	service.

http_port int32 Port	to	use	for	hosting	the
Volt	grpc	service.

http_key_path string The	Volt	http	server	key
file	path.

http_cert_path string The	Volt	http	server
certificate	file	path.

http_ca_path string
The	Volt	http	server
certificate	authority	chain
file	path.

discoverable bool
Indicates	the	Volt	will	be
discoverable	by	clients
using	the	discovery	api.

authenticate_challenge string

Optional	challenge	code
that	can	be	used	aid	in	the
process	of	authenticating
clients.

require_authenticate_challenge bool

Indicates	that	clients	must
present	the	correct
challenge	code	in	order	to
be	able	to	authenticate.

confirm_stop bool Internal	use	only.

auto_start bool Internal	use	only.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool


enable_messaging bool Internal	use	only.

has_relay bool

Set	to	indicate	this	Volt	acts
as	a	Relay.

This	means	this	Volt	can	act
as	a	proxy	for	other	Volts
(or	in	fact	any	client)	that
connect	to	it.

relay_open bool

Set	to	run	the	Relay	open	to
any	client,	i.e.	clients	can
utilise	the	Relay	without
first	authenticating.

enable_http_server bool Determines	if	the	Volt
HTTP	server	is	enabled.

http_server_secure bool Determines	whether	the
HTTP	server	employs	TLS.

enable_http_forwarding bool
Determines	whether	the
HTTP	server	supports
forwarding.

enable_http_api bool
Determines	if	the	Volt
REST	API	is	exposed	via
the	HTTP	server.

enable_websocket_api bool
Determines	if	the	Volt
Websocket	API	is	exposed
via	the	HTTP	server.

address string
The	hostname:port	at
which	the	Volt	API	is
currently	running.

encrypt_file_store bool Set	to	indicate	the	Volt	file
store	is	encrypted.

connection_id string

This	is	a	unique	connection
id.

Indicates	that	these
parameters	refer	to	a
connection	to	a	remote	Volt
rather	than	a	local	Volt.

relay_ca_pem string
The	certificate	authority	of
the	Relay	if	this	is	a	remote
connection	via	a	Relay.

Optional	override	of	the
http	address,	rather	than
using	the	default	of
fixed_host:http_port.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string


http_address_override string

fixed_host:http_port.

This	is	useful	if	the	Volt	is
behind	a	firewall	or	NAT,
and	the	http	server	is
listening	on	a	different	port

from	80	or	443	but	this	is
hidden	by	the	proxy.	For
example,	if	the	`fixed_host`
is	`coreid.com`	and	http
server	is

listening	on	2115,	but	the
proxy	is	forwarding	443	to
2115,	then	the
http_address_override
would	be	set	to

`https://coreid.com`.

alias string

An	optional	alias	that	can
be	used	to	refer	to	the	Volt
rather	than	the	`id`	field.

This	alias	must	be	unique
within	the	scope	of	the
Battery	in	which	the	Volt	is
stored.

version Version The	runtime	version	this
Volt	is	running.

approve_on_challenge bool

If	set,	indicates	that	any
client	that	provides	the
correct	challenge	during
authentication	will
automatically	be	approved
to	access	the	Volt.

approve_on_did bool

If	set,	indicates	that	any
client	that	proves
ownership	of	a	DID	known
to	the	Volt	will
automatically	be	approved
to	access	the	Volt.

enable_did_registry bool
If	set,	indicates	that	clients
can	register	DIDs	with	this
Volt.

did_registry string	repeated Zero	or	more	URLs	of
trusted	peer	DID	registries.

enable_outbound_smtp bool If	set,	enables	outbound
SMTP.

outbound_smtp_host string The	SMTP	host	to	use	for
sending	emails.

outbound_smtp_port uint32 The	SMTP	port	to	use	for
sending	emails.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint32


sending	emails.

outbound_smtp_user string The	SMTP	username	to	use
for	sending	emails.

outbound_smtp_password string The	SMTP	password	to	use
for	sending	emails.

enable_anonymous_create bool

If	set,	enables	sessions	that
authenticate	using
credentials	rather	than	a
DID	to	create	resources	in
the	'anonymous'	system
folder.

catch_all_auth_decision PolicyDecision

The	decision	to	apply	to	all
authentication	requests	that
do	not	match	any	other
policy.

The	default	is	PROMPT.

enable_policy_cache bool If	set,	enables	caching	of
policy	decisions.

enable_terminal bool If	set,	enables	the	terminal
API.

start_time uint64 The	time	at	which	the	Volt
was	started.

Field Type Description

AttributeDataType

Attribute	data	types.

Name Number Description
ATTRIBUTE_DATA_TYPE_UNKNOWN 0
ATTRIBUTE_DATA_TYPE_STRING 1
ATTRIBUTE_DATA_TYPE_INTEGER 2
ATTRIBUTE_DATA_TYPE_REAL 3
ATTRIBUTE_DATA_TYPE_BOOLEAN 4
ATTRIBUTE_DATA_TYPE_BYTES 5
ATTRIBUTE_DATA_TYPE_IDENTITY 100
ATTRIBUTE_DATA_TYPE_RESOURCE 101

DiscoveryMode

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html#uint64


Name Number Description
DISCOVERY_MODE_UNKNOWN 0

DISCOVERY_MODE_TRUSTED 1
Only	local	identities	with
explicit	policy	PERMIT	can
discover.

DISCOVERY_MODE_PUBLIC 2 Any	bound	local	identity	can
discover.

DISCOVERY_MODE_TRUSTED_GLOBAL 3

Only	identities	with	explicit
policy	PERMIT	can	discover,
and	the	service	will	be
available	to	local	and	non-
local	(Relayed)	clients.

DISCOVERY_MODE_PUBLIC_GLOBAL 4

Any	bound	identity	can
discover,	and	the	service	will
be	available	to	local	and	non-
local	(Relayed)	clients.

OnlineStatus

Name Number Description
ONLINE_STATUS_UNKNOWN 0
ONLINE_STATUS_ONLINE 1
ONLINE_STATUS_OFFLINE 2

PolicyDecision

@todo	currently	this	must	align	with	AuthorisationDecision	enum	in	policy	library,	but	some
of	the	values	are	irrelevant	outside	of	the	public	API	so	we	need	a	public-facing	enum	and
some	translation.

Name Number Description
POLICY_DECISION_UNKNOWN 0
POLICY_DECISION_PROMPT 1
POLICY_DECISION_PERMIT 2
POLICY_DECISION_DENY 3
POLICY_DECISION_INDETERMINATE 4
POLICY_DECISION_NOT_APPLICABLE 5
POLICY_DECISION_APPLICABLE 6
POLICY_DECISION_PENDING 7

ResourceStatus

Not	used	ATM.

Name Number Description
RESOURCE_STATUS_UNKNOWN 0
RESOURCE_STATUS_LIVE 1
RESOURCE_STATUS_INACTIVE 2
RESOURCE_STATUS_DELETED 999

SecureMode



Name Number Description
SECURE_MODE_UNKNOWN 0
SECURE_MODE_INSECURE 1
SECURE_MODE_TLS 2

ServiceHostType

Name Number Description
SERVICE_HOST_TYPE_UNKNOWN 0

SERVICE_HOST_TYPE_BUILTIN 1 A	built-in	service	hosted	by	the
Volt.

SERVICE_HOST_TYPE_SERVER 2 A	service	hosted	by	a	grpc	server
other	than	the	Volt.

SERVICE_HOST_TYPE_RELAYED 3

A	service	hosted	by	a	Volt	client	via
a	relay	connection,	i.e.	the	service	is
not	exposed	by	a	server	as	such,
rather	a	Volt	client	implements	the
service	and	a	Volt	acts	as	a	proxy,
calling	back	to	the	client	to
implement	the	methods.

SessionStatus

Name Number Description
SESSION_STATUS_UNKNOWN 0
SESSION_STATUS_PENDING 1
SESSION_STATUS_LIVE 2
SESSION_STATUS_EXPIRED 3
SESSION_STATUS_REVOKED 4
SESSION_STATUS_REJECTED 5

ShareMode

Not	used	ATM.

Name Number Description
SHARE_MODE_UNKNOWN 0
SHARE_MODE_TRUSTED 1
SHARE_MODE_PUBLIC_READ 2

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative



int32
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

Always
four
bytes.
More

.proto
Type Notes C++ Java Python Go C# PHP



fixed32

More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html


Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

VoltAPI
Top

The	top-level	volt	management	service.

With	the	exception	of	`Authenticate`,	all	RPCs	on	this	service	must	submit	either	a	valid
client	certificate	signed	by	the	volt	CA,	or	a	signed	JWT.

A	client	certificate	can	be	obtained	from	the	`Authenticate`	method.

All	methods	include	a	`tdx.volt_api.volt.v1.Status`	in	the	response.	If	the	status	contains	a
non-OK	error	code	the	client	should	assume	the	remainder	of	the	message	is	invalid,	unless
otherwise	indicated	in	the	response	documentation.

Authenticate()

Issues	a	request	to	authenticate	on	the	volt.

All	clients	must	successfully	authenticate	in	order	to	gain	any	kind	of	access.

A	client	certificate	is	optional	for	this	RPC,	if	omitted	a	JWT	must	be	provided	in	the	call
metadata.

If	the	client	plans	to	register	one	or	more	services	with	the	Volt,	it	should	use	the	'host'	field	of
the	request	so	that	the	returned	certificate	has	the	appropriate	SAN	extension	in	place.	Note
that	if	the	client	IP	address	changes	it	will	be	necessary	to	re-authenticate	the	client	and	obtain
a	new	certificate.

If	the	authenticate	decision	is	'permit',	the	response	contains	various	details	that	should	be
persisted	by	the	client,	including	the	unique	identifier	assigned	by	the	Volt	and	a	signed	client
certificate	along	with	the	Volt	CA	certificate.

Request:	AuthenticateRequest
Response:	AuthenticateResponse

CanAccessResource()

Determine	if	an	identity	can	perform	a	specific	action	on	a	resource.

Third	party	services	can	use	this	to	interrogate	the	Volt	policy	and	determine	if	a	client	has
permission	to	perform	a	certain	action	on	a	resource.

Request:	CanAccessResourceRequest
Response:	CanAccessResourceResponse

CheckCompatibility()

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AuthenticateRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AuthenticateResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CanAccessResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CanAccessResourceResponse


Request:	CheckCompatibilityRequest
Response:	CheckCompatibilityResponse

Connect()

Creates	a	long-lived,	bi-directional	connection	to	the	Volt.

The	connection	stream	serves	several	purposes,	including	remote	invocations	via	a	Relay,
Volt	event	notifications,	pings	and	service	registration	management.

A	connection	stream	is	required	in	order	for	a	client	to	be	able	to	register	services	with	the
Volt.

When	the	stream	is	closed,	any	services	registered	on	it	will	be	set	to	offline.

Request:	streaming	ConnectRequest
Response:	streaming	ConnectResponse

CopyResource()

Copy	a	resource	from	one	folder	to	another.

The	resource	metadata,	attributes	and	store	are	copied.

The	shares	attributed	to	the	resource	are	**not**	currently	copied.

n.b.	Copy	resources	between	Volts	is	not	supported	by	this	API.	This	is	achieved	by	creating
an	API	instance	for	the	source	and	target	Volts,	getting	the	resource	from	the	source	and
creating	it	on	the	target.

Request:	CopyResourceRequest
Response:	CopyResourceResponse

DeleteAccess()

Remove	a	custom	access	rule,	such	as	a	file	share.

Request:	DeleteAccessRequest
Response:	DeleteAccessResponse

DeleteResource()

Delete	a	resource	from	this	volt.

Request:	DeleteResourceRequest
Response:	DeleteResourceResponse

DiscoverServices()

Discover	services	running	on	this	volt.

Lookup	is	done	via	the	exposed	serviceAPI,	e.g.	tdx.volt_api.data.v1.SqliteServerAPI.

Request:	DiscoverServicesRequest
Response:	DiscoverServicesResponse

GetAccess()

Get	access	rule	details.

Only	rules	in	which	the	authenticated	identity	participates	will	be	retrieved,	in	addition	to	any
rules	that	target	a	resource	that	is	owned	by	the	authenticated	identity.

If	the	authenticated	identity	is	the	Volt	root,	all	rules	will	be	retrieved	that	match	the	criteria.

Request:	GetAccessRequest
Response:	GetAccessResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CheckCompatibilityRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CheckCompatibilityResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CopyResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CopyResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DeleteAccessRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DeleteAccessResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DeleteResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DeleteResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DiscoverServicesRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DiscoverServicesResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetAccessRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetAccessResponse


GetIdentities()

Retrieve	identities	matching	the	given	criteria.

Only	identities	that	the	authenticated	identity	has	read	access	to	will	be	retrieved.

Request:	GetIdentitiesRequest
Response:	GetIdentitiesResponse

GetIdentity()

Get	details	of	a	specific	identity.

The	identity	will	only	be	retrieved	if	the	authenticated	identity	has	read	access	to	it.

Request:	GetIdentityRequest
Response:	GetIdentityResponse

GetOneTimeToken()

Gets	a	one-time	token	that	can	be	used	as	a	temporary	authentication	token,	for	example
create	an	file	download	link	that	expires	after	a	certain	time.

Request:	GetOneTimeTokenRequest
Response:	GetOneTimeTokenResponse

GetParameters()

Retrieve	the	Volt	parameters.

This	is	a	privileged	API	call	and	requires	Volt	root	access.

Request:	GetParametersRequest
Response:	GetParametersResponse

GetPolicy()

Retrieve	the	active	Volt	policy.

This	is	a	privileged	API	call	and	requires	Volt	root	access.

Request:	GetPolicyRequest
Response:	GetPolicyResponse

GetResource()

Get	resource	from	this	volt.

Request:	GetResourceRequest
Response:	GetResourceResponse

GetResources()

Get	resources	from	this	volt.

Request:	GetResourcesRequest
Response:	GetResourcesResponse

GetResourceAncestors()

Get	ancestors	of	a	resource.

Request:	GetResourceAncestorsRequest
Response:	GetResourceAncestorsResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetIdentitiesRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetIdentitiesResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetIdentityRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetIdentityResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetOneTimeTokenRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetOneTimeTokenResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetParametersRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetParametersResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetPolicyRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetPolicyResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourcesRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourcesResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceAncestorsRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceAncestorsResponse


GetResourceDescendants()

Get	descendants	of	a	resource.

Request:	GetResourceDescendantsRequest
Response:	GetResourceDescendantsResponse

GetSessions()

Get	sessions.

Request:	GetSessionsRequest
Response:	GetSessionsResponse

Invoke()

Invoke	a	method.

This	is	primarily	for	use	by	Relay	connections	when	proxying	invocations.

Request:	streaming	InvokeRequest
Response:	streaming	InvokeResponse

MoveResource()

Move	a	resource	from	one	folder	to	another.

Request:	MoveResourceRequest
Response:	MoveResourceResponse

RequestAccess()

Request	access	to	a	resource.

The	subject	of	the	access	is	assumed	to	be	the	identity	of	the	currently	authenticated	peer.

Request:	RequestAccessRequest
Response:	RequestAccessResponse

SaveAccess()

Create	or	update	an	access	rule.

Request:	SaveAccessRequest
Response:	SaveAccessResponse

SaveHttpFileServer()

Create	or	update	a	static	file	HTTP	server.

Request:	SaveResourceRequest
Response:	SaveResourceResponse

SaveHttpApiServer()

Create	or	update	an	HTTP	REST	API	server.

Request:	SaveResourceRequest
Response:	SaveResourceResponse

SaveIdentity()

Create	or	update	an	identity.

Request:	SaveIdentityRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceDescendantsRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetResourceDescendantsResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetSessionsRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.GetSessionsResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.InvokeRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.InvokeResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MoveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MoveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.RequestAccessRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.RequestAccessResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveAccessRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveAccessResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveIdentityRequest


Response:	SaveIdentityResponse

SaveMirroredLink()

Create	or	update	a	mirrored	link	resource.

Request:	SaveResourceRequest
Response:	SaveResourceResponse

SaveParameters()

Update	Volt	parameters.

This	is	a	privileged	call	that	requires	Volt	root	access.

Request:	SaveParametersRequest
Response:	SaveParametersResponse

SaveResource()

Create	or	update	resource	in	this	volt.

Request:	SaveResourceRequest
Response:	SaveResourceResponse

SaveSymbolicLink()

Create	or	update	a	symbolic	link	resource.

Request:	SaveResourceRequest
Response:	SaveResourceResponse

SaveSession()

Save	a	session.

Request:	SaveSessionRequest
Response:	SaveSessionResponse

SetAccessRequestDecision()

Set	Volt	access	request	decision.

This	is	a	privileged	call	that	requires	Volt	root	access.

Request:	SetAccessRequestDecisionRequest
Response:	SetAccessRequestDecisionResponse

SetPolicy()

Request:	SetPolicyRequest
Response:	SetPolicyResponse

SetServiceStatus()

Set	the	status	of	a	Volt	service.

Request:	SetServiceStatusRequest
Response:	SetServiceStatusResponse

Shutdown()

Used	to	shutdown	remote	Volts.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveIdentityResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveParametersRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveParametersResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveResourceResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveSessionRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SaveSessionResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetAccessRequestDecisionRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetAccessRequestDecisionResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetPolicyRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetPolicyResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetServiceStatusRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SetServiceStatusResponse


This	is	a	privileged	call	that	requires	Volt	root	access.

Request:	ShutdownRequest
Response:	ShutdownResponse

SignVerify()

Sign	or	verify	an	arbitrary	message	using	the	Volt	key.

Request:	SignVerifyRequest
Response:	SignVerifyResponse

AuthenticateRequest

Describes	a	request	to	authenticate	on	a	Volt.

Present	one	of	the	`public_key`,	`did_public_key`,	`did`,	or	`did_document`	fields.

Field Type Description

public_key string

The	client	public	key	in
PEM	format.	The	Volt	will
create	a	session	that	is	bound
to	this	public	key.

did_public_key string

The	client	public	key	-	must
be	in	PEM	format.	If	the
client	DID	is	lost	or
unknown	for	some	reason,
providing	the	public	key
here	will	allow	the	Volt	to
match	it	with	the	previously
registered	DID.

Note	this	is	only	valid	when
a	DID	has	previously	been
registered	using	this	public
key.

did string

An	existing	DID	owned	by
the	client.

The	JWT	presented	with	the
authenticate	call	must	be
signed	by	the	private	key
corresponding	to	this	DID.

did_document string

If	the	client	doesn't	have	an
existing	DID,	a	DID
document	can	be	provided
here.

The	Volt	will	register	the
DID	on	behalf	of	the	client.

The	JWT	presented	with	the
authenticate	call	must	be
signed	by	the	private	key
corresponding	to	this
document.

did_document_signature string

A	base64-encoded	signature
of	the	DID	document,	only
required	if	`did_document`
is	provided	above.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ShutdownRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ShutdownResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SignVerifyRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SignVerifyResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


is	provided	above.

client_name string
A	human-readable	name	of
the	entity	requesting	to
authenticate.

challenge string

The	volt	challenge	code,
signed	by	the	private	key
component	of	the
`public_key`	field	above,
and	base64	encoded.

This	is	optional.

host string

The	host	name	to	add	as	a
SAN	to	the	issued
certificate.

This	is	optional,	if	you	don't
intend	to	host	services	with
the	certificate	this	can	be
omitted.

verifiable_presentation VerifiablePresentation
repeated

Optional	verifiable
credentials	describing	the
client.

purge_aliases bool Reserved	for	internal	use.

session_name string

Optional	additional	name	to
differentiate	between
multiple	sessions	for	a	given
client.

Field Type Description

AuthenticateResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.VerifiablePresentation
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description

status Status Details	of	any	error	that
occurred	on	the	call.

session_id string

identity_did string The	identity	id	assigned	to
this	authentication.

cert string

A	certificate	issued	by	the
volt	CA,	binding	the	request
public	key	to	the	identity.

Only	valid	for	PERMIT
authenticate	decisions.

chain string

The	volt	CA	chain.	This	is
used	by	the	client	in
subsequent	API	calls	to
secure	the	connection.

decision PolicyDecision The	authenticate	decision.

request_time int64 Reserved	for	internal	use.

decision_time int64 Reserved	for	internal	use.

CanAccessResourceRequest

Field Type Description

token string

The	subject	of	the	access
request.

This	is	optional,	and	if
omitted	will	default	to	the
authenticated	account.

cert string

The	subject	of	the	access
request.

This	is	optional,	and	if
omitted	will	default	to	the
authenticated	account.

resource_id string The	resource	in	question.

access string The	type	of	access	that	is
required.

CanAccessResourceResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

identity_did string The	identity	subject	that	the	access	relates	to.

resource_id string The	resource	the	access	relates	to.

access string The	access	type.

decision PolicyDecision The	policy	decision	for	this	access	request.

CheckCompatibilityRequest

Field Type Description

version Version The	client	platform	API	version.

CheckCompatibilityResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

version Version The	target	Volt	API	version.

ConnectAcknowledge

Field Type Description

connection_id string A	unique	identifier	for	this	connection.

timestamp uint64 The	current	time	on	the	Volt.

ping_interval uint32 The	interval	at	which	the	target	will	send	ping	requests	to	the
client.

ConnectAuthRequest

Field Type Description
session Session
context string
challenge string
timestamp uint64

ConnectDIDRegistryUpdate

Field Type Description
update DIDRegistryUpdate

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Session
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate


ConnectEvent

Field Type Description

connect_auth_request ConnectAuthRequest An	authentication	request	event.

connect_resource ConnectResource A	resource	event	notification,	such
as	updated	or	deleted.

did_registry_update ConnectDIDRegistryUpdate A	DID	registry	entry	update.

ConnectGoodbye

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

ended bool Set	if	the	connection	was	ended	gracefully,	as	opposed	to	errored.

ConnectHello

All	fields	in	this	message	are	optional,	send	an	empty	message	if	necessary.

Field Type Description

address string

Optionally	specify	the	grpc
server	address	of	the
client.	Only	used	if	the
client	is	a	Volt	(or	service).

online_services bool
Set	to	automatically	make
**all**	services	owned	by
the	calling	identity	online.

subscribe_resource_events bool Set	to	receive	notification
of	resource	events.

relay_id string

Set	this	if	you	are
connecting	to	a	relay,	i.e.
the	Volt	you	are	sending	to
this	message	is	a	relay.

This	indicates	that	you	are
happy	to	receive	method
invocations	from	clients	of
the	Relay.

This	will	usually	be	set	to
the	`id`	of	your	Volt,	but	in
theory	any	client	could
receive	remote	invocation
requests	in	this	way.

relay_name string A	friendly	name	to	present
to	Relay	clients.

relay_description string

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectAuthRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectResource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectDIDRegistryUpdate
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


relay_ca_pem string The	certificate	authority	to
present	to	Relay	clients.

relay_discoverable bool
Set	to	indicate	the
connection	is	discoverable
to	other	Relay	clients.

relay_http_address string

Optionally	specify	the
address	of	the	HTTP	server
to	use	for	HTTP	proxying.
If	set,	a	relay	will	forward
HTTP	requests	to	this
address	from	the
subdomain	that	matches
the	client's	DID.

subscribe_auth_requests bool Set	to	receive	notification
of	authentication	requests.

accept_invocation bool

Set	to	indicate	the
connection	will	accept
method	invocation
requests.

subscribe_did_registry_updates bool
Set	to	subscribe	to	DID
registry	updates	from	the
peer.

ping_interval uint32
The	interval	at	which	the
client	will	send	ping
requests	to	the	target.

timestamp uint64 The	current	time	on	the
client.

did_registry string	repeated Optionally	specify	the	DID
registries	supported.

Field Type Description

ConnectPing

A	connection	ping	message	-	intentionally	empty.

ConnectRelay

Field Type Description

connected bool Indicates	the	Relay	connection	status.

ConnectRequest

One	of	the	following	payloads	will	be	present	in	a	given	ConnectRequest	message.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool


Field Type Description

hello ConnectHello

A	ConnectHello	message	is
the	first	message	a	client
sends	to	the	target	upon
successfully	starting	the
call.

goodbye ConnectGoodbye Indicates	the	client	is	closing
the	connection.

ping ConnectPing

Clients	should	periodically
send	ping	requests	to	the
target	to	confirm	the	stream
is	still	live.

invoke_response InvokeResponse

Send	invocation	responses
back	to	the	caller.

n.b.	The	'request'	and
'response'	semantics	are
inverted	with	remote
invocations	because	the
Relayed	connection	is
established	by	a	request
**from**	the	'target'	Volt	to
the	Relay.	Hence	any
invocation	on	behalf	of	a
client	of	the	Relay	involves
sending	a	**response**
back	down	the	Relay
connection	to	the	'target'
Volt.

http_response HttpResponse

Send	HTTP	response	back	to
the	originating	request.

n.b.	The	'request'	and
'response'	semantics	are
inverted	with	HTTP
proxying	for	the	same
reason	as	`invoke_response`
above.

ConnectResource

Field Type Description

event ConnectResourceEvent The	type	of	resource	event	that	has	occurred.

resource Resource Details	of	the	resource.

ConnectResponse

One	of	the	following	payloads	will	be	present	in	a	given	ConnectResponse	message.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectHello
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectGoodbye
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectPing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.InvokeResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectResourceEvent
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource


Field Type Description

status Status Details	of	any	error	that
occurred	on	the	call.

acknowledge ConnectAcknowledge Server	response	to	initial
handshake.

goodbye ConnectGoodbye Indicates	the	server	is
ending	the	connection.

evt ConnectEvent Notifies	clients	of	various
events	on	the	Volt.

ping ConnectPing Periodic	ping	response.

invoke_request InvokeRequest

Send	an	invocation	request
to	a	remote	target.

n.b.	The	'request'	and
'response'	semantics	are
inverted	for	remote
invocations	because	the
Relayed	connection	is
established	by	a	request
**from**	the	'target'	Volt	to
the	Relay.	Hence	any
invocation	on	behalf	of	a
client	of	the	Relay	involves
sending	a	**response**
back	down	the	Relay
connection	to	the	'target'
Volt.

http_request HttpRequest

Send	an	HTTP	request	to	a
remote	target.

n.b.	The	'request'	and
'response'	semantics	are
inverted	for	HTTP	requests
for	the	same	reason	as
`invoke_request`	above.

CopyResourceRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectAcknowledge
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectGoodbye
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectEvent
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ConnectPing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.InvokeRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpRequest


Field Type Description

resource_id string The	id	of	the	resource	to	copy.

to_resource_id string The	id	of	the	resource	to	receive	the	new	copy.

mode CopyResourceMode The	copy	mode	to	use.

recursive bool
Indicates	if	all	descendants	of	the	resource
should	be	copied	too.	Only	relevant	for
COPY_RESOURCE_MODE_COPY	mode.

from_resource_id string
The	parent	resource	to	link	from,	only	relevant
for	COPY_RESOURCE_MODE_LINK
mode.

CopyResourceResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

DeleteAccessRequest

Field Type Description

id string The	id	of	the	access	rule	to	delete.

DeleteAccessResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

DeleteResourceRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.CopyResourceMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status


Field Type Description

resource_id string The	resource	to	delete.

recursive bool

Set	to	indicate	all
descendant	resources	should
also	be	deleted.

If	this	is	not	set	and	the
resource	has	descendants,
the	call	will	fail.

parent_id string

Set	to	attempt	to	unlink	the
resource	from	this	parent
resource,	rather	than
completely	delete	it.

The	resource	will	be
removed	as	a	descendant
from	the	`parent_id`
resource.	If	the	resource	is
has	more	than	one	parent,	it
will	not	be	removed	from
those	other	parents.

Note	that	if	the	resource's
only	parent	is	`parent_id`	it
will	be	removed	from	that
parent	and	deleted	as
normal.

DeleteResourceResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

DiscoverServicesRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status


Field Type Description

service_api string	repeated

List	the	service	APIs	that
should	be	discovered.

The	response	will	include
services	that	match	**any
of**	the	terms	given.

Use	of	'*'	to	indicate
wildcards	is	supported.

include_offline bool
Set	to	indicate	that	offline
services	should	be	included
in	the	response.

include_attributes bool Set	to	include	the	service
attributes	in	the	response.

include_protobuf bool Set	to	include	the	service
protobuf	in	the	response.

DiscoverServicesResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource Resource	repeated The	services	that	were	discovered.

GetAccessRequest

Field Type Description

resource_id string The	resource	id	that	is	the	target	of	the	access	rule.	If
omitted,	all	resources	will	be	considered.

identity_did string The	identity	id	that	is	the	subject	of	the	access	rule.	If
omitted,	all	identities	will	be	considered.

access string The	type	of	access	to	retrieve,	if	omitted	all	access	will	be
considered.

decision PolicyDecision The	type	of	decision,	if	omitted	all	decisions	will	be
considered.

GetAccessResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

access Access	repeated The	access	rules	that	match	the	criteria.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Access


GetIdentitiesRequest

Field Type Description

name string

Optional	name	of	the
identity.

Use	'*'	to	perform	a	wildcard
search.

If	omitted	all	identities	will
be	retrieved.

alias IdentityAlias
The	identity	alias	criteria,	if
omitted	all	identities	will	be
considered.

GetIdentitiesResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

identity Identity	repeated The	identity	list	that	matched	the	criteria.

GetIdentityRequest

One	of	`identity_did`	or	`fingerprint`	must	be	populated.

Field Type Description

identity_did string The	id	of	the	identity	to	retrieve.

fingerprint string The	public	key	fingerprint	of	the	identity	to	retrieve.

GetIdentityResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

identity Identity The	identity	details.

GetOneTimeTokenRequest

Field Type Description

ttl int32 Optional	token	TTL,	in	seconds.	Default	is	10	seconds.

GetOneTimeTokenResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Identity
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Identity
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32


Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

token string The	one-time	token.

GetParametersRequest

This	an	empty	message.

GetParametersResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

parameters VoltParameters The	retrieved	Volt	parameters.

GetPolicyRequest

This	an	empty	message.

Field Type Description

custom_policy bool Set	to	only	retrieve	the	custom	policy	document.

GetPolicyResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

policy string The	live	policy	in	JSON	format.

GetResourceAncestorsRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.VoltParameters
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description

resource_id string The	resource	id	whose	ancestors	will	be	retrieved.

include_resource_id bool Optional	-	if	set	the	resource_id	resource	will	be	included	in
the	set	of	resources	returned.

depth int32 Optional	-	restrict	the	depth	search,	e.g.	for	immediate
parents	depth	=	1

ancestor_kind string Optional	-	only	match	ancestors	of	the	given	kind.

ancestor_id string Optional	-	can	be	used	to	determine	if	a	resource	is	an
ancestor.

include_attributes bool Set	to	include	the	service	attributes	in	the	response.

include_protobuf bool Set	to	include	the	service	protobuf	in	the	response.

GetResourceAncestorsResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

ancestor Resource	repeated The	retrieved	ancestors.

GetResourceDescendantsRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource


Field Type Description

resource_id string
The	resource	id	whose
descendants	will	be
retrieved.

include_resource_id bool

Optional	-	if	set,	the	fully
populated	`resource_id`
resource	(i.e.	the	parent)
will	be	included	in	the	set	of
resources	returned.

depth int32
Optional	-	restrict	the	depth
search,	e.g.	for	immediate
children	depth	=	1

descendant_kind string	repeated

Optional	-	only	match
descendants	of	the	given
kind.

If	multiple	kinds	are	given,
resources	matching	**any
of**	the	kinds	will	be
included.

descendant_id string
Optional	-	can	be	used	to
determine	if	a	resource	is	a
descendant.

parent_id string

Optional	-	restrict	to
descendants	of	a	given
parent,	for	use	in	multi-
parent	hierarchies.

name string Restrict	to	a	specific	named
resource.

modified_since uint64

Only	retrieve	resources	that
have	been	modified	after	the
given	timestamp.	Default	is
0,	which	means	all	resources
will	be	returned.

include_attributes bool Set	to	include	the	service
attributes	in	the	response.

include_protobuf bool Set	to	include	the	service
protobuf	in	the	response.

GetResourceDescendantsResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool


Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

descendant Resource	repeated The	retrieved	descendants.

GetResourceRequest

Field Type Description

resource_id string The	id	of	the	resource	to	retrieve.

include_attributes bool Set	to	include	the	resource	attributes	in	the	response.

include_protobuf bool Set	to	include	service	description	protobuf	in	the	response,	if
applicable.

GetResourceResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource Resource The	retrieved	resource	metadata.

GetResourcesRequest

By	default,	the	lookup	is	performed	by	combining	the	criteria	below	in	the	form:

(id	=	id[0]	or	id	=	id[1])	and	(name	=	name[0]	or	name	=	name[1])	etc...

To	combine	using	'or'	rather	than	'and',	set	the	`combine_terms_exclusive`	flag.

Also	see	note	below	regarding	attributes.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource


Field Type Description
id string	repeated

name string	repeated Wildcards	permitted.

description string	repeated Wildcards	permitted.

kind string	repeated Wildcards	permitted.

parent_id string	repeated

service_api string	repeated Wildcards	permitted.

owner string	repeated
store string	repeated

combine_terms_exclusive bool
Indicates	that	the	above	terms
should	be	combined	using	'or'
rather	than	'and'	(the	default).

attribute ResourceAttributeQuery
repeated Attributes	to	search	by.

any_of bool

If	set,	will	return	resources	where
*any	of*	the	attribute	queries
apply,	otherwise	will	only	return
resources	where	*all	of*	the
attribute	queries	apply.

include_attributes bool Set	to	include	the	resource
attributes	in	the	response.

include_protobuf bool
Set	to	include	service	description
protobuf	in	the	response	where
applicable.

modified_since uint64

Only	retrieve	resources	that	have
been	modified	after	the	given
timestamp.	Default	is	0,	which
means	all	resources	will	be
returned.

limit uint32

Limit	the	number	of	resources
returned.	Default	is	0,	which
means	all	resources	will	be
returned.

GetResourcesResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource Resource	repeated The	list	of	resources	that	match	the	lookup.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ResourceAttributeQuery
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource


GetSessionsRequest

Field Type Description
id string
identity_did string
identity_name string
status SessionStatus

GetSessionsResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

session Session	repeated

InvokeRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SessionStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Session


Field Type Description

invoke_id uint64

Client-assigned	identifier
for	the	request.	Will	be	used
to	match	responses	and	any
subsequent	requests.

token string

Optional	client	token	to	use
for	the	invocation.	This	is
for	use	by	the	websocket
proxy	and	is	only	necessary
on	the	first	request	of	the
rpc.

target_did string	repeated

The	DID	of	the	target	at
each	hop	of	the	path	to	the
service.

This	is	used	by	Relays	to
route	the	request.

iv bytes

The	initialisation	vector	for
the	request	payload
encryption.	This	should	be	a
random	16	byte	value,	that	is
different	for	each	request.

payload bytes

A	serialised	and	encrypted
instance	of
`RemoteResponse`	in	pure
binary	format.

json_payload bytes

A	serialised	and	encrypted
instance	of
`RemoteResponse`	as
serialised	JSON.

client_end bool Indicates	the	client	has
ended	the	invocation.

hop_index uint32 Reserved	for	internal	use.

target_service_id string Reserved	for	internal	use.

InvokeRequestKeyExchange

Field Type Description
nonce bytes
encryption_key bytes
signature bytes

InvokeResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes


Field Type Description

invoke_id uint64 The	invocation	id	to	match	the	originating
request.

key_exchange InvokeRequestKeyExchange

iv bytes

The	initialisation	vector	for	the	response
payload	encryption.	This	will	be	a	random
16	byte	value,	that	is	different	for	each
response.

payload bytes A	serialised	and	encrypted	instance	of
`RemoteRequest`	in	pure	binary	format.

json_payload bytes A	serialised	and	encrypted	instance	of
`RemoteRequest`	as	serialised	JSON.

status Status Details	of	any	error	that	occurred	on	the
call.

server_end bool Indicates	the	server	has	ended	the
invocation.

MoveResourceRequest

Field Type Description

resource_id string The	id	of	the	resource	to	move.

from_resource_id string The	resource	the	parent	folder	to	move	the	resource	from.

to_resource_id string The	target	folder	to	move	the	resource	into.

MoveResourceResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

RequestAccessRequest

Field Type Description

resource_id string The	target	resource	id.

access string The	type	of	access	requested.

RequestAccessResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.InvokeRequestKeyExchange
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource_id string The	resource	being	accessed.

identity_did string The	identity	attempting	access.

access string Requested	access.

decision PolicyDecision Assigned	decision.

request_time int64 Time	at	which	the	request	was	made.

decision_time int64 Time	at	which	the	decision	was	taken.

request_count int32 Counter	of	number	times	this	access	was	requested.

ResourceAttributeQuery

Field Type Description
attribute_id string
data_type AttributeDataType
value AttributeValue

SaveAccessRequest

Field Type Description

access Access Omit	`id`	if	creating	new	access.

SaveAccessResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

SaveIdentityRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AttributeDataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AttributeValue
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Access
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status


Field Type Description

identity Identity Details	of	the	identity	to
save.

create bool Set	to	indicate	this	is	a	new
identity.

delete_alias IdentityAlias	repeated

The	list	of	aliases	that
should	be	removed.

For	example,	this	allows	a
simple	form	of	key	rotation
whereby	an	existing	public
key	alias	is	replaced	by	a
new	one	while	still
maintaining	the	same	root
identity	id.

create_in_parent_id string Reserved	for	system	use.

purge_aliases bool

Set	to	indicate	the	identity
aliases	should	be	purged
before	saving	the	identity.

If	the	`identity`	field
contains	aliases	they	will	be
saved	after	the	purge.

If	the	`identity`	field	does
not	contain	aliases	this
effectively	deletes	all	aliases
for	this	identity.

This	allows	you	to
selectively	update	aliases	if
required,	i.e.	don't	set	this
flag	and	include	a	single
alias	in	the	update.

did_document string

did_update_signature string The	signature	of	the	identity
did	document,	if	present.

SaveIdentityResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

identity Identity The	updated	identity	details.

SaveParametersRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Identity
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Identity


Field Type Description

parameters VoltParameters The	updated	parameters.

key_passphrase string The	current	root	key	passphrase.	Only	necessary
if	changes	are	being	made	to	the	Volt	key.

new_key_passphrase string The	new	root	key	passphrase.	Only	necessary	if
changes	are	being	made	to	the	Volt	key.

SaveParametersResponse

Field Type Description

status Status Details	of	any	errors	that	occurred	on	the	call.

parameters VoltParameters The	updated	Volt	parameters.

reconnect bool If	set,	the	client	will	need	to	reconnect	(usually	because	the
key	has	changed).

SaveResourceRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.VoltParameters
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.VoltParameters
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool


Field Type Description

resource Resource Details	of	the	resource	to
save.

create bool Set	to	indicate	this	is	a	new
resource.

create_in_parent_id string

The	id	of	the	folder	resource
in	which	a	new	resource
should	be	created.

If	omitted,	the	home	folder
of	the	currently
authenticated	identity	will
be	used.

purge_attributes bool

Set	to	indicate	the	resource
attributes	should	be	purged
before	saving	the	resource.

If	the	`resource`	field
contains	attributes	they	will
be	saved	after	the	purge.

If	the	`resource`	field	does
not	contain	attributes	this
effectively	deletes	all
attributes	for	this	resource.

This	allows	you	to
selectively	update	attributes
if	required,	i.e.	don't	set	this
flag	and	include	a	single
attribute	in	the	update.

SaveResourceResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource Resource The	updated	resource.

SaveSessionRequest

Field Type Description
session Session

SaveSessionResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

session Session

SetAccessRequestDecisionRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Session
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Session


Field Type Description

id string The	id	of	the	access	request.

decision PolicyDecision The	decision	to	save	against	the	access	request.

SetAccessRequestDecisionResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

SetPolicyRequest

Field Type Description
custom_policy string

SetPolicyResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

SetServiceStatusRequest

Field Type Description

service Resource The	service	description	details.

SetServiceStatusResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

resource Resource The	updated	service	resource	details.

ShutdownRequest

This	message	is	emtpy.

ShutdownResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

SignVerifyRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status


Field Type Description

verify bool
Set	to	indicate	this	is	a
request	to	verify	rather	than
sign.

encode bool

Set	to	indicate	the	signature
should	be	base64	encoded	in
the	response.

Only	valid	when	signing.

message string
The	message	to	sign.

Only	valid	when	signing.

digest_raw bytes

The	digest	in	raw	binary
form.

Only	valid	if	verifying.

digest_encoded string

The	digest	encoded	using
base64.

Only	valid	if	verifying.

SignVerifyResponse

Note	that	if	verification	was	successful	the	response	will	be	empty	(there	is	no	error	and	no
digest	is	returned).

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

digest bytes The	signature	in	raw	binary	form.

digest_encoded string The	signature	encoded	using	base64.

ConnectResourceEvent

Name Number Description
CONNECT_RESOURCE_EVENT_UNKNOWN 0
CONNECT_RESOURCE_EVENT_CREATE 1
CONNECT_RESOURCE_EVENT_UPDATE 2
CONNECT_RESOURCE_EVENT_DELETE 3
CONNECT_RESOURCE_EVENT_CREATE_CHILD 4
CONNECT_RESOURCE_EVENT_DELETE_CHILD 5
CONNECT_RESOURCE_EVENT_DATABASE_WRITE 6

CopyResourceMode

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Name Number Description
COPY_RESOURCE_MODE_UNKNOWN 0
COPY_RESOURCE_MODE_COPY 1
COPY_RESOURCE_MODE_LINK 2

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Access

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description
id string

resource_id string The	resource	being	accessed.

resource_name string A	human-readable	short	identifier	of	the	resource.

resource_owner string The	identity	that	owns	the	resource.

resource_kind string	repeated The	kind	of	resource.

identity_did string The	identity	attempting	access.

credential_lookup string The	JSON	path	array	for	looking	up	verifiable
credentials.

identity_name string A	human-readable	short	identifier	of	the	subject.

identity_kind string	repeated The	kind	of	identity.

access string Requested	access.

extra string Optional	extra	data.

decision PolicyDecision Assigned	decision.

recursive bool

request_time int64 Time	at	which	the	request	was	made.

decision_time int64 Time	at	which	the	decision	was	taken.

request_count uint32 Counter	of	number	times	this	access	was	requested.

AttributeValue

Attribute	value	will	be	one	of	the	following	fields,	depending	on	the	data	type.

Field Type Description
string string
integer int64
real double
boolean bool
bytes bytes

Identity

A	Volt	identity	encompasses	a	Resource	and	a	set	of	identity	aliases.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#double
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes


Field Type Description
resource Resource
alias IdentityAlias	repeated

IdentityAlias

Field Type Description

id uint32 The	alias	id.

identity_did string The	corresponding	identity	id.

alias string The	actual	alias,	e.g.	a	common	name	or	key	fingerprint.

public_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key

private_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key,	and	the	key	is	stored	in	the	Volt.

alias_type string The	alias	type,	for	example	public	key,	email,	phone
number	etc.

issuer_id string The	identity	that	issued	this	alias.

authenticate PolicyDecision Indicates	if	this	alias	has	an	authenticate	policy	decision
assigned.

description string Optional	description	of	this	alias.

MethodDescription

Internal	use	only.

Field Type Description
path string
client_streaming bool
server_streaming bool

ProtoFile

Describes	a	single	protobuf	file	for	use	in	ServiceDescription.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool


Field Type Description

file_path string The	path	name	of	the	proto	file,	relative	to	the	'root'	of	the
namespace,	e.g.	"tdx/volt_api/volt/v1/volt.proto".

protobuf string The	actual	protobuf	file	contents.

service_name string
repeated

Optional	-	the	service(s)	contained	in	this	protobuf	file,	if
omitted	here	they	will	be	loaded	dynamically	from	the
protobuf.

ProxyConnection

Represents	an	outbound	connection	from	a	Volt	to	a	remote	service	that	will	act	as	a	proxy	for
that	Volt.

This	enables	Volts	to	bypass	firewall	and	NATs.

Example	-	connection	from	a	Volt	to	a	Relay	Volt	running	on	the	public	internet,	such	as
tdxvolt.com

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


Field Type Description

id string Unique	connection	id.

name string A	human-readable	name	for	the	connection.

address string The	remote	address	of	the	proxy	service.

ca_pem string The	certificate	authority	of	the	proxy	service.

enabled bool Indicates	this	connection	is	enabled.

connected bool Indicates	this	connection	is	currently	in	use.

enable_http_proxy bool Indicates	that	this	connection	will	handle	HTTP
proxying	as	well	as	GRPC.

disable_volt_api bool Set	to	indicate	the	Volt	API	itself	is	not
automatically	exposed	to	the	connection.

challenge string Optional	challenge	that	can	be	presented	in	the
authentication	request.

target_id string The	id	of	the	target	Volt	that	this	connection	is
bound	to.

sync_did_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

did_registry_sync_id uint64 The	id	of	the	last	DID	registry	operation	that	was
synchronised.

sync_vc_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

vc_registry_sync_timestamp uint64 The	timestamp	of	the	last	VC	registry	operation
that	was	synchronised.

session_id string
certificate string

Resource

The	core	Resource	metadata	schema.

Field Type Description

id string The	globally	unique
resource	id.

description string Optional	description.

Human-readable	resource

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


name string Human-readable	resource
name.

share_mode ShareMode Not	in	use.

volt_id string The	id	of	the	Volt	that	hosts
this	resource.

service_description ServiceDescription
Optional	description	of	any
services	exposed	by	this
resource.

attribute ResourceAttribute	repeated Attributes	assigned	to	the
resource.

platform_version Version The	version	of	the	platform.

version uint64 The	resource	version.

owner string The	identity	of	the	resource
owner.

created uint64 Creation	timestamp,
milliseconds	since	epoch.

modified uint64
Last	modification
timestamp,	milliseconds
since	epoch.

status ResourceStatus Not	in	use.

kind string	repeated The	taxonomy	of	the
resource.

online_status OnlineStatus

The	online	status.

For	most	kinds	of	resource
this	indicates	that	the	server
hosting	the	resource	is
online,	the	exception	being
identity	resources,	in	which
case	the	status	reflects
whether	or	not	the	identity
has	a	live	connection.

All	built-in	resources	are
hosted	by	the	Volt	itself	and
are	therefore	always	online
when	the	Volt	is	running.

Resources	hosted	by
external	servers	are	online	if
the	server	itself	is	online	and
has	registered	the	resource
as	online	using
`setServiceStatus`.

The	size	of	the	resource

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ShareMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ServiceDescription
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ResourceAttribute
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ResourceStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.OnlineStatus


size uint64 The	size	of	the	resource
store	in	bytes.

store string The	path	to	the	resource
store.

alias string	repeated

Alias(es)	that	can	be	used	to
refer	to	the	resource	rather
than	the	id.

Each	alias	must	be	unique	to
the	Volt,	this	is	enforced	by
the	API.

No	format	restrictions	are
currently	applied	to	alias,
but	this	may	change	in
future,	for	the	time	being	it
makes	sense	to	stick	to
alphanumeric	characters	and
'_'	or	'-'.

content_hash string
The	hash	of	the	resource
content	contained	in	the
store.

child Resource	repeated Not	yet	supported.

Field Type Description

ResourceAttribute

A	resource	attribute	enables	storing	arbitrary	data	associated	with	a	resource.

Field Type Description
id uint32
attribute_id string
resource_id string
data_type AttributeDataType
value AttributeValue	repeated

ServiceDescription

Describes	a	Volt	service.

Field Type Description

host_type ServiceHostType The	configuration	used	by	the	host	of	this
service.

host_client_id string

The	identity	of	the	client	that	is	exposing	the
service.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	first
authenticate	and	obtain	a	client	DID	and
credentials	in	order	to	be	able	to	create	service
resource(s).

Any	resources	that	are	owned	by	this	client
will	be	marked	as	online	if	the	client	itself	is
online,	i.e.	has	a	live	connection	to	the	Volt.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AttributeDataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.AttributeValue
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ServiceHostType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


This	will	be	empty	if	the	service	is	a	built-in
Volt	service.

host_service_id string

The	id	of	the	resource	that	holds	the	protobuf
definition	for	this	resource.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	create	a
service	resource	that	holds	details	of	the
protobuf	methods	exposed	by	the	service.

For	built-in	services,	i.e.	those	hosted	by	the
Volt,	this	will	set	to	the	Volt	id.

host_address string

The	address	of	the	grpc	server	hosting	this
service.

Only	relevant	to	grpc-hosted	services.

host_ca_pem string

The	certificate	authority	(chain)	that	signed
the	service	server	certificate.

This	is	only	relevant	to	grpc-hosted	services.

host_public_key string

The	public	key	of	the	service	host,	which	is
used	to	encrypt	payloads.

This	may	change	as	the	service	comes	and
goes	online.

host_connection_id string The	connection	id	currently	used	to	host	this
service.

host_session_id string Internal	use	only.

discoverable DiscoveryMode The	discovery	mode.

ping_timestamp int64 The	ping	timestamp	of	the	server	hosting	this
service.

proto_file ProtoFile	repeated The	protobuf	definitions	of	the	APIs	exposed
by	this	service.

service_api string	repeated
The	fully	qualified	names	of	the	protobuf
services,	for	example
tdx.volt_api.webcam.v1.WebcamControlAPI.

method MethodDescription
repeated Internal	use	only.

Field Type Description

Session

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.DiscoveryMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.ProtoFile
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodDescription


Field Type Description
id string
identity_did string
identity_name string
ip string
created uint64
modified uint64
expires uint64
credential SessionCredential	repeated
origin string
status SessionStatus

SessionCredential

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SessionCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.SessionStatus


Field Type Description

id uint32 The	alias	id.

session_id string The	corresponding	session	id.

credential_type string The	credential	type,	for	example	public	key,	verifiable
credential,	challenge	etc.

description string Optional	description	of	this	credential.

vc_id string The	id	of	the	verifiable	credential,	if	the	credential	type	is
volt:vc-claim.

vc_json string The	verifiable	credential	in	JSON	format,	if	the	credential	type
is	volt:vc-claim.

vc_subject_id string The	subject	id	extracted	from	the	`vc_json`	field.

vc_issuer_id string The	issuer	id	extracted	from	the	`vc_json`	field.

vc_type string The	comma-separated	type(s)	extracted	from	the	`vc_json`
field.

challenge string The	challenge	string,	if	the	credential	type	is	volt:challenge.

key_fingerprint string The	key	fingerprint,	if	the	credential	type	is	volt:public-key.

public_key string The	PEM-encoded	public	key,	if	the	credential	type	is
volt:public-key.

private_key string
Optional	PEM-encoded	private	key,	if	the	credential	type	is
volt:public-key.	Only	used	for	ephemeral	REST-base	sessions
created	dynamically	after	OTP	authentication.

extra string Type-specific	extra	data	stored	with	the	credential.

extra_2 string More	type-specific	data	stored	with	the	credential.

Version

Using	`major`	and	`minor`	here	upsets	the	GNU	C	Library,	so	we	add	a	`version_`	prefix.

Field Type Description
version_major uint32
version_minor uint32
version_patch uint32

VoltEndpoint

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32


Field Type Description

id string The	globally	unique	Volt	id.

display_name string Human-readable	name	of	the	Volt.

local_address string The	actual	host/ip	the	volt	is	physically	running	on	(might
be	a	local	ip	if	behind	firewall).

http_address string The	address	of	the	endpoint	HTTP	server.

relay_address string

The	global	(Relay)	address	of	the	volt.	Any	given	volt	may
be	advertising	on	more	than	one	Relay	instance.	The	value
given	here	will	depend	on	the	Relay	instance	that	handled
the	endpoint	query	response.

relay_ca_pem string The	root	certificate	of	the	Relay	instance	referred	to	in
`relay_address`.

ca_pem string The	self-signed	certificate	used	by	the	volt	to	sign	client
certificates.

public_key string The	Volt	public	key	in	PEM	format.

fingerprint string The	base58	fingerprint	of	the	Volt	public	key.

online_status OnlineStatus The	online	status	of	the	Volt.

has_relay bool Indicates	that	this	Volt	acts	as	a	Relay.

api_version Version The	API	version	supported	by	the	endpoint.

description string Optional	description	of	the	endpoint.

did_registry string
repeated The	list	of	DID	registries	that	this	Volt	trusts.

VoltParameters

Encapsulates	the	various	Volt	parameters	that	are	configurable	by	the	Volt	owner.

Field Type Description
id string

name string The	name	of	the	Volt.

description string Human-readable
description	of	the	Volt.

db_driver string The	database	driver	in	use.

location string The	local	file	path	location

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.OnlineStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


location string The	local	file	path	location
of	the	Volt	storage.

key_strategy string
The	key	strategy	in	use,	this
determines	how	the	root
key	is	stored.

key_id string
The	identifier	for	the	key,
the	semantics	depend	on
the	key	strategy	in	use.

ca_pem string The	Volt	certificate
authority.

cert_pem string The	Volt	API	server
certificate.

fixed_host string

Optional	hostname	of	the
Volt	if	using	DNS	or	a
static	IP	address,	e.g.
tdxvolt.com

grpc_port int32 Port	to	use	for	hosting	the
Volt	management	service.

http_port int32 Port	to	use	for	hosting	the
Volt	grpc	service.

http_key_path string The	Volt	http	server	key
file	path.

http_cert_path string The	Volt	http	server
certificate	file	path.

http_ca_path string
The	Volt	http	server
certificate	authority	chain
file	path.

discoverable bool
Indicates	the	Volt	will	be
discoverable	by	clients
using	the	discovery	api.

authenticate_challenge string

Optional	challenge	code
that	can	be	used	aid	in	the
process	of	authenticating
clients.

require_authenticate_challenge bool

Indicates	that	clients	must
present	the	correct
challenge	code	in	order	to
be	able	to	authenticate.

confirm_stop bool Internal	use	only.

auto_start bool Internal	use	only.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool


enable_messaging bool Internal	use	only.

has_relay bool

Set	to	indicate	this	Volt	acts
as	a	Relay.

This	means	this	Volt	can	act
as	a	proxy	for	other	Volts
(or	in	fact	any	client)	that
connect	to	it.

relay_open bool

Set	to	run	the	Relay	open	to
any	client,	i.e.	clients	can
utilise	the	Relay	without
first	authenticating.

enable_http_server bool Determines	if	the	Volt
HTTP	server	is	enabled.

http_server_secure bool Determines	whether	the
HTTP	server	employs	TLS.

enable_http_forwarding bool
Determines	whether	the
HTTP	server	supports
forwarding.

enable_http_api bool
Determines	if	the	Volt
REST	API	is	exposed	via
the	HTTP	server.

enable_websocket_api bool
Determines	if	the	Volt
Websocket	API	is	exposed
via	the	HTTP	server.

address string
The	hostname:port	at
which	the	Volt	API	is
currently	running.

encrypt_file_store bool Set	to	indicate	the	Volt	file
store	is	encrypted.

connection_id string

This	is	a	unique	connection
id.

Indicates	that	these
parameters	refer	to	a
connection	to	a	remote	Volt
rather	than	a	local	Volt.

relay_ca_pem string
The	certificate	authority	of
the	Relay	if	this	is	a	remote
connection	via	a	Relay.

Optional	override	of	the
http	address,	rather	than
using	the	default	of
fixed_host:http_port.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string


http_address_override string

fixed_host:http_port.

This	is	useful	if	the	Volt	is
behind	a	firewall	or	NAT,
and	the	http	server	is
listening	on	a	different	port

from	80	or	443	but	this	is
hidden	by	the	proxy.	For
example,	if	the	`fixed_host`
is	`coreid.com`	and	http
server	is

listening	on	2115,	but	the
proxy	is	forwarding	443	to
2115,	then	the
http_address_override
would	be	set	to

`https://coreid.com`.

alias string

An	optional	alias	that	can
be	used	to	refer	to	the	Volt
rather	than	the	`id`	field.

This	alias	must	be	unique
within	the	scope	of	the
Battery	in	which	the	Volt	is
stored.

version Version The	runtime	version	this
Volt	is	running.

approve_on_challenge bool

If	set,	indicates	that	any
client	that	provides	the
correct	challenge	during
authentication	will
automatically	be	approved
to	access	the	Volt.

approve_on_did bool

If	set,	indicates	that	any
client	that	proves
ownership	of	a	DID	known
to	the	Volt	will
automatically	be	approved
to	access	the	Volt.

enable_did_registry bool
If	set,	indicates	that	clients
can	register	DIDs	with	this
Volt.

did_registry string	repeated Zero	or	more	URLs	of
trusted	peer	DID	registries.

enable_outbound_smtp bool If	set,	enables	outbound
SMTP.

outbound_smtp_host string The	SMTP	host	to	use	for
sending	emails.

outbound_smtp_port uint32 The	SMTP	port	to	use	for
sending	emails.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint32


sending	emails.

outbound_smtp_user string The	SMTP	username	to	use
for	sending	emails.

outbound_smtp_password string The	SMTP	password	to	use
for	sending	emails.

enable_anonymous_create bool

If	set,	enables	sessions	that
authenticate	using
credentials	rather	than	a
DID	to	create	resources	in
the	'anonymous'	system
folder.

catch_all_auth_decision PolicyDecision

The	decision	to	apply	to	all
authentication	requests	that
do	not	match	any	other
policy.

The	default	is	PROMPT.

enable_policy_cache bool If	set,	enables	caching	of
policy	decisions.

enable_terminal bool If	set,	enables	the	terminal
API.

start_time uint64 The	time	at	which	the	Volt
was	started.

Field Type Description

AttributeDataType

Attribute	data	types.

Name Number Description
ATTRIBUTE_DATA_TYPE_UNKNOWN 0
ATTRIBUTE_DATA_TYPE_STRING 1
ATTRIBUTE_DATA_TYPE_INTEGER 2
ATTRIBUTE_DATA_TYPE_REAL 3
ATTRIBUTE_DATA_TYPE_BOOLEAN 4
ATTRIBUTE_DATA_TYPE_BYTES 5
ATTRIBUTE_DATA_TYPE_IDENTITY 100
ATTRIBUTE_DATA_TYPE_RESOURCE 101

DiscoveryMode

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64


Name Number Description
DISCOVERY_MODE_UNKNOWN 0

DISCOVERY_MODE_TRUSTED 1
Only	local	identities	with
explicit	policy	PERMIT	can
discover.

DISCOVERY_MODE_PUBLIC 2 Any	bound	local	identity	can
discover.

DISCOVERY_MODE_TRUSTED_GLOBAL 3

Only	identities	with	explicit
policy	PERMIT	can	discover,
and	the	service	will	be
available	to	local	and	non-
local	(Relayed)	clients.

DISCOVERY_MODE_PUBLIC_GLOBAL 4

Any	bound	identity	can
discover,	and	the	service	will
be	available	to	local	and	non-
local	(Relayed)	clients.

OnlineStatus

Name Number Description
ONLINE_STATUS_UNKNOWN 0
ONLINE_STATUS_ONLINE 1
ONLINE_STATUS_OFFLINE 2

PolicyDecision

@todo	currently	this	must	align	with	AuthorisationDecision	enum	in	policy	library,	but	some
of	the	values	are	irrelevant	outside	of	the	public	API	so	we	need	a	public-facing	enum	and
some	translation.

Name Number Description
POLICY_DECISION_UNKNOWN 0
POLICY_DECISION_PROMPT 1
POLICY_DECISION_PERMIT 2
POLICY_DECISION_DENY 3
POLICY_DECISION_INDETERMINATE 4
POLICY_DECISION_NOT_APPLICABLE 5
POLICY_DECISION_APPLICABLE 6
POLICY_DECISION_PENDING 7

ResourceStatus

Not	used	ATM.

Name Number Description
RESOURCE_STATUS_UNKNOWN 0
RESOURCE_STATUS_LIVE 1
RESOURCE_STATUS_INACTIVE 2
RESOURCE_STATUS_DELETED 999

SecureMode



Name Number Description
SECURE_MODE_UNKNOWN 0
SECURE_MODE_INSECURE 1
SECURE_MODE_TLS 2

ServiceHostType

Name Number Description
SERVICE_HOST_TYPE_UNKNOWN 0

SERVICE_HOST_TYPE_BUILTIN 1 A	built-in	service	hosted	by	the
Volt.

SERVICE_HOST_TYPE_SERVER 2 A	service	hosted	by	a	grpc	server
other	than	the	Volt.

SERVICE_HOST_TYPE_RELAYED 3

A	service	hosted	by	a	Volt	client	via
a	relay	connection,	i.e.	the	service	is
not	exposed	by	a	server	as	such,
rather	a	Volt	client	implements	the
service	and	a	Volt	acts	as	a	proxy,
calling	back	to	the	client	to
implement	the	methods.

SessionStatus

Name Number Description
SESSION_STATUS_UNKNOWN 0
SESSION_STATUS_PENDING 1
SESSION_STATUS_LIVE 2
SESSION_STATUS_EXPIRED 3
SESSION_STATUS_REVOKED 4
SESSION_STATUS_REJECTED 5

ShareMode

Not	used	ATM.

Name Number Description
SHARE_MODE_UNKNOWN 0
SHARE_MODE_TRUSTED 1
SHARE_MODE_PUBLIC_READ 2

HttpInvoke

Field Type Description
host string
port int32
method string
url string
version string
headers HttpInvoke.HeadersEntry	repeated
body bytes

HttpInvoke.HeadersEntry

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpInvoke.HeadersEntry
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes


Field Type Description
key string
value string

HttpPayload

Field Type Description
chunk bytes
end bool
error int32

HttpRequest

Field Type Description
id uint64
http_invoke HttpInvoke
http_payload HttpPayload

HttpResponse

Field Type Description
id uint64
http_payload HttpPayload

MethodEnd

Field Type Description
id uint64
ended bool
error string
error_code int32

MethodInvoke

Field Type Description
id uint64
service_id string
method_name string
method_type MethodType
request bytes
json_request string

MethodPayload

Field Type Description
id uint64
payload bytes
json_payload string

RemotePing

Field Type Description
timestamp uint64

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpInvoke
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#uint64


RemoteRequest

Field Type Description
ping RemotePing
method_payload MethodPayload
method_end MethodEnd
http_response HttpResponse

RemoteResponse

Field Type Description
ping RemotePing
method_invoke MethodInvoke
method_payload MethodPayload
method_end MethodEnd
http_request HttpRequest

MethodType

Name Number Description
METHOD_TYPE_UNKNOWN 0
METHOD_TYPE_UNARY 1
METHOD_TYPE_CLIENT_STREAM 2
METHOD_TYPE_SERVER_STREAM 3
METHOD_TYPE_BIDI 4

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

int32

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is

int64 long int/long int64 long integer/string Bignum

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodInvoke
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html#tdx.volt_api.volt.v1.HttpRequest


field	is
likely	to
have
negative
values,
use	sint64
instead.

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

.proto
Type Notes C++ Java Python Go C# PHP



2^56.

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html


Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

ProtobufSyncConfiguration

file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Describes	a	single	message	type.

A	set	of	one	or	more	of	these	messages	is	specified	in	`ProtobufSyncConfigurationHeader`.

Field Type Description

id string

Optional	id	to	associate	with	this
configuration.

This	can	be	used	in	the	`header_id`
field	of	`ProtobufSyncWrapper`
above	to	reference	the	configuration.

If	omitted	the	numerical	index	of	the
configuration	in
`ProtobufSyncConfigurationHeader`
will	be	used	instead.

message_proto string

The	actual	protobuf	definition	text.

Copy	and	paste	the	source	protobuf
definition	from	the	`.proto`	file.

Only	simple	protobuf	structures	are
currently	supported,	e.g.	no	imports
from	other	packages	etc.

message_name string

The	name	of	the	message	within
`message_proto`	above	that
represents	the	data	to	be	sync'd,	e.g.
`TCPDumpPacket`.

table_name string

The	name	of	the	table	within	the
target	database	into	which	the
message	data	for	this	type	should	be
written.

ProtobufSyncConfigurationHeader

This	message	is	written	at	the	beginning	of	every	file	to	be	ingested	using	the	`protoDbSync`
utility.

It	contains	a	`header`	entry	for	each	message	type	that	may	appear	in	the	file.

If	the	`volt	logger`	command	is	used,	it	will	create	this	header	automatically	based	on	the
configuration	it's	given.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string


Field Type Description

id string

This	should	ideally	be	a
persistent	UUID,	at
minimum	it	must	be	unique
within	the	set	of	types	of	file
any	given	instance	of
`protoDbSync`	is	processing
in	a	given	folder.

It	is	used	to	match	up
orphaned	or	split	packets
that	might	occur	when
receiving	data	from	a	wire,
for	example,	if	a	log	file	is
rotated	midway	through	a
packet	arriving	on	the	wire.

This	id	should	persist	for	the
life	time	of	the	set	of	data	it
describes,	i.e.	if	a	wire
publication	is	stopped	and
restarted	at	some	later	point,
the	same	id	should	be	used
if	possible.

configuration ProtobufSyncConfiguration
repeated

The	set	of	possible
configurations	that	can
appear	in	any	given	protobuf
sync	data	file.

A	serialised	instance	of	this
message	must	appear	at	the
top	of	each	data	file.

Each	subsequent	serialised
message	in	the	data	file	must
be	an	instance	of
`ProtobufSyncWrapper`,
and	the	`header_lookup`
field	refers	to	an	entry	in	this
list.

maximum_message_size int32

Optional	maximum	size	of
the	serialised	messages,	this
doesn't	need	to	be	exact	and
the	default	is	64K	if
omitted.

ProtobufSyncWrapper

Wraps	arbitrary	protobuf	messages,	with	an	index	into	the
`ProtobufSyncConfigurationHeader`	to	indicate	the	specific	message	type	this	message
wraps.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#tdx.volt_api.sync.v1.ProtobufSyncConfiguration
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#int32


Field Type Description

header_index uint32

The	index	number	of	the
header	for	this	message	type
in	the	Volt	logger
configuration	file.

header_id string

The	name	of	the	header	for
this	message	type,	will	be
used	to	lookup	against	the	`id`
field	in
`ProtobufSyncConfiguration`.

This	will	incur	an	overhead	in
terms	of	the	packet	size,	but
might	be	preferrable	if
volume	is	low	or	managing
the	header	index	is	difficult.

payload bytes

The	message	payload,	in
serialised	protobuf	binary
format.

n.b.	the	serialisation	should
**not**	be	length-prefixed.

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

int32

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,

int64 long int/long int64 long integer/string Bignum

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html#bytes


values,
use	sint64
instead.

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

.proto
Type Notes C++ Java Python Go C# PHP



bytes.

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html


Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

RelayAPI
Top

file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#title


GetVoltEndpoint()

Retrieve	the	list	of	Volts	available	on	the	Relay	Volt.

Request:	GetVoltEndpointRequest
Response:	GetVoltEndpointResponse

Tunnel()

This	is	the	actual	tunnel	stream.

Note	although	this	API	semantically	describes	the	tunnel	stream,	it	isn't	actually	implemented
anywhere.	It	is	used	by	client	libraries	to	easily	serialise	tunnel	payloads.

Request:	streaming	.tdx.volt_api.volt.v1.RemoteRequest
Response:	streaming	.tdx.volt_api.volt.v1.RemoteResponse

CloudTunnel()

This	is	the	tunnel	stream	for	cloud-based	tunnels.

Request:	streaming	TunnelRequest
Response:	streaming	TunnelResponse

GetVoltEndpointRequest

Field Type Description

owner_id string Filter	on	the	owning	identity.

volt_id string Filter	on	volt	id.

GetVoltEndpointResponse

Field Type Description
status tdx.volt_api.volt.v1.Status
endpoint tdx.volt_api.volt.v1.VoltEndpoint	repeated

TunnelControl

Field Type Description
start TunnelStart
add_service TunnelServiceControl
remove_service TunnelServiceControl

TunnelRequest

Field Type Description
ping tdx.volt_api.volt.v1.RemotePing
control TunnelControl
method_payload tdx.volt_api.volt.v1.MethodPayload
method_end tdx.volt_api.volt.v1.MethodEnd
http_response tdx.volt_api.volt.v1.HttpResponse

TunnelResponse

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.GetVoltEndpointRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.GetVoltEndpointResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemoteRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemoteResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.VoltEndpoint
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelStart
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelServiceControl
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelServiceControl
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.relay.v1.TunnelControl
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpResponse


Field Type Description
ping tdx.volt_api.volt.v1.RemotePing
method_invoke tdx.volt_api.volt.v1.MethodInvoke
method_payload tdx.volt_api.volt.v1.MethodPayload
method_end tdx.volt_api.volt.v1.MethodEnd
http_request tdx.volt_api.volt.v1.HttpRequest

TunnelServiceControl

Field Type Description
resource_id string
service_name string
service_description tdx.volt_api.volt.v1.ServiceDescription

TunnelStart

Field Type Description
preferred_port uint32
address string
public_key string
fingerprint string
ca_pem string
volt_version string

HttpInvoke

Field Type Description
host string
port int32
method string
url string
version string
headers HttpInvoke.HeadersEntry	repeated
body bytes

HttpInvoke.HeadersEntry

Field Type Description
key string
value string

HttpPayload

Field Type Description
chunk bytes
end bool
error int32

HttpRequest

Field Type Description
id uint64
http_invoke HttpInvoke
http_payload HttpPayload

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodInvoke
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ServiceDescription
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpInvoke.HeadersEntry
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpInvoke
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpPayload


HttpResponse

Field Type Description
id uint64
http_payload HttpPayload

MethodEnd

Field Type Description
id uint64
ended bool
error string
error_code int32

MethodInvoke

Field Type Description
id uint64
service_id string
method_name string
method_type MethodType
request bytes
json_request string

MethodPayload

Field Type Description
id uint64
payload bytes
json_payload string

RemotePing

Field Type Description
timestamp uint64

RemoteRequest

Field Type Description
ping RemotePing
method_payload MethodPayload
method_end MethodEnd
http_response HttpResponse

RemoteResponse

Field Type Description
ping RemotePing
method_invoke MethodInvoke
method_payload MethodPayload
method_end MethodEnd
http_request HttpRequest

MethodType

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.RemotePing
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodInvoke
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodPayload
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodEnd
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.HttpRequest


Name Number Description
METHOD_TYPE_UNKNOWN 0
METHOD_TYPE_UNARY 1
METHOD_TYPE_CLIENT_STREAM 2
METHOD_TYPE_SERVER_STREAM 3
METHOD_TYPE_BIDI 4

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Access

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


Field Type Description
id string

resource_id string The	resource	being	accessed.

resource_name string A	human-readable	short	identifier	of	the	resource.

resource_owner string The	identity	that	owns	the	resource.

resource_kind string	repeated The	kind	of	resource.

identity_did string The	identity	attempting	access.

credential_lookup string The	JSON	path	array	for	looking	up	verifiable
credentials.

identity_name string A	human-readable	short	identifier	of	the	subject.

identity_kind string	repeated The	kind	of	identity.

access string Requested	access.

extra string Optional	extra	data.

decision PolicyDecision Assigned	decision.

recursive bool

request_time int64 Time	at	which	the	request	was	made.

decision_time int64 Time	at	which	the	decision	was	taken.

request_count uint32 Counter	of	number	times	this	access	was	requested.

AttributeValue

Attribute	value	will	be	one	of	the	following	fields,	depending	on	the	data	type.

Field Type Description
string string
integer int64
real double
boolean bool
bytes bytes

Identity

A	Volt	identity	encompasses	a	Resource	and	a	set	of	identity	aliases.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#double
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bytes


Field Type Description
resource Resource
alias IdentityAlias	repeated

IdentityAlias

Field Type Description

id uint32 The	alias	id.

identity_did string The	corresponding	identity	id.

alias string The	actual	alias,	e.g.	a	common	name	or	key	fingerprint.

public_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key

private_key string This	will	only	be	populated	if	alias_type	==	tdx:public-
key,	and	the	key	is	stored	in	the	Volt.

alias_type string The	alias	type,	for	example	public	key,	email,	phone
number	etc.

issuer_id string The	identity	that	issued	this	alias.

authenticate PolicyDecision Indicates	if	this	alias	has	an	authenticate	policy	decision
assigned.

description string Optional	description	of	this	alias.

MethodDescription

Internal	use	only.

Field Type Description
path string
client_streaming bool
server_streaming bool

ProtoFile

Describes	a	single	protobuf	file	for	use	in	ServiceDescription.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.IdentityAlias
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool


Field Type Description

file_path string The	path	name	of	the	proto	file,	relative	to	the	'root'	of	the
namespace,	e.g.	"tdx/volt_api/volt/v1/volt.proto".

protobuf string The	actual	protobuf	file	contents.

service_name string
repeated

Optional	-	the	service(s)	contained	in	this	protobuf	file,	if
omitted	here	they	will	be	loaded	dynamically	from	the
protobuf.

ProxyConnection

Represents	an	outbound	connection	from	a	Volt	to	a	remote	service	that	will	act	as	a	proxy	for
that	Volt.

This	enables	Volts	to	bypass	firewall	and	NATs.

Example	-	connection	from	a	Volt	to	a	Relay	Volt	running	on	the	public	internet,	such	as
tdxvolt.com

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


Field Type Description

id string Unique	connection	id.

name string A	human-readable	name	for	the	connection.

address string The	remote	address	of	the	proxy	service.

ca_pem string The	certificate	authority	of	the	proxy	service.

enabled bool Indicates	this	connection	is	enabled.

connected bool Indicates	this	connection	is	currently	in	use.

enable_http_proxy bool Indicates	that	this	connection	will	handle	HTTP
proxying	as	well	as	GRPC.

disable_volt_api bool Set	to	indicate	the	Volt	API	itself	is	not
automatically	exposed	to	the	connection.

challenge string Optional	challenge	that	can	be	presented	in	the
authentication	request.

target_id string The	id	of	the	target	Volt	that	this	connection	is
bound	to.

sync_did_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

did_registry_sync_id uint64 The	id	of	the	last	DID	registry	operation	that	was
synchronised.

sync_vc_registry bool Indicates	that	this	connection	hosts	a	DID	registry
that	we	should	synchronise	with.

vc_registry_sync_timestamp uint64 The	timestamp	of	the	last	VC	registry	operation
that	was	synchronised.

session_id string
certificate string

Resource

The	core	Resource	metadata	schema.

Field Type Description

id string The	globally	unique
resource	id.

description string Optional	description.

Human-readable	resource

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


name string Human-readable	resource
name.

share_mode ShareMode Not	in	use.

volt_id string The	id	of	the	Volt	that	hosts
this	resource.

service_description ServiceDescription
Optional	description	of	any
services	exposed	by	this
resource.

attribute ResourceAttribute	repeated Attributes	assigned	to	the
resource.

platform_version Version The	version	of	the	platform.

version uint64 The	resource	version.

owner string The	identity	of	the	resource
owner.

created uint64 Creation	timestamp,
milliseconds	since	epoch.

modified uint64
Last	modification
timestamp,	milliseconds
since	epoch.

status ResourceStatus Not	in	use.

kind string	repeated The	taxonomy	of	the
resource.

online_status OnlineStatus

The	online	status.

For	most	kinds	of	resource
this	indicates	that	the	server
hosting	the	resource	is
online,	the	exception	being
identity	resources,	in	which
case	the	status	reflects
whether	or	not	the	identity
has	a	live	connection.

All	built-in	resources	are
hosted	by	the	Volt	itself	and
are	therefore	always	online
when	the	Volt	is	running.

Resources	hosted	by
external	servers	are	online	if
the	server	itself	is	online	and
has	registered	the	resource
as	online	using
`setServiceStatus`.

The	size	of	the	resource

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ShareMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ServiceDescription
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ResourceAttribute
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ResourceStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.OnlineStatus


size uint64 The	size	of	the	resource
store	in	bytes.

store string The	path	to	the	resource
store.

alias string	repeated

Alias(es)	that	can	be	used	to
refer	to	the	resource	rather
than	the	id.

Each	alias	must	be	unique	to
the	Volt,	this	is	enforced	by
the	API.

No	format	restrictions	are
currently	applied	to	alias,
but	this	may	change	in
future,	for	the	time	being	it
makes	sense	to	stick	to
alphanumeric	characters	and
'_'	or	'-'.

content_hash string
The	hash	of	the	resource
content	contained	in	the
store.

child Resource	repeated Not	yet	supported.

Field Type Description

ResourceAttribute

A	resource	attribute	enables	storing	arbitrary	data	associated	with	a	resource.

Field Type Description
id uint32
attribute_id string
resource_id string
data_type AttributeDataType
value AttributeValue	repeated

ServiceDescription

Describes	a	Volt	service.

Field Type Description

host_type ServiceHostType The	configuration	used	by	the	host	of	this
service.

host_client_id string

The	identity	of	the	client	that	is	exposing	the
service.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	first
authenticate	and	obtain	a	client	DID	and
credentials	in	order	to	be	able	to	create	service
resource(s).

Any	resources	that	are	owned	by	this	client
will	be	marked	as	online	if	the	client	itself	is
online,	i.e.	has	a	live	connection	to	the	Volt.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Resource
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.AttributeDataType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.AttributeValue
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ServiceHostType
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


This	will	be	empty	if	the	service	is	a	built-in
Volt	service.

host_service_id string

The	id	of	the	resource	that	holds	the	protobuf
definition	for	this	resource.

For	example,	if	a	third	party	is	exposing	a
database	service	via	a	Volt,	it	will	create	a
service	resource	that	holds	details	of	the
protobuf	methods	exposed	by	the	service.

For	built-in	services,	i.e.	those	hosted	by	the
Volt,	this	will	set	to	the	Volt	id.

host_address string

The	address	of	the	grpc	server	hosting	this
service.

Only	relevant	to	grpc-hosted	services.

host_ca_pem string

The	certificate	authority	(chain)	that	signed
the	service	server	certificate.

This	is	only	relevant	to	grpc-hosted	services.

host_public_key string

The	public	key	of	the	service	host,	which	is
used	to	encrypt	payloads.

This	may	change	as	the	service	comes	and
goes	online.

host_connection_id string The	connection	id	currently	used	to	host	this
service.

host_session_id string Internal	use	only.

discoverable DiscoveryMode The	discovery	mode.

ping_timestamp int64 The	ping	timestamp	of	the	server	hosting	this
service.

proto_file ProtoFile	repeated The	protobuf	definitions	of	the	APIs	exposed
by	this	service.

service_api string	repeated
The	fully	qualified	names	of	the	protobuf
services,	for	example
tdx.volt_api.webcam.v1.WebcamControlAPI.

method MethodDescription
repeated Internal	use	only.

Field Type Description

Session

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.DiscoveryMode
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.ProtoFile
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.MethodDescription


Field Type Description
id string
identity_did string
identity_name string
ip string
created uint64
modified uint64
expires uint64
credential SessionCredential	repeated
origin string
status SessionStatus

SessionCredential

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.SessionCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.SessionStatus


Field Type Description

id uint32 The	alias	id.

session_id string The	corresponding	session	id.

credential_type string The	credential	type,	for	example	public	key,	verifiable
credential,	challenge	etc.

description string Optional	description	of	this	credential.

vc_id string The	id	of	the	verifiable	credential,	if	the	credential	type	is
volt:vc-claim.

vc_json string The	verifiable	credential	in	JSON	format,	if	the	credential	type
is	volt:vc-claim.

vc_subject_id string The	subject	id	extracted	from	the	`vc_json`	field.

vc_issuer_id string The	issuer	id	extracted	from	the	`vc_json`	field.

vc_type string The	comma-separated	type(s)	extracted	from	the	`vc_json`
field.

challenge string The	challenge	string,	if	the	credential	type	is	volt:challenge.

key_fingerprint string The	key	fingerprint,	if	the	credential	type	is	volt:public-key.

public_key string The	PEM-encoded	public	key,	if	the	credential	type	is
volt:public-key.

private_key string
Optional	PEM-encoded	private	key,	if	the	credential	type	is
volt:public-key.	Only	used	for	ephemeral	REST-base	sessions
created	dynamically	after	OTP	authentication.

extra string Type-specific	extra	data	stored	with	the	credential.

extra_2 string More	type-specific	data	stored	with	the	credential.

Version

Using	`major`	and	`minor`	here	upsets	the	GNU	C	Library,	so	we	add	a	`version_`	prefix.

Field Type Description
version_major uint32
version_minor uint32
version_patch uint32

VoltEndpoint

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32


Field Type Description

id string The	globally	unique	Volt	id.

display_name string Human-readable	name	of	the	Volt.

local_address string The	actual	host/ip	the	volt	is	physically	running	on	(might
be	a	local	ip	if	behind	firewall).

http_address string The	address	of	the	endpoint	HTTP	server.

relay_address string

The	global	(Relay)	address	of	the	volt.	Any	given	volt	may
be	advertising	on	more	than	one	Relay	instance.	The	value
given	here	will	depend	on	the	Relay	instance	that	handled
the	endpoint	query	response.

relay_ca_pem string The	root	certificate	of	the	Relay	instance	referred	to	in
`relay_address`.

ca_pem string The	self-signed	certificate	used	by	the	volt	to	sign	client
certificates.

public_key string The	Volt	public	key	in	PEM	format.

fingerprint string The	base58	fingerprint	of	the	Volt	public	key.

online_status OnlineStatus The	online	status	of	the	Volt.

has_relay bool Indicates	that	this	Volt	acts	as	a	Relay.

api_version Version The	API	version	supported	by	the	endpoint.

description string Optional	description	of	the	endpoint.

did_registry string
repeated The	list	of	DID	registries	that	this	Volt	trusts.

VoltParameters

Encapsulates	the	various	Volt	parameters	that	are	configurable	by	the	Volt	owner.

Field Type Description
id string

name string The	name	of	the	Volt.

description string Human-readable
description	of	the	Volt.

db_driver string The	database	driver	in	use.

location string The	local	file	path	location

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.OnlineStatus
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


location string The	local	file	path	location
of	the	Volt	storage.

key_strategy string
The	key	strategy	in	use,	this
determines	how	the	root
key	is	stored.

key_id string
The	identifier	for	the	key,
the	semantics	depend	on
the	key	strategy	in	use.

ca_pem string The	Volt	certificate
authority.

cert_pem string The	Volt	API	server
certificate.

fixed_host string

Optional	hostname	of	the
Volt	if	using	DNS	or	a
static	IP	address,	e.g.
tdxvolt.com

grpc_port int32 Port	to	use	for	hosting	the
Volt	management	service.

http_port int32 Port	to	use	for	hosting	the
Volt	grpc	service.

http_key_path string The	Volt	http	server	key
file	path.

http_cert_path string The	Volt	http	server
certificate	file	path.

http_ca_path string
The	Volt	http	server
certificate	authority	chain
file	path.

discoverable bool
Indicates	the	Volt	will	be
discoverable	by	clients
using	the	discovery	api.

authenticate_challenge string

Optional	challenge	code
that	can	be	used	aid	in	the
process	of	authenticating
clients.

require_authenticate_challenge bool

Indicates	that	clients	must
present	the	correct
challenge	code	in	order	to
be	able	to	authenticate.

confirm_stop bool Internal	use	only.

auto_start bool Internal	use	only.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool


enable_messaging bool Internal	use	only.

has_relay bool

Set	to	indicate	this	Volt	acts
as	a	Relay.

This	means	this	Volt	can	act
as	a	proxy	for	other	Volts
(or	in	fact	any	client)	that
connect	to	it.

relay_open bool

Set	to	run	the	Relay	open	to
any	client,	i.e.	clients	can
utilise	the	Relay	without
first	authenticating.

enable_http_server bool Determines	if	the	Volt
HTTP	server	is	enabled.

http_server_secure bool Determines	whether	the
HTTP	server	employs	TLS.

enable_http_forwarding bool
Determines	whether	the
HTTP	server	supports
forwarding.

enable_http_api bool
Determines	if	the	Volt
REST	API	is	exposed	via
the	HTTP	server.

enable_websocket_api bool
Determines	if	the	Volt
Websocket	API	is	exposed
via	the	HTTP	server.

address string
The	hostname:port	at
which	the	Volt	API	is
currently	running.

encrypt_file_store bool Set	to	indicate	the	Volt	file
store	is	encrypted.

connection_id string

This	is	a	unique	connection
id.

Indicates	that	these
parameters	refer	to	a
connection	to	a	remote	Volt
rather	than	a	local	Volt.

relay_ca_pem string
The	certificate	authority	of
the	Relay	if	this	is	a	remote
connection	via	a	Relay.

Optional	override	of	the
http	address,	rather	than
using	the	default	of
fixed_host:http_port.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string


http_address_override string

fixed_host:http_port.

This	is	useful	if	the	Volt	is
behind	a	firewall	or	NAT,
and	the	http	server	is
listening	on	a	different	port

from	80	or	443	but	this	is
hidden	by	the	proxy.	For
example,	if	the	`fixed_host`
is	`coreid.com`	and	http
server	is

listening	on	2115,	but	the
proxy	is	forwarding	443	to
2115,	then	the
http_address_override
would	be	set	to

`https://coreid.com`.

alias string

An	optional	alias	that	can
be	used	to	refer	to	the	Volt
rather	than	the	`id`	field.

This	alias	must	be	unique
within	the	scope	of	the
Battery	in	which	the	Volt	is
stored.

version Version The	runtime	version	this
Volt	is	running.

approve_on_challenge bool

If	set,	indicates	that	any
client	that	provides	the
correct	challenge	during
authentication	will
automatically	be	approved
to	access	the	Volt.

approve_on_did bool

If	set,	indicates	that	any
client	that	proves
ownership	of	a	DID	known
to	the	Volt	will
automatically	be	approved
to	access	the	Volt.

enable_did_registry bool
If	set,	indicates	that	clients
can	register	DIDs	with	this
Volt.

did_registry string	repeated Zero	or	more	URLs	of
trusted	peer	DID	registries.

enable_outbound_smtp bool If	set,	enables	outbound
SMTP.

outbound_smtp_host string The	SMTP	host	to	use	for
sending	emails.

outbound_smtp_port uint32 The	SMTP	port	to	use	for
sending	emails.

Field Type Description

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.Version
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint32


sending	emails.

outbound_smtp_user string The	SMTP	username	to	use
for	sending	emails.

outbound_smtp_password string The	SMTP	password	to	use
for	sending	emails.

enable_anonymous_create bool

If	set,	enables	sessions	that
authenticate	using
credentials	rather	than	a
DID	to	create	resources	in
the	'anonymous'	system
folder.

catch_all_auth_decision PolicyDecision

The	decision	to	apply	to	all
authentication	requests	that
do	not	match	any	other
policy.

The	default	is	PROMPT.

enable_policy_cache bool If	set,	enables	caching	of
policy	decisions.

enable_terminal bool If	set,	enables	the	terminal
API.

start_time uint64 The	time	at	which	the	Volt
was	started.

Field Type Description

AttributeDataType

Attribute	data	types.

Name Number Description
ATTRIBUTE_DATA_TYPE_UNKNOWN 0
ATTRIBUTE_DATA_TYPE_STRING 1
ATTRIBUTE_DATA_TYPE_INTEGER 2
ATTRIBUTE_DATA_TYPE_REAL 3
ATTRIBUTE_DATA_TYPE_BOOLEAN 4
ATTRIBUTE_DATA_TYPE_BYTES 5
ATTRIBUTE_DATA_TYPE_IDENTITY 100
ATTRIBUTE_DATA_TYPE_RESOURCE 101

DiscoveryMode

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#tdx.volt_api.volt.v1.PolicyDecision
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html#uint64


Name Number Description
DISCOVERY_MODE_UNKNOWN 0

DISCOVERY_MODE_TRUSTED 1
Only	local	identities	with
explicit	policy	PERMIT	can
discover.

DISCOVERY_MODE_PUBLIC 2 Any	bound	local	identity	can
discover.

DISCOVERY_MODE_TRUSTED_GLOBAL 3

Only	identities	with	explicit
policy	PERMIT	can	discover,
and	the	service	will	be
available	to	local	and	non-
local	(Relayed)	clients.

DISCOVERY_MODE_PUBLIC_GLOBAL 4

Any	bound	identity	can
discover,	and	the	service	will
be	available	to	local	and	non-
local	(Relayed)	clients.

OnlineStatus

Name Number Description
ONLINE_STATUS_UNKNOWN 0
ONLINE_STATUS_ONLINE 1
ONLINE_STATUS_OFFLINE 2

PolicyDecision

@todo	currently	this	must	align	with	AuthorisationDecision	enum	in	policy	library,	but	some
of	the	values	are	irrelevant	outside	of	the	public	API	so	we	need	a	public-facing	enum	and
some	translation.

Name Number Description
POLICY_DECISION_UNKNOWN 0
POLICY_DECISION_PROMPT 1
POLICY_DECISION_PERMIT 2
POLICY_DECISION_DENY 3
POLICY_DECISION_INDETERMINATE 4
POLICY_DECISION_NOT_APPLICABLE 5
POLICY_DECISION_APPLICABLE 6
POLICY_DECISION_PENDING 7

ResourceStatus

Not	used	ATM.

Name Number Description
RESOURCE_STATUS_UNKNOWN 0
RESOURCE_STATUS_LIVE 1
RESOURCE_STATUS_INACTIVE 2
RESOURCE_STATUS_DELETED 999

SecureMode



Name Number Description
SECURE_MODE_UNKNOWN 0
SECURE_MODE_INSECURE 1
SECURE_MODE_TLS 2

ServiceHostType

Name Number Description
SERVICE_HOST_TYPE_UNKNOWN 0

SERVICE_HOST_TYPE_BUILTIN 1 A	built-in	service	hosted	by	the
Volt.

SERVICE_HOST_TYPE_SERVER 2 A	service	hosted	by	a	grpc	server
other	than	the	Volt.

SERVICE_HOST_TYPE_RELAYED 3

A	service	hosted	by	a	Volt	client	via
a	relay	connection,	i.e.	the	service	is
not	exposed	by	a	server	as	such,
rather	a	Volt	client	implements	the
service	and	a	Volt	acts	as	a	proxy,
calling	back	to	the	client	to
implement	the	methods.

SessionStatus

Name Number Description
SESSION_STATUS_UNKNOWN 0
SESSION_STATUS_PENDING 1
SESSION_STATUS_LIVE 2
SESSION_STATUS_EXPIRED 3
SESSION_STATUS_REVOKED 4
SESSION_STATUS_REJECTED 5

ShareMode

Not	used	ATM.

Name Number Description
SHARE_MODE_UNKNOWN 0
SHARE_MODE_TRUSTED 1
SHARE_MODE_PUBLIC_READ 2

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative



int32
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

Always
four
bytes.
More

.proto
Type Notes C++ Java Python Go C# PHP



fixed32

More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html


Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html


FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

SsiAPI
Top

DeleteDID()

Delete	a	DID	document	or	all	DID	documents	originating	from	a	given	Volt.

Requires	`volt:delete-did`	API	privilege.

Request:	DeleteDIDRequest
Response:	DeleteDIDResponse

GetDIDRegistryUpdates()

Get	all	updates	to	the	DID	registry	since	the	specified	timestamp.

Internal	use	only.

Request:	GetDIDRegistryUpdatesRequest
Response:	GetDIDRegistryUpdatesResponse

ImportCredential()

Import	a	verifiable	credential.

Request:	ImportCredentialRequest
Response:	ImportCredentialResponse

ParseCredential()

Parse	a	verifiable	credential	from	a	URL	or	a	verifiable	presentation.

Request:	ParseCredentialRequest
Response:	ParseCredentialResponse

ResolveDID()

Resolve	a	DID	to	a	DID	document.

Request:	ResolveDIDRequest
Response:	ResolveDIDResponse

RegisterDIDDocument()

Register	a	DID	document.

file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DeleteDIDRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DeleteDIDResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.GetDIDRegistryUpdatesRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.GetDIDRegistryUpdatesResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ImportCredentialRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ImportCredentialResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ParseCredentialRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ParseCredentialResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ResolveDIDRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.ResolveDIDResponse


This	is	intended	for	use	by	the	DID	registry	when	synchronising	with	other	registries.

To	register	a	new	DID	document,	it	is	recommended	to	use	the	VoltAPI	Authenticate	method.

Request:	RegisterDIDDocumentRequest
Response:	RegisterDIDDocumentResponse

SaveCredential()

Save	a	verifiable	credential.

Request:	SaveCredentialRequest
Response:	SaveCredentialResponse

SearchDIDRegistry()

Search	the	DID	registry.

Request:	SearchDIDRegistryRequest
Response:	SearchDIDRegistryResponse

DeleteDIDRequest

Field Type Description

did string The	id	of	the	identity	to	delete.

origin_volt string Force	delete	of	all	DIDs	owned	by	the	specified	Volt.

key_passphrase string Optional	passphrase	of	the	DID	controller	key.	Required	if	the
key	is	encrypted.

DeleteDIDResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

GetDIDRegistryUpdatesRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.RegisterDIDDocumentRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.RegisterDIDDocumentResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.SaveCredentialRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.SaveCredentialResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.SearchDIDRegistryRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.SearchDIDRegistryResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status


Field Type Description

since_id uint64

The	id	of	the	last	update
received.

All	updates	since	this	id	will
be	returned,	limited	to	the
maximum	number	of
updates	specified	in	the
request.

To	fully	synchronise,	clients
should	continue	calling	this
method	until	the	response
contains	no	updates.

If	this	is	the	first	call,	then
this	should	be	set	to	0.

max_updates uint32
The	maximum	number	of
updates	to	return,	defaults	to
1000.

origin_volt string Filter	by	origin	volt.

GetDIDRegistryUpdatesResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

update DIDRegistryUpdate	repeated The	updates.

ImportCredentialRequest

Field Type Description

id string Optional	id	of	existing	credential	to	import	into.	If	not
specified,	a	new	credential	will	be	created.

json string The	JSON	representation	of	the	credential.

create_in_parent_id string Optional	id	of	the	folder	resource	to	save	the	credential	in.
This	is	ignored	if	the	id	field	is	specified.

description string Optional	description	of	the	credential.

ImportCredentialResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

id string The	id	assigned	to	the	credential.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string


ParseCredentialRequest

Field Type Description

verifiable_presentation VerifiablePresentation

A	presentation	of	the
verifiable	credential.

The	presentation	doesn't
need	to	be	signed,	but	if	it	is,
the	signature	will	be	verified
using	the	public	key
provided	in	the	request.

url string

A	URL	to	a	verifiable
credential.

Not	yet	implemented.

presentation_public_key string
Optional	public	key	to	use	to
verify	the	presentation
signature.

ParseCredentialResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

verifiable_credential VerifiableCredential The	parsed	credential	details.

RegisterDIDDocumentRequest

Field Type Description
create bool

did_update DIDRegistryUpdate The	DID	document	to	save.

update_signature string

When	updating	an	existing	DID	document,	it	is
necessary	to	include	a	signature	of	the
document	JSON,	signed	by	the	DID	document's
current	owner.

RegisterDIDDocumentResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

did_document DIDRegistryUpdate

ResolveDIDRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.VerifiablePresentation
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.VerifiableCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate


Field Type Description

did string The	DID	to	resolve.

include_registries bool Set	to	search	all	known	registries	rather	than	just	the	local
registry.

ResolveDIDResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

did_document string The	JSON	representation	of	the	DID	document.

update_signature string The	signature	used	to	save	this	version	of	the	DID	document.

origin_volt string The	DID	of	the	Volt	that	saved	this	version	of	the	DID
document.

description string Optional	description	associated	with	the	DID	document.

SaveCredentialRequest

Field Type Description

description string A	human-readable	description	of	the
credential.

verifiable_credential VerifiableCredential Details	of	the	credential	to	save.

create_in_parent_id string Optional	id	of	the	folder	resource	to	save	the
credential	in.

SaveCredentialResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

id string The	id	assigned	to	the	credential.

json string The	JSON	representation	of	the	credential.

SearchDIDRegistryRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.VerifiableCredential
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string


Field Type Description

did_filter string
Filter	by	DID	itself.	This	is	a	prefix	match,	so	searching	for
'did:volt:123'	will	match	'did:volt:1234'.	You	can	also	exclude
the	'did:volt:'	prefix.

description_filter string

Filter	by	the	(optional)	description	attached	to	the	DID
document.	This	will	match	any	DID	document	whose
description	contains	the	specified	string,	for	example	'John'
will	match	'John	Smith',	'Elton	John'	and	'Jasper	Johns-
Frederick'.

origin_filter string Filter	by	the	origin	Volt.	This	will	match	any	DID	document
whose	origin	Volt	matches	exactly	the	given	DID.

page_number uint32 The	page	number	to	retrieve,	defaults	to	1.

page_size uint32 The	number	of	results	per	page,	defaults	to	100.

SearchDIDRegistryResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

did_document DIDRegistryUpdate
repeated

The	DID	documents	that	matched	the	search
criteria.

DIDRegistryUpdate

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate


Field Type Description

id uint64

The	id	of	the	update.

Reserved	for	internal
use.

did string The	id	of	the	identity.

operation string
The	type	of	update,
either	"add",	"update"
or	"delete".

document string
The	DID	document
contained	in	the
update.

hash string

The	hash	of	DID
document.

This	is	for	internal	use
in	comparisons.

update_signature string The	signature	of	the
update.

timestamp uint64 The	timestamp	of	this
update.

vector_clock DIDRegistryUpdate.VectorClockEntry
repeated

The	vector	clocks	for
this	DID.

The	vector	clocks	are
a	map	of	the	peer	ID
to	the	id	of	the	last
update	received	for
this	DID.

origin_volt string The	id	of	the	Volt	that
first	created	this	DID.

description string

Optional	description
of	this	document,	this
is	not	part	of	the	DID
document	or
signature.

DIDRegistryUpdate.VectorClockEntry

Field Type Description
key string
value uint64

VerifiableCredential

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#tdx.volt_api.volt.v1.DIDRegistryUpdate.VectorClockEntry
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#uint64


Field Type Description

id string The	credential	id.	Leave	empty	when	creating	a	new
credential.

status string The	credential	status,	either	"pending",	"verified",	or
"revoked".

type string
repeated The	credential	types.

issuer_id string The	DID	of	the	issuer.

subject_json string The	JSON	of	the	credential	subject.

json string The	full	JSON	of	the	credential.

VerifiablePresentation

Field Type Description

credential_json string The	credential	JSON.

signature string A	signature	of	the	credential	JSON.	The	signature	should	usually
be	that	of	the	credential	subject.

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

Uses
variable-

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html#string


int32

variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

sint32

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than

int64 long int/long int64 long integer/string Bignum

.proto
Type Notes C++ Java Python Go C# PHP



regular
int64s.

fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html


Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync

file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html


sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Contents

Contents

FileAPI
Top

The	File	API	exposes	basic	file	management	functions.

DownloadFile()

Download	from	file	resource.

Request:	DownloadFileRequest
Response:	streaming	DownloadFileResponse

GetFile()

Get	file	resource	metadata.

Request:	GetFileRequest
Response:	GetFileResponse

GetFileContent()

Get	the	content	of	a	file.

Note	this	rpc	will	fail	if	the	size	of	the	file	content	is	greater	than	64MB,	in	which	case	use
DownloadFile	instead.

Request:	GetFileContentRequest
Response:	GetFileContentResponse

GetFileDescendants()

Get	the	file	resource	metadata	of	all	descendants	of	a	given	file	resource.

Request:	GetFileDescendantsRequest
Response:	GetFileDescendantsResponse

SetFileContent()

Set	the	content	of	a	file.

Note	this	rpc	will	fail	if	the	size	of	the	file	content	is	greater	than	64MB,	in	which	case	use
UploadFile	instead.

file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#title
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.DownloadFileRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.DownloadFileResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileContentRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileContentResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileDescendantsRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.GetFileDescendantsResponse


Request:	SetFileContentRequest
Response:	SetFileContentResponse

UploadFile()

Upload	data	to	a	file	resource.

Request:	streaming	UploadFileRequest
Response:	streaming	UploadFileResponse

DownloadFileRequest

Field Type Description

resource_id string The	id	of	the	resource	to	download.

file_path string This	is	required	for	linked	folders,	and	represents	the	relative	path	to
the	source	file	from	the	base	folder.

DownloadFileResponse

The	response	stream	will	contain	one	or	more	of	the	following	messages.

Each	response	message	will	contain	one	of	the	following	fields.

Field Type Description

block bytes A	chunk	of	file	data.

status Status A	status	will	be	sent	when	the	file	is	completely	downloaded,	or	if	an
error	occurs.

GetFileContentRequest

Field Type Description

resource_id string The	resource	id	of	the	base	folder.

file_path string Optional	-	the	path	to	the	file,	relative	to	the	base	folder.	Required
for	linked	folders.

GetFileContentResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

content bytes The	file	content.

GetFileDescendantsRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.SetFileContentRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.SetFileContentResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.UploadFileRequest
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.UploadFileResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bytes


Field Type Description

resource_id string The	resource	id	of	the	base	folder.

file_path string For	linked	files,	this	is	the	relative	path	to	the	'parent'	file	from	the
base	folder.

extension string Optional	-	only	match	descendants	of	the	given	kind.

descendant_id string Optional	-	can	be	used	to	determine	if	a	resource	is	a	descendant.

GetFileDescendantsResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

descendant File	repeated The	list	of	descendants.

GetFileRequest

Field Type Description

resource_id string The	resource	id	of	the	base	folder.

file_path string Optional	-	the	path	to	the	file,	relative	to	the	base	folder.	Required
for	linked	folders.

GetFileResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

file File The	file	metadata.

SetFileContentRequest

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.File
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.File


Field Type Description

resource_id string The	resource	id	of	the	base
folder.

file_path string

Optional	-	the	path	to	the
file,	relative	to	the	base
folder.	Required	for	linked
folders.

store_name string

Optional	store	name	to	use.

If	specified,	this	will	be	used
to	extract	the	extension	to
set	as	a	resource	'kind',	e.g.
tdx:ext:json.

If	not	specified,	the
extension	will	be	taken	from
the	name	of	the	target
resource.

content bytes

SetFileContentResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

UploadFileRequest

One	of	the	following	fields	must	be	present.

Field Type Description

start UploadFileStart Describes	the	file	upload,	should	only	be	sent	as	first	message.

block bytes The	next	block	of	data.

UploadFileResponse

Field Type Description

status Status Details	of	any	error	that	occurred	on	the	call.

back_off bool Reserved	for	internal	use.

UploadFileStart

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.UploadFileStart
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bytes
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#tdx.volt_api.volt.v1.Status
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bool


Field Type Description

resource_id string The	resource	to	upload	to,
required.

store_name string

Optional	store	name	to	use.

If	specified,	this	will	be	used
to	extract	the	extension	to
set	as	a	resource	'kind',	e.g.
tdx:ext:json.

If	not	specified,	the
extension	will	be	taken	from
the	name	of	the	target
resource.

streaming_mode bool

Optionally	set	streaming
mode.

When	in	streaming	mode,
data	is	written	directly	to	the
resource.

Otherwise,	data	is	written	to
a	temporary	file	and	then
copied	over	once	the	upload
completes	successfully.

truncate bool

Optional,	truncates	the	file
prior	to	beginning	the
upload.	This	is	only	really
relevant	if	'streaming_mode'
is	set.

eager_flush bool Optional,	buffer	will	flush
after	each	write.

Status

Field Type Description

code int32

A	simple	error	code	that	can
be	easily	handled	by	the
client.

Mirrors	the	grpc	StatusCode
enum,	0	=>	OK

message string

A	developer-facing	human-
readable	error	message	in
English.	It	should	both
explain	the	error	and	offer
an	actionable	resolution	to
it.

description string Long	form	error	description.

File

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#int32
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string


Field Type Description
file_path string
absolute_path string
file_name string
extension string
size uint64
media_type string
is_directory bool
modified uint64
resource_id string
owner_resource_id string

Scalar	Value	Types

.proto
Type Notes C++ Java Python Go C# PHP

double double double float float64 double float Float
float float float float float32 float float Float

int32

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint32
instead.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

int64

Uses
variable-
length
encoding.
Inefficient
for
encoding
negative
numbers	–
if	your
field	is
likely	to
have
negative
values,
use	sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer Bignum	or	Fixnum
(as	required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string Bignum	or	Fixnum
(as	required)

Uses
variable-
length

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#bool
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#uint64
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/file_api.html#string


sint32

length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int32s.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sint64

Uses
variable-
length
encoding.
Signed	int
value.
These
more
efficiently
encode
negative
numbers
than
regular
int64s.

int64 long int/long int64 long integer/string Bignum

fixed32

Always
four
bytes.
More
efficient
than
uint32	if
values	are
often
greater
than
2^28.

uint32 int int uint32 uint integer Bignum	or	Fixnum
(as	required)

fixed64

Always
eight
bytes.
More
efficient
than
uint64	if
values	are
often
greater
than
2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always
four
bytes.

int32 int int int32 int integer Bignum	or	Fixnum
(as	required)

sfixed64
Always
eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A	string
must
always
contain
UTF-8
encoded
or	7-bit
ASCII
text.

string String str/unicode string string string String	(UTF-8)

May

.proto
Type Notes C++ Java Python Go C# PHP



bytes

May
contain
any
arbitrary
sequence
of	bytes.

string ByteString str []byte ByteString string String	(ASCII-8BIT)

.proto
Type Notes C++ Java Python Go C# PHP

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/roadmap.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html


Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Roadmap

cli
Surfacing	of	more	sections	of	the	 tdx	Volt	API	are	upcoming,	specifically:

database	support	-	ability	to	create	databases	and	execute	SQL

fusebox
Support	multiple	selection	(and	hence	bulk	operations)	in	resource	folder

core
Generic	verifiable	credential	support
Resource	aliases

Skip	to	Content

file:///Users/tobyealden/code/pdf-docs/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/reference/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/introduction.html#article
file:///Users/tobyealden/code/pdf-docs/index.html


tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/introduction.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/clients/web.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/reference/pkcs11.html


Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Introduction
tdx	Volt	is	a	platform	that	provides	the	ability	to	 securely	share	services,	structured	data,
files,	and	analytics	in	a	peer-to-peer,	decentralised	fashion.

A	tdx	Volt	gives	you	complete	control	over	access	to	all	of	your	services,	data	and	resources.

Features
Some	of	the	features	include:

True	end-to-end	encryption	between	peers	-	no	intermediate	server.
Data	is	encrypted	at	rest.
Securely	access	the	services	and	data	in	your	 tdx	Volt	from	anywhere.
Protect	your	data	using	a	security	policy	that	gives	you	fine-grained,	complete	control
over	who	can	access	your	data.
Connect	to	friends	and	colleagues	and	share	services,	files	and	data.
Client	libraries	for	Javascript	(Web	and	NodeJS),	Python	and	C++.
Run	on	many	platforms,	including	Windows,	MacOS	(Intel	and	Apple	silicon),	Linux,
RPi,	Omnia	Turris.

Get	Started

OR

Learn	More

Skip	to	Content

tdx	Volt

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html#article
file:///Users/tobyealden/code/index.html


putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html


File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Connect	stream
A	client	can	choose	to	establish	what’s	known	as	a	 connect	stream	with	the	Volt.	For	clients
that	are	simply	consuming	services,	this	isn’t	always	necessary.	However	if	a	client	wishes	to
register	a	service	with	Volt	for	consumption	by	other	clients,	a	connect	stream	is	required	to
ensure	that	the	Volt	can	reliably	determine	when	services	are	online	and	reachable.

A	connect	stream	can	also	be	useful	in	consumer	scenarios,	because	it	makes	things	like
reconnection	and	retries	easier	to	manage.	For	example,	if	a	client	wishes	to	set	up	a	reliable
subscription	to	a	Volt	wire,	the	‘connected’	event	of	a	connect	stream	can	be	used	to	signal
the	start	of	the	subscription.	If	the	connect	stream	drops	for	whatever	reason,	a
‘disconnected’	event	will	be	sent	and	the	client	library	will	automatically	attempt	periodic
reconnection.	Once	the	connect	stream	is	re-established,	the	‘connect’	event	is	fired	again
and	the	client	can	restart	the	subscription.

Service	registration
Clients	wishing	to	register	a	service(s)	with	the	Volt	must	first	establish	a	 connect	stream.
The	Volt	uses	the	connect	stream	to	control	the	lifetime	of	the	services.	If	the	 connect
stream	is	dropped	or	explicitly	closed,	the	Volt	will	move	all	the	services	registered	by	that
client	offline.

Both	client	libraries	provide	interfaces	that	make	 connect	stream	creation	and	management
relatively	straight	forward.	See	the	How	to	establish	a	connect	stream	section	for	more
information.

Remote	invocation
As	well	as	service	registration	management,	 connect	streams	are	used	internally	by	the	Volt
to	support	the	Relay	concept.	When	a	Volt	establishes	a	Relay	connection	to	another	Volt,	this
is	done	using	a	connect	stream.	See	 the	InvokeRequest	and	InvokeResponse	message	types
for	more	details.

This	concept	could	be	extended	to	enable	any	client	to	support	remote	invocation	of	arbitrary
functions,	i.e.	it	is	not	restricted	to	Volt	endpoints.	For	example,	a	web	client	could	establish	a

file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.InvokeRequest


connect	stream	using	the	Javascript	Web	API ,	and	upon	receipt	of	a	 ConnectResponse
message	with	an	InvokeRequest	payload	respond	with	an	appropriate	 InvokeResponse.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection

file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.ConnectResponse
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.InvokeRequest
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html#tdx.volt_api.volt.v1.InvokeResponse
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html


Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Battery
A	Battery	is	primarily	a	convenience	structure	for	storing	 tdx	Volt	configurations	and
potentially	grouping	together	two	or	more	Volts.

For	example,	a	router	may	have	a	Battery	that	contains	a	 tdx	Volt	for	each	member	of	the
household,	or	an	enterprise	server	may	use	multiple	Batteries	as	a	means	of	grouping	various
subscribers	or	similar.

Storage
A	Battery	stores	the	 Volt	configuration	of	each	 tdx	Volt	that	it	contains.

As	well	as	the	 tdx	Volt	configurations,	the	Battery	also	stores	details	of	the	 key	strategy	used
by	each	Volt.

The	Battery	storage	is	implemented	as	an	 SqlCipher	database,	a	secure,	encrypted-at-rest
version	of	Sqlite.

Battery	key	strategy
If	a	tdx	Volt	is	using	the	‘Battery’	key	strategy,	the	 tdx	Volt	key	will	be	stored	along	with	the
tdx	Volt	configuration	in	the	Battery	storage.

If	the	Battery	is	password	protected,	the	key	will	be	stored	in	the	encrypted	Battery	database,
which	in	turn	is	protected	by	the	Battery	password.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
https://docs.tdxvolt.com/en/concepts/key-strategies
https://www.zetetic.net/sqlcipher/
https://docs.tdxvolt.com/en/concepts/key-strategies


Battery	password	protection
The	user	can	choose	whether	to	protect	the	Battery	with	a	passphrase	or	not.

It	is	recommended	to	do	so,	but	is	not	strictly	necessary	if	the	Volts	it	contains	will	be	using
key	strategies	other	than	the	‘Battery’	strategy.

The	Battery	password	is	used	to	encrypt	the	storage	database.	It	is	not	stored	anywhere	and
relies	on	the	user	remembering	it.	It	is	not	currently	possible	to	change	or	reset	the	Battery
password	without	losing	all	data.

Location
All	files	relating	to	a	given	Battery	are	located	in	a	named	directory,	which	can	be	specified	by
the	user	at	creation	time.

A	default	Battery	is	automatically	created	in	a	sub-folder	called	 TDXVolt	of	the	Documents
folder,	which	is	dependent	on	the	current	user	and	operating	system.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html


Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

PKCS#11
The	tdx	Volt	can	be	configured	to	use	a	PKCS#11-compliant	hardware	security	module
(HSM)	to	secure	the	tdx	Volt	key.

This	page	will	describe	the	steps	involved	in	using	a	YubiKey	5	hardware	security	module	to
secure	the	tdx	Volt	key.

This	example	uses	the	Personal	Identity	Verification	(PIV)	application	on	the	YubiKey.	PIV	is
a	standard	for	smart	cards	used	for	secure	authentication.

file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


This	document	is	intended	as	a	quick-start	guide.	You	should	read	the	 YubiKey
documentation	for	more	detailed	information	about	how	to	securely	configure	your	YubiKey.

Prerequisites
A	YubiKey	5	hardware	security	module
The	YubiKey	PIN	(the	default	is	 123456)
The	YubiKey	management	software	( ykman)	installed	on	your	computer
You	may	also	need	to	install	the	 OpenSC	software	to	enable	PKCS#11	support,
depending	on	your	operating	system

Installation
The	YubiKey	needs	to	be	configured	with	a	PIV	key	pair	and	a	certificate.	The	key	pair	will
be	used	to	secure	the	tdx	Volt	key.

We	will	use	the	 ykman	command-line	tool	to	create	the	key	pair	and	configure	the	YubiKey.
The	ykman	tool	is	available	for	Windows,	macOS,	and	Linux,	see	the	 details	here.

There	is	also	a	graphical	user	interface	available	for	Windows	and	macOS,	see	 Yubico
website	for	more	information.

Generate	a	key	pair
The	following	command	will	generate	a	key	pair	on	the	YubiKey.	The	private	key	will	be
stored	in	slot	9a	on	the	YubiKey,	and	the	public	key	will	be	written	to	a	file	on	the	local	file
system	called	yubi-public.pem.

Slot	9a	is	typically	used	for	the	PIV	authentication	key,	see	the	 Appendix	below	for	more
information.

The	following	command	will	generate	the	key	pair:

ykman	piv	keys	generate	9a	./yubi-public.pem

Terminal	window

We	also	need	to	generate	a	certificate	for	the	key	pair.	The	following	command	will	generate	a
self-signed	certificate	and	store	it	in	the	slot	on	the	device.	Replace	the	Alice	with	your	own
name	or	the	subject	of	the	certificate	holder.

ykman	piv	certificates	generate	-s	"CN=Alice"	9a	./yubi-
public.pem

Terminal	window

See	the	YubiKey	documentation	for	full	details	of	how	to	configure	the	key	pair	generation,
including	algorithm	selection	and	key	size	etc.

Configure	the	tdx	Volt
To	create	a	 tdx	Volt	that	is	secured	by	the	YubiKey,	you	need	to	specify	the	PKCS#11	key
strategy	when	creating	the	tdx	Volt.	See	the	Create	a	Volt	page	for	more	information.

Appendix
You	will	need	to	know	the	slot	number	of	the	PIV	key	pair	on	your	YubiKey.

Slot	9a	is	typically	used	for	the	PIV	authentication	key.	You	can	confirm	that	the	key	pair	is
available	by	running	the	pkcs11-tool	command,	which	is	part	of	the	OpenSC	software:

pkcs11-tool	-v	-O

Terminal	window

https://docs.yubico.com/
https://github.com/OpenSC/OpenSC
https://docs.yubico.com/software/yubikey/tools/ykman/Install_ykman.html
https://www.yubico.com/products/services-software/download/yubikey-manager/
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html#appendix
https://docs.yubico.com/
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html#using-a-yubikey-hardware-security-module-hsm


You	should	see	output	similar	to	the	following,	look	for	the	 PIV	AUTH	pubkey	label	and
note	the	ID	field	value:

Using	slot	0	with	a	present	token	(0x0)Public	Key	Object;	
RSA	2048	bits		label:						PIV	AUTH	pubkey		ID:									01		
Usage:						encrypt,	verify,	verifyRecover,	wrap		Access:					
none

Terminal	window

If	this	isn’t	the	case,	you	will	need	to	use	the	slot	number	shown	rather	than	 01	when
configuring	your	tdx	Volt.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html


NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Configuration
The	tdx	Volt	configuration	is	used	by	clients	that	want	to	connect	to	a	 tdx	Volt	and	access
resources	or	services.

It	contains	all	the	information	necessary	for	a	client	to	identify	and	locate	 the	tdx	Volt
management	API	and	establish	a	connection.

The	full	definition	of	the	 tdx	Volt	configuration	is	show	 in	the	Appendix	below .

Note	that	the	client	will	also	need	to	supply	some	credentials	in	order	to	identify	itself	to	the
Volt.	This	is	described	in	Volt	Connection.

The	tdx	Volt	configuration	does	not	contain	any	sensitive	information	that	may	compromise
its	security.	It	is	safe	to	distribute	the	tdx	Volt	configuration,	either	publicly	or	only	to	those
you	would	like	to	connect	to	your	Volt.	Just	because	somebody	possesses	your	tdx	Volt
configuration	does	not	mean	they	can	access	the	Volt.

Obtaining	a	tdx	Volt	configuration

file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html#appendix
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html


There	are	several	methods	of	obtaining	the	configuration	document	for	a	given	Volt.

Out	of	band

A	likely	scenario	is	that	you	will	obtain	a	 tdx	Volt	configuration	via	some	out-of-band	means
such	as	email.

If	Alice	is	happy	for	Bob	to	connect	to	her	 tdx	Volt	she	will	email	Bob	her	 tdx	Volt
configuration.

fusebox

The	easiest	option	if	you	are	owner	of	the	 tdx	Volt	is	to	use	the	 fusebox	application.	On	the
main	tdx	Volt	screen	there	is	a	‘configuration’	field	in	the	right-hand	side	bar	-	see	the	image
below.

If	you	click	on	the	‘copy’	icon	at	the	right-hand	edge	the	 tdx	Volt	configuration	will	be
copied	to	the	clipboard.

Command	line

Another	method	of	obtaining	a	 tdx	Volt	configuration	is	via	the	command	line	interface.	The	
config	command	will	list	all	the	configured	Volts:

./volt	config

Terminal	window

Once	you	know	the	 id	of	the	Volt,	you	can	obtain	the	full	 tdx	Volt	configuration	by
specifying	the	id	to	the	config	command:

./volt	config	-i	<volt	id>

Terminal	window

If	the	tdx	Volt	has	an	alias,	you	can	use	that	instead	of	the	 id:

./volt	config	-i	@<alias>

Terminal	window

Web	portal

This	is	under	review	and	may	be	removed	shortly.

If	you	would	like	to	connect	to	a	remote	 tdx	Volt	via	a	cloud	tunnel,	you	can	copy	the
configuration	from	the	TDX	Cloud 	web	portal.

Select	the	tdx	Volt	in	the	drop-down	list	at	the	top	of	the	page	and	then	click	on	the
‘Command’	button,	followed	by	‘copy	configuration’	menu	item.

Peer	to	Peer	discovery

This	functionality	is	experimental	and	subject	to	change.

All	Batteries	implement	and	expose	the	 tdx.api.volt.v1.DiscoveryAPI	service.	This	can	be
used	to	discover	all	Volts	currently	running	on	the	Battery.

The	fusebox	also	implements	a	rudimentary	discovery	function	in	the	form	of	scanning	all	IP
addresses	on	the	local	network,	looking	for	instances	of	the	DisoveryAPI.

Remote	discovery

All	Relay	Volt	connections	will	implement	and	expose	the	 tdx.api.relay.v1.RelayAPI

https://volt.tdxcloud.com
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html


service.	The	endpoint	GetVoltEndpoint	can	be	used	to	list	all	Volts	that	the	currently
authenticated	client	has	access	to.

Examples
A	minimal	example	of	a	 tdx	Volt	configuration	is	shown	below.

{		"id":	"5160cbc4-8fd5-4f92-a0c9-589183cf822e",		"address":	
"192.168.1.71:65247",		"ca_pem":	"-----BEGIN	CERTIFICATE----
-
\r\nMIIDtzCCAp+gAwIBAgIGAXslHHq0MA0GCSqGSIb3DQEBCwUAMH0xGzAZBgNVBAMT\r\nEnZvbHQuY2xvdWQuY2Eucm9vdDEfMB0GA1UECxMWVERYIFZvbHQgQ2xvdWQgUm9v\r\ndCBDQTELMAkGA1UEBhMCR0IxFDASBgNVBAcTC1NvdXRoYW1wdG9uMRowGAYDVQQK\r\nExFucXVpcmluZ21pbmRzIEx0ZDAeFw0yMTA4MDgwOTMzNDhaFw0zMTA4MDgwOTMz\r\nNDhaMH0xGzAZBgNVBAMTEnZvbHQuY2xvdWQuY2Eucm9vdDEfMB0GA1UECxMWVERY\r\nIFZvbHQgQ2xvdWQgUm9vdCBDQTELMAkGA1UEBhMCR0IxFDASBgNVBAcTC1NvdXRo\r\nYW1wdG9uMRowGAYDVQQKExFucXVpcmluZ21pbmRzIEx0ZDCCASIwDQYJKoZIhvcN\r\nAQEBBQADggEPADCCAQoCggEBAMrFeRTSOr4JVGbKMVKA7Ib1I2DmwzSRRvW/Y2hC\r\nE7FHwepUIjDnC6uRjA3ksaCTyzw2TtZYBPdGOnvx87ZIMr9bjw8j2gaP/ZfEVkOn\r\nkZ+7PwdDksuOJ6BjwxP3Yjape6kR1kp4ObisFSpT7dgsFEfByjS7ptJ/kWZExAAi\r\n/E/ob4xbiCdnRQV0YFpG+uMwdHDNSoZjmF5j/dvJfZuaixpVjnHz+CJWK4DoGScm\r\nL80cuvIQujYgNPHPnJgmGIzWNEYvp3DM0N45RP4KYEICyQKkgBVgH4GcWbbA6ZxB\r\nJ8yIckCpjUqTgDtksxRRvGGTNzBNTXCtfbstQVJ8/89MVnkCAwEAAaM9MDswDwYD\r\nVR0TAQH/BAUwAwEB/zAdBgNVHQ4EFgQUDKceoSXzXMSSnss+B51t/yxYr1wwCQYD\r\nVR0jBAIwADANBgkqhkiG9w0BAQsFAAOCAQEANdYDxWqHMoyyZSNLweQfFSDuQ5TQ\r\nHENgYUmEvqLO9KaTEhvu/+v9Ru3RmVBkg6CIhumJk2g7qVGKGSEHN6BH6UjS8uMn\r\ncGfuITD/qWKEGsvjDXE+voCViE6cM8QQRTTROTh5Ub8ZHbear/rtqMUu6AEW7H5w\r\n71atJjkBdwnq9UCS3KMU1PIxzxIq20B8TX7etozyl2+R6qtTrFcbbszvL6xWlegR\r\nwyTjKg7/BEFohtZLB9TrsVXZVZoJdtT8lZz8Nz0FSqFwqNl7xDXU1HWsW3fpQXQ7\r\n6g5u2ZbzXiyZn0sMvg2vEKr+zPfKiuBfkQHM+pgjh9JKrzpnfoAYQr4HVQ==\r\n
-----END	CERTIFICATE-----\r\n"}

A	full	tdx	Volt	configuration	is	show	below,	note	that	many	of	the	fields	are	included	for
convenience:

{		"id":	"5160cbc4-8fd5-4f92-a0c9-589183cf822e",		
"display_name":	"Local	1",		"address":	"192.168.1.71:65247",		
"public_key":	"-----BEGIN	PUBLIC	KEY-----
\r\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzBHtrgPpsFHdFJeCEtr8\r\n44kjRyzGt6kk1duNIu6rxLnGDjzaqrrqzvIc0PYGu2Xmmt39gKDVudR/xn2SwCL7\r\nicDnsQluUh6kuh1MoJd5LxxUTBdmxsBY4o2uxFf99rbyVi8nxw+wtjJKcUZERZ98\r\ng1rhR84WIKoRF6NBuelRHit4QzkSWik02ZFJSoN1OalbvJmkXCoZsGiod1AIiARn\r\nR3VGXHCWCuwYFb4+9LMm61/LhTMR1jSjz4GtxAh3BAT3q8aa2vwayrZ3lhtnHCVT\r\nppTKHiRnPeVAeDf5/LviPN7vQnrWebfiC4pqFCg2QvUVdWoSHUMZVTs1QdHPdMtL\r\nKwIDAQAB\r\n
-----END	PUBLIC	KEY-----\r\n",		"fingerprint":	
"EGWTGHuqxhnGDQb29GhfUhJXXfhjnGZ2rUhMVR9DGyUH",		"ca_pem":	
"-----BEGIN	CERTIFICATE-----
\r\nMIIDtzCCAp+gAwIBAgIGAXslHHq0MA0GCSqGSIb3DQEBCwUAMH0xGzAZBgNVBAMT\r\nEnZvbHQuY2xvdWQuY2Eucm9vdDEfMB0GA1UECxMWVERYIFZvbHQgQ2xvdWQgUm9v\r\ndCBDQTELMAkGA1UEBhMCR0IxFDASBgNVBAcTC1NvdXRoYW1wdG9uMRowGAYDVQQK\r\nExFucXVpcmluZ21pbmRzIEx0ZDAeFw0yMTA4MDgwOTMzNDhaFw0zMTA4MDgwOTMz\r\nNDhaMH0xGzAZBgNVBAMTEnZvbHQuY2xvdWQuY2Eucm9vdDEfMB0GA1UECxMWVERY\r\nIFZvbHQgQ2xvdWQgUm9vdCBDQTELMAkGA1UEBhMCR0IxFDASBgNVBAcTC1NvdXRo\r\nYW1wdG9uMRowGAYDVQQKExFucXVpcmluZ21pbmRzIEx0ZDCCASIwDQYJKoZIhvcN\r\nAQEBBQADggEPADCCAQoCggEBAMrFeRTSOr4JVGbKMVKA7Ib1I2DmwzSRRvW/Y2hC\r\nE7FHwepUIjDnC6uRjA3ksaCTyzw2TtZYBPdGOnvx87ZIMr9bjw8j2gaP/ZfEVkOn\r\nkZ+7PwdDksuOJ6BjwxP3Yjape6kR1kp4ObisFSpT7dgsFEfByjS7ptJ/kWZExAAi\r\n/E/ob4xbiCdnRQV0YFpG+uMwdHDNSoZjmF5j/dvJfZuaixpVjnHz+CJWK4DoGScm\r\nL80cuvIQujYgNPHPnJgmGIzWNEYvp3DM0N45RP4KYEICyQKkgBVgH4GcWbbA6ZxB\r\nJ8yIckCpjUqTgDtksxRRvGGTNzBNTXCtfbstQVJ8/89MVnkCAwEAAaM9MDswDwYD\r\nVR0TAQH/BAUwAwEB/zAdBgNVHQ4EFgQUDKceoSXzXMSSnss+B51t/yxYr1wwCQYD\r\nVR0jBAIwADANBgkqhkiG9w0BAQsFAAOCAQEANdYDxWqHMoyyZSNLweQfFSDuQ5TQ\r\nHENgYUmEvqLO9KaTEhvu/+v9Ru3RmVBkg6CIhumJk2g7qVGKGSEHN6BH6UjS8uMn\r\ncGfuITD/qWKEGsvjDXE+voCViE6cM8QQRTTROTh5Ub8ZHbear/rtqMUu6AEW7H5w\r\n71atJjkBdwnq9UCS3KMU1PIxzxIq20B8TX7etozyl2+R6qtTrFcbbszvL6xWlegR\r\nwyTjKg7/BEFohtZLB9TrsVXZVZoJdtT8lZz8Nz0FSqFwqNl7xDXU1HWsW3fpQXQ7\r\n6g5u2ZbzXiyZn0sMvg2vEKr+zPfKiuBfkQHM+pgjh9JKrzpnfoAYQr4HVQ==\r\n
-----END	CERTIFICATE-----\r\n",		"owner_credential":	
"eyJAY29udGV4dCI6WyJodHRwczovL3d3dy53My5vcmcvMjAxOC9jcmVkZW50aWFscy92MSIsImh0dHBzOi8vbnFtaW5kcy5jb20vY3JlZGVudGlhbHMvdjEiXSwiaWQiOiJodHRwczovL3ZvbHQudGR4Y2xvdWQuY29tL2FwaS9jcmVkZW50aWFsL2UwMTQ1OTEwLTNiNGMtNDY4ZS05ZDkwLTVjODQ4MDUyNWRkYSIsInR5cGUiOlsiVmVyaWZpYWJsZUNyZWRlbnRpYWwiLCJURFhWb2x0VHJ1c3RDcmVkZW50aWFsIl0sImlzc3VlciI6eyJpZCI6ImRpZDp0ZHg6NDZkNWRmYWEtOThlYi00OGVjLTg3MTYtMjhjMDY4ZGE0MDJkIiwibmFtZSI6IlRvYnkgRWFsZGVuIn0sImlzc3VhbmNlRGF0ZSI6MTY1NDg0ODUzNDc2NiwiY3JlZGVudGlhbFN1YmplY3QiOnsiaWQiOiJkaWQ6dGR4OjUxNjBjYmM0LThmZDUtNGY5Mi1hMGM5LTU4OTE4M2NmODIyZSIsInN1YmplY3RJZCI6IjUxNjBjYmM0LThmZDUtNGY5Mi1hMGM5LTU4OTE4M2NmODIyZSIsImNsYWltIjp7Im93bmVkIjp0cnVlfX0sInN0YXR1cyI6IiIsInByb29mIjp7InR5cGUiOiJSc2FTaWduYXR1cmUyMDE4IiwiY3JlYXRlZCI6MTY1NDg0ODUzNDkyMywicHJvb2ZQdXJwb3NlIjoiYXNzZXJ0aW9uTWV0aG9kIiwidmVyaWZpY2F0aW9uTWV0aG9kIjoiZGlkOnRkeDo0NmQ1ZGZhYS05OGViLTQ4ZWMtODcxNi0yOGMwNjhkYTQwMmQja2V5IiwiandzIjoiZXlKaGJHY2lPaUpTVXpJMU5pSXNJbUkyTkNJNlptRnNjMlY5Li5BRlFxamNKSHNBTFkxV0U4Yk15SzJFTHhWWlc4UjdPMEdKNEJxbUJ3aFI4UXZ5bUFFODNCZTNBa1d6M2RhR3l6UDJrLzBSYy9QMkxUZzI2QWsydFdqcnhMUUdna0lDbnRRUml0eUNFdEo0OHBjS3lRaWVkYnVJQmJ6bWt2TDVTY24venZDSHpRd0s1UUlISzBvWEpmc1grUXVhdUlmb1RjYWJOUFdDNnhUNEprN0tsWWp3QTBoc0NoRW1OemZxckFST2ZDMUZmREgrOEtoU1JCVUJwY3dJZnNZU0YyN3lIRitiOVBpL2RtSTJnOUsrdGd5TzFxc1A4azRWWDJBRnRndGZacmhQbzE1VWpUMVNzR2NJWnlMbldhcFB1aXBHUk9FbE51THZaVHZVcngrTnVXb2pkRnJXNEM1YWJsdE5iUEh3aFQzL09LREdqYnVXbWs3aXB2Z2c9PSJ9fQ=="
}

Property	description
In	addition	to	the	 JSONSchema	given	in	the	Appendix ,	the	properties	contained	in	the	 tdx
Volt	configuration	are	described	below.

Depending	on	the	scenario,	some	of	the	properties	may	not	be	applicable	and	can	be	omitted.

Properties	marked	 [required]	are	applicable	in	all	scenarios.

id	[required]

The	globally	unique	identifier	of	the	Volt.

This	property	must	be	present	in	the	 tdx	Volt	configuration,	unless	you	are	connecting	to	a
remote	tdx	Volt	via	a	Relay	Volt	(i.e.	not	peer-to-peer).	More	on	that	later.

display_name

The	human-readable	display	name	of	the	Volt.	This	is	non-unique,	and	is	only	for	reference
purposes,	i.e.	it	is	not	required	in	order	to	be	able	to	connect	to	the	Volt.

address

The	address	at	which	the	 tdx	Volt	is	running.	This	will	be	in	the	form	of	 host:port,	where	
host	can	be	either	an	IP	address	or	a	DNS	resolvable	domain	name.

ca_pem	[required]

The	PEM	encoded	signing	certificate	used	by	the	Volt.	This	must	be	present	in	the	 tdx	Volt
configuration	and	is	used	to	encrypt	all	communication	with	the	Volt.

challenge_code

If	present	it	represents	a	challenge	code	that	can	be	signed	and	presented	when	attempting	to

file:///Users/tobyealden/code/pdf-docs/api/relay_api.html#GetVoltEndpoint
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html#appendix


bind	to	this	Volt.	This	is	required	as	part	of	the	initial	bind	flow	to	demonstrate	to	the	tdx	Volt
that	you	have	some	secret,	pre-shared	information.	You	do	not	need	to	do	this	if	the	tdx	Volt
already	knows	your	public	key,	or	you	have	other	verifiable	credentials	you	can	present	these
in	the	bind	request.

public_key

The	public	key	of	the	Volt.	This	is	useful	for	identifying	the	 tdx	Volt	but	is	not	required	in	the
tdx	Volt	configuration	in	order	to	be	able	to	connect	to	the	 tdx	Volt	(it	can	be	inferred	from
the	signing	certificate).

fingerprint

This	is	a	hash	of	the	public	key	in	base58	format,	useful	as	a	shortcut	means	of	comparing
and	lookup	up	keys.

owner_credential

A	base64	encoded	JWT	signed	by	the	 tdx	Volt	key	and	containing	a	verifiable	credential
stating	the	owner	of	the	tdx	Volt	in	the	form	of	a	DID.

Appendix

Volt	configuration	definition

The	JSONSchema	describing	the	tdx	Volt	configuration	is	as	follows:

https://json-schema.org/


{		"$schema":	"https://json-schema.org/draft/2019-
09/schema",		"$id":	"https://tdxvolt.com/schemas/volt-
configuration",		"type":	"object",		"title":	"Volt	
configuration	schema",		"required":	["id",	"ca_pem"],		
"properties":	{				"id":	{						"type":	"string",						
"title":	"The	id	of	the	Volt.",						"examples":	["1947660b-
fbc0-4345-aec7-03b147d4e417"]				},				"display_name":	{						
"type":	"string",						"title":	"A	human-readable	name	of	
the	Volt.",						"examples":	["macBook	(intel)"]				},				
"address":	{						"type":	"string",						"title":	"The	
address	that	can	be	used	to	connect	to	the	Volt	within	the	
local	network.",						"examples":	["192.168.1.69:50908"]				
},				"public_key":	{						"type":	"string",						"title":	
"The	Volt	public	key,	in	PEM	format.	This	is	optional	and	
will	be	inferred	from	the	ca_pem.",						"examples":	[								
"-----BEGIN	PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA435moWiFRnDK/uUQcLuw\nCv+uPILgwy+MPOUmgoQUNsZgeH2RjFZqWv4JAr+1V67EDcLwIgxjd9pdYfdeHFoG\n5Z4t7qvpbJ0GPpj4SpQiN+XufZ4h+xe5C77pxukHKdzg4KlcE1UavxkRn/hQe/jI\n3tQDl99/iy0zdrClfcGDecTJT9th563ggVGuXi+GJ8iZMc6sNsYR5vMZcL3qJgx+\nUYe9RMqY4wDkbs8BppXLfy9WH41JREN1f9ypEHDKom+Yisbpcx4X9GSllz5Q67BA\nMrpwzzl7Q1F5Dj8oQQcBHvVq7ja33/OpK09iH1Wi6hv+nnd3Pv/8NM3QhoMWFjos\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n"						]				},				"fingerprint":	{						
"type":	"string",						"title":	"The	base58	encoded	
fingerprint	of	the	Volt	public	key.	This	is	optional.",						
"examples":	["EPhBiNvb5RAvM1FjzrrrKYP7ggMBaJ5wM7KMTJjBfPaM"]				
},				"ca_pem":	{						"type":	"string",						"title":	"The	
certificate	authority	used	by	the	Volt,	in	PEM-encoded	
format.",						"examples":	[								"-----BEGIN	CERTIFICATE--
---
\nMIIDojCCAoqgAwIBAgIEBoqCUTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2IxNDdk\nNGU0MTcwHhcNMjIxMDI5MTcwNDIxWhcNMjMxMDI5MTcwNDIyWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2Ix\nNDdkNGU0MTcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDjfmahaIVG\ncMr+5RBwu7AK/648guDDL4w85SaChBQ2xmB4fZGMVmpa/gkCv7VXrsQNwvAiDGN3\n2l1h914cWgblni3uq+lsnQY+mPhKlCI35e59niH7F7kLvunG6Qcp3ODgqVwTVRq/\nGRGf+FB7+Mje1AOX33+LLTN2sKV9wYN5xMlP22HnreCBUa5eL4YnyJkxzqw2xhHm\n8xlwveomDH5Rh71EypjjAORuzwGmlct/L1YfjUlEQ3V/3KkQcMqib5iKxulzHhf0\nZKWXPlDrsEAyunDPOXtDUXkOPyhBBwEe9WruNrff86krT2IfVaLqG/6ed3c+//w0\nzdCGgxYWOixzAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBSucRk3SzUBcmL5QaqMhyfbGTXCXTANBgkqhkiG9w0BAQsF\nAAOCAQEAsmk8vUGJjoy5ZAibthGUt5qYWwpdkWK1cARZQJY4Kpn/lSTZcPlTdEpi\nxEbUZ74IV/YENQaJAT6fV3DAi3xlwsTxnvJRX94orkh/hJxai1FvWq/CaNs6rz1d\nFji4t5iMmkF+77ZOD1mmnDnvlPW2yp3SuQ26+I8XxgMGnVeNo4aIbHpJoAwXh7l9\n6uUHPfNiIQxne2x0gK9uCAIfTbWLv4XkymSrbrEIicQHgTdWNg7r82lX+DC7zghW\nWYtmx/0v4cioBkBLmMVcqsUt29wWIkl/B6ATYIzPb/ibCtKF8NWvSbr5LxRWm52D\nIJEbj3HsC7sGSQKdGAEvg91nwh8fUw==\n
-----END	CERTIFICATE-----\n"						]				},				
"challenge_code":	{						"type":	"string",						"title":	
"The	SHA256	digest	of	the	Volt	challenge	code.	Optional.",						
"examples":	["w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="]				
}		},		"examples":	[				{						"id":	"1947660b-fbc0-4345-
aec7-03b147d4e417",						"display_name":	"macBook	(intel)",						
"address":	"192.168.1.69:50908",						"public_key":	"-----
BEGIN	PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA435moWiFRnDK/uUQcLuw\nCv+uPILgwy+MPOUmgoQUNsZgeH2RjFZqWv4JAr+1V67EDcLwIgxjd9pdYfdeHFoG\n5Z4t7qvpbJ0GPpj4SpQiN+XufZ4h+xe5C77pxukHKdzg4KlcE1UavxkRn/hQe/jI\n3tQDl99/iy0zdrClfcGDecTJT9th563ggVGuXi+GJ8iZMc6sNsYR5vMZcL3qJgx+\nUYe9RMqY4wDkbs8BppXLfy9WH41JREN1f9ypEHDKom+Yisbpcx4X9GSllz5Q67BA\nMrpwzzl7Q1F5Dj8oQQcBHvVq7ja33/OpK09iH1Wi6hv+nnd3Pv/8NM3QhoMWFjos\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n",						"fingerprint":	
"EPhBiNvb5RAvM1FjzrrrKYP7ggMBaJ5wM7KMTJjBfPaM",						
"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEBoqCUTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2IxNDdk\nNGU0MTcwHhcNMjIxMDI5MTcwNDIxWhcNMjMxMDI5MTcwNDIyWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2Ix\nNDdkNGU0MTcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDjfmahaIVG\ncMr+5RBwu7AK/648guDDL4w85SaChBQ2xmB4fZGMVmpa/gkCv7VXrsQNwvAiDGN3\n2l1h914cWgblni3uq+lsnQY+mPhKlCI35e59niH7F7kLvunG6Qcp3ODgqVwTVRq/\nGRGf+FB7+Mje1AOX33+LLTN2sKV9wYN5xMlP22HnreCBUa5eL4YnyJkxzqw2xhHm\n8xlwveomDH5Rh71EypjjAORuzwGmlct/L1YfjUlEQ3V/3KkQcMqib5iKxulzHhf0\nZKWXPlDrsEAyunDPOXtDUXkOPyhBBwEe9WruNrff86krT2IfVaLqG/6ed3c+//w0\nzdCGgxYWOixzAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBSucRk3SzUBcmL5QaqMhyfbGTXCXTANBgkqhkiG9w0BAQsF\nAAOCAQEAsmk8vUGJjoy5ZAibthGUt5qYWwpdkWK1cARZQJY4Kpn/lSTZcPlTdEpi\nxEbUZ74IV/YENQaJAT6fV3DAi3xlwsTxnvJRX94orkh/hJxai1FvWq/CaNs6rz1d\nFji4t5iMmkF+77ZOD1mmnDnvlPW2yp3SuQ26+I8XxgMGnVeNo4aIbHpJoAwXh7l9\n6uUHPfNiIQxne2x0gK9uCAIfTbWLv4XkymSrbrEIicQHgTdWNg7r82lX+DC7zghW\nWYtmx/0v4cioBkBLmMVcqsUt29wWIkl/B6ATYIzPb/ibCtKF8NWvSbr5LxRWm52D\nIJEbj3HsC7sGSQKdGAEvg91nwh8fUw==\n
-----END	CERTIFICATE-----\n",						"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="				}		]}

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html


Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html


Coming	soon
Roadmap

Connection
This	document	describes	the	information	needed	by	a	client	to	be	able	to	establish	a
connection	to	a	Volt,	how	that	information	is	persisted	in	a	configuration	file	by	the	tdx	Volt
client	libraries,	and	how	to	use	a	client	configuration	file	to	establish	a	connection	to	a	tdx
Volt	using	the	tdx	Volt	CLI.

Client	connection	information
Two	pieces	of	information	are	required	for	a	client	to	be	able	to	connect	to	a	 tdx	Volt	to
access	resources	or	services:

The	client	credentials.	The	client	credentials	identify	the	client.	As	far	as	the	target	 tdx
Volt	is	concerned,	this	is	primarily	made	up	of	the	client’s	public	key.	However,	in	order
to	be	able	to	prove	possession	of	the	key	to	the	target	Volt,	the	private	key	will	be
required	by	the	client	library	to	initiate	the	TLS	handshake	or	sign	a	JWT.	The	client
credentials	are	stored	in	the	credential	property,	described	below.

The	target	tdx	Volt	configuration.	The	 tdx	Volt	configuration	identifies	the	target
Volt.	It	includes	a	unique	identitifier,	address	and	public	key.	See	the	Volt	configuration
reference	section	for	a	full	description	and	details	of	how	to	obtain	a	 tdx	Volt
configuration.	The	Volt	configuration	is	stored	in	the	volt	property,	described	below.

Note	that	only	the	public	portion	of	the	client	key	is	sent	to	the	Volt,	the	private	key	is	never
seen	by	the	Volt.

The	basic	structure	of	a	client	configuration	is	shown	below:

{		"client_name":	"Alice",		"credential":	{				"key":	"<PEM-
encoded	private	key>"		},		"volt":	{				<paste	a	Volt	
configuration	object	here>		}}

Client	configuration	file
All	the	current	 tdx	Volt	client	libraries	support	using	a	file	to	store	a	client	configuration	in
the	JSON	format	described	here.

It	is	not	obligatory	for	clients	or	applications	to	use	this	format.	The	configuration	details	can
be	specified	as	a	plain	object	and	stored	in	whatever	method	suits.

Obtain	a	client	configuration
If	you	have	a	connection	to	the	target	 tdx	Volt	configured	in	the	 fusebox,	you	can	use	this	to
quickly	obtain	a	client	configuration	file.

Select	the	identity	you	want	to	use	for	the	client	in	the	Explorer	pane	on	the	left	side	of	the
fusebox.	Then	use	the	‘copy	to	clipboard’	button	next	to	the	‘client	configuration’	detail	in
the	right-hand	panel,	as	highlighted	in	the	image	below:

Alternatively,	you	can	use	the	‘copy	client	configuration’	button	on	the	‘metadata’	dialog	of
the	identity.

Populating	the	client	key

file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html


Note	that	unless	the	full	client	key	is	stored	in	the	 tdx	Volt,	it	will	be	necessary	to	manually
populate	the	key	property	of	the	JSON	that	is	copied	to	the	clipboard	using	the	method
described	above.

The	example	below	shows	the	configuration	copied	from	an	identity	that	doesn’t	have	the	key
stored	in	the	tdx	Volt.	As	you	can	see,	the	 key	property	has	a	placeholder	( <****	INSERT	
PEM-FORMAT	KEY	HERE	****>)	that	must	be	replaced	with	the	actual	PEM-format	private
key	corresponding	to	this	client.

{		"client_name":	"Local",		"credential":	{				"client_id":	
"65b8a083-554e-442e-a62b-c9cefbe208a4",				"key":	"<****	
INSERT	PEM-FORMAT	KEY	HERE	****>"		},		"volt":	{				"id":	
"1947660b-fbc0-4345-aec7-03b147d4e417",				"display_name":	
"macBook	(intel)",				"address":	"192.168.1.69:50908",				
"public_key":	"-----BEGIN	PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA435moWiFRnDK/uUQcLuw\nCv+uPILgwy+MPOUmgoQUNsZgeH2RjFZqWv4JAr+1V67EDcLwIgxjd9pdYfdeHFoG\n5Z4t7qvpbJ0GPpj4SpQiN+XufZ4h+xe5C77pxukHKdzg4KlcE1UavxkRn/hQe/jI\n3tQDl99/iy0zdrClfcGDecTJT9th563ggVGuXi+GJ8iZMc6sNsYR5vMZcL3qJgx+\nUYe9RMqY4wDkbs8BppXLfy9WH41JREN1f9ypEHDKom+Yisbpcx4X9GSllz5Q67BA\nMrpwzzl7Q1F5Dj8oQQcBHvVq7ja33/OpK09iH1Wi6hv+nnd3Pv/8NM3QhoMWFjos\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n",				"fingerprint":	
"EPhBiNvb5RAvM1FjzrrrKYP7ggMBaJ5wM7KMTJjBfPaM",				"ca_pem":	
"-----BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEBoqCUTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2IxNDdk\nNGU0MTcwHhcNMjIxMDI5MTcwNDIxWhcNMjMxMDI5MTcwNDIyWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2Ix\nNDdkNGU0MTcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDjfmahaIVG\ncMr+5RBwu7AK/648guDDL4w85SaChBQ2xmB4fZGMVmpa/gkCv7VXrsQNwvAiDGN3\n2l1h914cWgblni3uq+lsnQY+mPhKlCI35e59niH7F7kLvunG6Qcp3ODgqVwTVRq/\nGRGf+FB7+Mje1AOX33+LLTN2sKV9wYN5xMlP22HnreCBUa5eL4YnyJkxzqw2xhHm\n8xlwveomDH5Rh71EypjjAORuzwGmlct/L1YfjUlEQ3V/3KkQcMqib5iKxulzHhf0\nZKWXPlDrsEAyunDPOXtDUXkOPyhBBwEe9WruNrff86krT2IfVaLqG/6ed3c+//w0\nzdCGgxYWOixzAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBSucRk3SzUBcmL5QaqMhyfbGTXCXTANBgkqhkiG9w0BAQsF\nAAOCAQEAsmk8vUGJjoy5ZAibthGUt5qYWwpdkWK1cARZQJY4Kpn/lSTZcPlTdEpi\nxEbUZ74IV/YENQaJAT6fV3DAi3xlwsTxnvJRX94orkh/hJxai1FvWq/CaNs6rz1d\nFji4t5iMmkF+77ZOD1mmnDnvlPW2yp3SuQ26+I8XxgMGnVeNo4aIbHpJoAwXh7l9\n6uUHPfNiIQxne2x0gK9uCAIfTbWLv4XkymSrbrEIicQHgTdWNg7r82lX+DC7zghW\nWYtmx/0v4cioBkBLmMVcqsUt29wWIkl/B6ATYIzPb/ibCtKF8NWvSbr5LxRWm52D\nIJEbj3HsC7sGSQKdGAEvg91nwh8fUw==\n
-----END	CERTIFICATE-----\n",				"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="		}}

Create	client	configuration
If	you	want	to	create	a	new	client	on	a	 tdx	Volt	you	can	manually	create	one	using	the	CLI.

The	first	step	in	creating	a	client	configuration	file	is	to	obtain	the	configuration	details	of	the
tdx	Volt	you	wish	to	connect	to.

Get	the	Volt	configuration	details

In	general,	the	details	of	how	to	go	about	this	are	given	in	the	 Volt	configuration	section.

The	client	libraries	support	a	couple	of	other	methods	that	attempt	to	automatically	resolve	or
discover	the	Volt	configuration.

The	first	of	these	methods	is	the	use	of	Volt	DID,	or	decentralised	identifier,	which	is
registered	on	any	Volt	cloud	portal.	A	full	description	of	decentralised	identifiers	is	out	of
scope	for	this	document,	but	more	information	can	be	found	here.

The	Volt	DID	can	be	specified	in	the	client	configuration	in	one	of	two	ways,	the	first	of
which	is	a	shortcut	using	the	volt	property	as	a	string:

{		"client_name":	"Alice",		"credentials":	{	...	}		"volt"	:	
"did:tdx:349970a5-9f3a-4ac6-aef3-75881e7b87e7"}

The	second	is	to	add	a	 did	property	to	the	volt	object:

{		"client_name":	"Alice",		"credentials":	{	...	}		"volt"	:	
{				"did":	"did:tdx:349970a5-9f3a-4ac6-aef3-75881e7b87e7"		
}}

Another	method	of	automatically	acquiring	the	Volt	configuration	is	using	a	discovery	URL.

Similar	to	the	DID	examples	above,	the	Volt	discovery	URL	can	be	specified	in	the	client
configuration	in	one	of	two	ways,	the	first	of	which	is	a	shortcut	using	the	volt	property	as	a
string:

{		"client_name":	"Alice",		"credentials":	{	...	}		"volt"	:	
"https://tdxvolt.com"}

Or	using	a	http_address	property	on	the	volt	object:

{		"client_name":	"Alice",		"credentials":	{	...	}		"volt"	:	
{				"http_address":	"https://tdxvolt.com"		}}

Note	that	the	target	Volt	will	need	to	have	its	HTTP	server	enabled	for	the	`http_address`
resolution	to	work.

file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
https://www.w3.org/TR/did-core/


Creating	the	configuration	file

Once	you	have	obtained	the	target	 tdx	Volt	configuration,	the	next	step	is	to	create	the	client
configuration	file	to	store	the	tdx	Volt	configuration	alongside	your	client	credentials.

Use	your	favourite	text	editor	to	create	the	configuration	file,	e.g.

#	If	using	nano,	specify	the	`-w`	switch	to	prevent	wrapping	
as	this	can	corrupt	PEM	encoded	data.nano	-w	my.config.json

Terminal	window

Create	a	minimal	configuration	using	the	following:

{		"client_name":	"<enter	a	friendly	name	for	this	client>",		
"volt":	<paste	the	Volt	configuration	obtained	above	here>}

An	example	of	a	 tdx	Volt	configuration	for	connection	to	a	local	(P2P)	 tdx	Volt	is	shown
below.

{		"client_name":	"connection	demo",		"volt":	{				"id":	
"449a3385-f380-41f7-bd0a-e60caaa403cb",				"address":	
"192.168.1.194:58913",				"ca_pem":	"-----BEGIN	CERTIFICATE-
----
\nMIIDojCCAoqgAwIBAgIEJdz3cjANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS40NDlhMzM4NS1mMzgwLTQxZjctYmQwYS1lNjBjYWFh\nNDAzY2IwHhcNMjIwODI0MTIzNTM1WhcNMjMwODI0MTIzNTM2WjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS40NDlhMzM4NS1mMzgwLTQxZjctYmQwYS1lNjBj\nYWFhNDAzY2IwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDASh4j1XKy\nEhMcwzwx00wIywM3pC9JzywpFR1kc20ZxOXBZnOxY/Lm3eOZx9/ml1yk5CnMPx68\nZE3abyZ7/6VhPk110GhpxZO2fyQ+Zgx87Cu1mKSoIXbY6fnLJqsL7vTKOAk6jlw/\nfD/IGoR9DDskAaMq/Wm4lBJG3YdnOMnvwfgNGXWmjsrzYJP92HcPwwdEWf2qG/VF\nU3mP/yAq1DVshPldJqZnWMbPY8FR+9ZAkJCp5v/+tvjNupiduVt3uH9XytdMbOIk\n4ktZa8X3onW0VVcD5YQ9ue9AJRnVhju51Et24ykLG+FgPpbrIjPzsfyTBPJ8qOnB\nzWBEFANMkLVVAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBQlUXr/lsH2y1PKI4cHBKEq7xs1UDANBgkqhkiG9w0BAQsF\nAAOCAQEANigh6q5OURhzQ/VV2LkyuL2GEkCh/aQ8LEO3Dwr+SD8cgNhJ9QrRe325\nYcssyBVf5aXvUccuA8tgF07JfuATtNt8CDPSC6g9FBw5xco1P6a7h9bM1dTdXxRJ\nke168Ys3wgBTnogYOKx75zZEMwZsHFxHEfC3q5DA6V+ZVO3pcv7j2YCv+Eh6eD/U\n4DAUKMY4ZWRPgrL8H32CgjaHgP+tV3GbNgyGeVA4gplmLFj06kfk283dVku4gJ2Y\nx2rY/4Kfv/zFgAOy7b4jnx3DtPUR3ddxJwm49tJkzBs14toukHeOPsGVmBPy9naf\ndBl4q9vffIKV/xDqqIOz7GsByZdyUw==\n
-----END	CERTIFICATE-----\n",				"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="		}}

Note	that	in	the	example	above	the	 credential	section	has	not	been	specified,	and	therefore
will	be	auto-generated	by	the	client	library	and	a	key	will	be	created	and	stored	in	the	file.	If
you	already	have	a	key	that	you	wish	to	use	for	the	connection	you	should	place	it	in	the	key
property	of	the	credential	section.

You	can	now	use	the	 tdx	Volt	CLI	to	help	complete	the	configuration	file:

./volt	list	.	-c	my.config.json

Terminal	window

Chances	are	that	the	above	command	will	result	in	errors	along	the	lines	of	 failure	
binding	to	Volt:	policy	decision	pending.	This	means	that	the	owner	of	the	Volt
you	are	trying	to	connect	to	needs	to	approve	your	request	to	connect	to	the	Volt.	However,	if
you	examine	the	my.config.json	file	you	should	see	that	the	 credential	section	has	been
created	along	with	an	auto-generated	key:

cat	my.config.json

Terminal	window

{		"client_name":	"connection	demo",		"credential":	{				
"cert":	"",				"client_id":	"",				"key":	"-----BEGIN	
PRIVATE	KEY-----
\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDwHswi1C8hISle\nFMbB8tM3//zqp/t/9LC3CjQ5XtcpX6Hv/cASiGOg6qI7DaqLKQxqgxS+7oBNcjkF\na/h/HNPH4Mat1oe8O5H1LcrO7YfJnrNj+BL67r3IrRBrhWfJ6eJ750NRR0Y7+F24\nnC/VlL6DvNWAntW1jH0WURsoK3t43RMFruXefUzjHp/hYCoBUaN+S0KVSWHDADUv\nqB/T8AXkAcJki9HAz9owU4rgkkbrQq4ov53rinKHB66ss5P4OXS6YQ0HPEgmtBIK\nYXuz9h/Jder2cvjET8S/FGTnNNq3cJvlMHHDdhTa3Yc64mmLwfhJfa7agnKT86mX\nC1ON0PNdAgMBAAECggEAUbKIzgjXiDQaORJklbSivNjyGnzRCzYbsgtcvXBRUJhj\nJp51bVjOXP+39tOthO+Qc+TpeBT5vl/wmrGjuMv8GnOV5auqPxcdkAfmiwUyQB0o\n+Ah9nLcCB3cqsQqQx5g2IOYMd2kCsoDMknVBqS+UqonjMoHYQI7uOFucG8y/k90r\nSydtppWsyRaS4sweWgpnjzIQACniD3I1cwaIn1RgiqPexqEI8MMRzwBIV/dF0Ky2\nFcmpDy0A0GKfvsFERJ/JZouKiyv8RL253Kk395sIsggxui9CaHAq09bG00gCIH2y\nlfxCeD+ZTXEtsY7izTp5Ieb01ooIvIVghgwPlizlmQKBgQD9zcVAPrytci++hg2V\nUYCWF4iFfSpHsFPjuMaXwohuZ6u6BJiOrE/LxKT4wFE+91WWONITFfITPQ0ZkABS\nOI5A9F9c+WHyenSl6LJU0KgpndBp0u6yQkW+3i+IFcbqT3EDULX+W5LSrpL5G8Qd\nrGhHDcDa+eS4eYDneTa5f9d2LwKBgQDyMrcNmC7M36OLEumttpTltIlMNj+i0UxO\nGQllpmRDhqoCps/tzXrEwjk4mHCiGGf/rxZEQ3F5p/HPQh29z+EMEaGx/2dlEmGm\nv5RTTzCotVxOKM89Ev1hJrO9Z+NNmiA2VJy0Ve5O56FWXLHpu5t5M9Z3pWNMOabk\nbYv6ZjAYMwKBgQDzThGsFvh1JaPTd1sKK8mjGQhNP8IKW2TwRzBKR7jWbhfYCZPe\nIh2U7/xeYq8AN8cabXolxcH842fte3hzWbg1WI8a6A8XjoDIk5xxZl3vF1S2PfmJ\ndbK62PCj+oxoDqP+U59EKbFEuwo2OIH3GFIW235n7Wtv1TrXrAHkLkP1DQKBgEQE\ndB4QQAxvPfmfrRqI7RX5dpl9nq92Aezo4Re3++5u0i3+dOR+0VySgwle3jrXidVn\ncWRoYGTfAmzHT5zv1W7TQMrBRGNBH0V6BgjDc5HdpPeaRGENhTUUbmPh2hcAEs3P\nQ1btzwg/yrJ7Q8e1VTtbkH53ZwSQKEt8bFQ9AIK7AoGBAOr2hVU++mvM2/iovoZC\ntHf4dn/sJxfdCZbRxIJYde6fM4NZQS5T2YhPS1GiCCTKhiAFlv5DYSPkYofFA3+D\nQmHlihp1Pgo+DWQhufC3k4wP/jZmIatAEQ94QD13oUB5UfE10ZofkanQJCHRHe1M\npQ+3ty7Cg1mUGWf8BeFNpVAb\n
-----END	PRIVATE	KEY-----\n"		},		"volt":	{				"ca_pem":	"--
---BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEBoqCUTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2IxNDdk\nNGU0MTcwHhcNMjIxMDI5MTcwNDIxWhcNMjMxMDI5MTcwNDIyWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2Ix\nNDdkNGU0MTcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDjfmahaIVG\ncMr+5RBwu7AK/648guDDL4w85SaChBQ2xmB4fZGMVmpa/gkCv7VXrsQNwvAiDGN3\n2l1h914cWgblni3uq+lsnQY+mPhKlCI35e59niH7F7kLvunG6Qcp3ODgqVwTVRq/\nGRGf+FB7+Mje1AOX33+LLTN2sKV9wYN5xMlP22HnreCBUa5eL4YnyJkxzqw2xhHm\n8xlwveomDH5Rh71EypjjAORuzwGmlct/L1YfjUlEQ3V/3KkQcMqib5iKxulzHhf0\nZKWXPlDrsEAyunDPOXtDUXkOPyhBBwEe9WruNrff86krT2IfVaLqG/6ed3c+//w0\nzdCGgxYWOixzAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBSucRk3SzUBcmL5QaqMhyfbGTXCXTANBgkqhkiG9w0BAQsF\nAAOCAQEAsmk8vUGJjoy5ZAibthGUt5qYWwpdkWK1cARZQJY4Kpn/lSTZcPlTdEpi\nxEbUZ74IV/YENQaJAT6fV3DAi3xlwsTxnvJRX94orkh/hJxai1FvWq/CaNs6rz1d\nFji4t5iMmkF+77ZOD1mmnDnvlPW2yp3SuQ26+I8XxgMGnVeNo4aIbHpJoAwXh7l9\n6uUHPfNiIQxne2x0gK9uCAIfTbWLv4XkymSrbrEIicQHgTdWNg7r82lX+DC7zghW\nWYtmx/0v4cioBkBLmMVcqsUt29wWIkl/B6ATYIzPb/ibCtKF8NWvSbr5LxRWm52D\nIJEbj3HsC7sGSQKdGAEvg91nwh8fUw==\n
-----END	CERTIFICATE-----\n",				"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI=",				"id":	
"1947660b-fbc0-4345-aec7-03b147d4e417",				"address":	
"192.168.1.69:50908"		}}

In	the	output	above,	the	 client_id	and	cert	properties	of	the	 credential	object	are
blank.	These	will	be	populated	once	the	Volt	owner	approves	the	binding	request .

Test	the	connection
Assuming	you	have	created	a	client	configuration	file,	you	can	now	use	it	to	connect	to	a	Volt.

For	example,	an	initial	client	configuration	file	named	 client.config.json	is	show	below.

https://docs.tdxvolt.com/en/how-to/approve-bind-request


This	file	indicates	that	the	target	 tdx	Volt	has	id	449a3385-f380-41f7-bd0a-
e60caaa403cb	and	is	running	locally	at	the	address	 192.168.1.194:58913.

{		"client_name":	"connection	demo",		"volt":	{				"id":	
"449a3385-f380-41f7-bd0a-e60caaa403cb",				"address":	
"192.168.1.194:58913",				"ca_pem":	"-----BEGIN	CERTIFICATE-
----
\nMIIDojCCAoqgAwIBAgIEJdz3cjANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS40NDlhMzM4NS1mMzgwLTQxZjctYmQwYS1lNjBjYWFh\nNDAzY2IwHhcNMjIwODI0MTIzNTM1WhcNMjMwODI0MTIzNTM2WjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS40NDlhMzM4NS1mMzgwLTQxZjctYmQwYS1lNjBj\nYWFhNDAzY2IwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDASh4j1XKy\nEhMcwzwx00wIywM3pC9JzywpFR1kc20ZxOXBZnOxY/Lm3eOZx9/ml1yk5CnMPx68\nZE3abyZ7/6VhPk110GhpxZO2fyQ+Zgx87Cu1mKSoIXbY6fnLJqsL7vTKOAk6jlw/\nfD/IGoR9DDskAaMq/Wm4lBJG3YdnOMnvwfgNGXWmjsrzYJP92HcPwwdEWf2qG/VF\nU3mP/yAq1DVshPldJqZnWMbPY8FR+9ZAkJCp5v/+tvjNupiduVt3uH9XytdMbOIk\n4ktZa8X3onW0VVcD5YQ9ue9AJRnVhju51Et24ykLG+FgPpbrIjPzsfyTBPJ8qOnB\nzWBEFANMkLVVAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBQlUXr/lsH2y1PKI4cHBKEq7xs1UDANBgkqhkiG9w0BAQsF\nAAOCAQEANigh6q5OURhzQ/VV2LkyuL2GEkCh/aQ8LEO3Dwr+SD8cgNhJ9QrRe325\nYcssyBVf5aXvUccuA8tgF07JfuATtNt8CDPSC6g9FBw5xco1P6a7h9bM1dTdXxRJ\nke168Ys3wgBTnogYOKx75zZEMwZsHFxHEfC3q5DA6V+ZVO3pcv7j2YCv+Eh6eD/U\n4DAUKMY4ZWRPgrL8H32CgjaHgP+tV3GbNgyGeVA4gplmLFj06kfk283dVku4gJ2Y\nx2rY/4Kfv/zFgAOy7b4jnx3DtPUR3ddxJwm49tJkzBs14toukHeOPsGVmBPy9naf\ndBl4q9vffIKV/xDqqIOz7GsByZdyUw==\n
-----END	CERTIFICATE-----\n",				"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="		}}

We	can	use	the	Volt	CLI	to	issue	a	request	to	the	Volt.	Here	we	ask	the	 tdx	Volt	to	list	all	the
resources	in	the	clients	‘Home’	folder	(indicated	by	’.’).	This	may	yield	no	results	if	you	have
only	just	bound	to	the	Volt.

./volt	list	.	-c	client.config.json

Terminal	window

Now	try	uploading	a	file	to	the	home	folder.

./volt	upload	path/to/some/file	.	-c	client.config.json

Terminal	window

And	then	list	the	resources	again:

./volt	list	.	-c	client.config.json

Terminal	window

The	tdx	Volt	CLI	will	look	for	a	client	configuration	file	named	`volt.config.json`	if	none	is
specified	on	the	command	line.	So	if	you	use	this	name	to	store	your	configuration	details
there	is	no	need	to	specify	the	`-c	client.config.json`	parameter.

Relay	connections
The	discussion	so	far	has	related	to	peer-to-peer	connections.	However	in	many	scenarios	it
will	be	necessary	to	connect	to	a	Volt	that	is	not	on	the	same	local	network	as	the	client,	and
may	not	be	accessible	via	the	wider	internet	because	it	is	behind	a	firewall.

In	order	to	be	able	to	connect	to	remote	Volts	in	these	scenarios	you	can	utilise	the	concept	of
a	Relay	Volt,	which	is	described	in	more	detail	here .

The	first	step	is	to	establish	the	 configuration	of	the	Relay	Volt	you	would	like	to	use.

It	is	then	a	case	of	adding	another	Volt	configuration	object	describing	the	Relay	Volt	as	a
sub-property	of	the	target	volt	configuration.	This	relay	property	takes	the	same	format	as
the	standard	Volt	configuration:

{		"client_name":	"your	friendly	name",		"volt":	{				"id":	
"<volt	id>",				"ca_pem":	"<volt	CA	certificate>",				
"challenge_code":	"<volt	challenge	code>",				"relay":	{						
"id":	"<Relay	volt	id>",						"ca_pem":	"<Relay	volt	CA	
certificate>",				}		}}

You	can	use	the	same	discovery	options	as	 described	above	for	obtaining	a	Volt
configuration,	for	example,	via	a	DID	lookup	or	a	HTTP	discovery:

{		"client_name":	"your	friendly	name",		"volt":	{				...				
"relay":	"did:tdx:349970a5-9f3a-4ac6-aef3-75881e7b87e7"		}}
{		"client_name":	"your	friendly	name",		"volt":	{				...				
"relay":	"https://cloud.tdxvolt.com"		},}

The	addition	of	the	`relay`	property	is	the	only	addition	that	is	required	to	a	standard	client
configuration	to	force	the	client	libraries	to	connect	via	a	Relay	Volt.	However	if	the
configuration	has	previously	been	used	to	bind	locally,	it	may	be	necessary	to	delete	the
`credential.cert`	property	to	force	the	client	library	to	initialise	the	Relay	parameters
correctly.

file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html#get-the-volt-configuration-details


Appendix

Client	configuration	definition
The	JSONSchema	definition	of	the	Volt	client	configuration	object	is	shown	below.

Note	that	the	client_name	and	crytpo	properties	describe	the	client	and	its	credentials,	and
the	remainder	of	the	document	(the	volt	property)	is	simply	an	instance	of	a	 tdx	Volt
configuration	object.

{		"$schema":	"https://json-schema.org/draft/2019-
09/schema",		"$id":	"https://tdxvolt.com/schemas/volt-
client-connection",		"type":	"object",		"title":	"Volt	
client	connection	schema",		"required":	["client_name",	
"credential",	"volt"],		"properties":	{				"client_name":	{						
"type":	"string",						"title":	"A	human-readable	name	of	
the	client.",						"examples":	["Alice"]				},				
"credential":	{						"type":	"object",						"title":	"The	
cryptographic	credentials	identifying	the	client.",						
"required":	["client_id",	"key"],						"properties":	{								
"client_id":	{										"type":	"string",										"title":	
"The	UUID	assigned	to	the	client	by	the	Volt	during	the	
binding	phase.",										"examples":	["c65ab887-35d2-4955-
b777-cbc9fba32dd1"]								},								"key":	{										
"type":	"string",										"title":	"The	PEM-encoded	key	of	
the	client.	This	can	be	encrypted.",										"examples":	[												
"-----BEGIN	ENCRYPTED	PRIVATE	KEY-----
\nMIIFHDBOBgkqhkiG9w0BBQ0wQTApBgkqhkiG9w0BBQwwHAQInAzvld0a3a4CAggA\nMAwGCCqGSIb3DQIJBQAwFAYIKoZIhvcNAwcECKXsm0+tgmFHBIIEyD+ka/hmH18r\nUfMz8iBPAyD1brAIo5ePF9RYGC95doK6hsKG2wHkXrVPZD8Qj/xTBTpvmTIzLUPb\n4sDUK/mP3CRB2wAFC0UvD4nn0DL/MnRm6C9SzoQ/nP/vN6l1g2cgc+6UpvDhS8r/\nTiXitwO5UoflZyUHCROBdqvN8fsA+J6AjkwBgI//IKxnMTNGRlwhATjbcPRbjowy\nx1lvmMhxTmSxOwNzD5xiHw/aHx7ElFGLCNsXQteGvxN0EEh1HhKpN8i0U2kouzcw\n3FU5RodlpbVvE64SYBqFwlH9p4Sog2qWTpWHgavytyMDxrl+K/q/QJVftMk5kCv8\nr78G/4s9TrOZ3rBk0fZQ+c+EGB/zSQArEhOuFKoN3ANWeGeAZB6euNqaMmMTgk+A\n37n1sNKf56hRQMfTk/28/ZCIDhdQjI6de2DH20RHwOQv+iQSI8D/8vbNRaaDcrkP\nwBa+4c8rocBJS5+bAaydXSf3ymH5Dz4Qi1Ha1rzK27VeZyOoAdKqjj5mhYSs/zsl\n5A63XpSf00mXcRyPIVm3jXEWEK01mqJYxmfR8vFrr08U8zA+pZPiz24hSRIWflT9\n3ZKMpKfo2rUuBERHgTs1TMZ/bfl1vY8NQ7VN4SyLXXBLDGLP7XfNpQIBUs0IFk2T\nyESHa7A0kZDL9+5TZcUtpSeoTYYy1MOB8TJXPVKtvKgrLLpECYRetRIpcK4cXmTP\nhlytaZdUd0yqw+mU4Nhcu602W96U0GwQjmRhF+hBdShX1PkRMvwO7DO2H3mm/iQd\nwc1j3ZpVGFfZZXHq8oAf1LyV76vX33ah8p7k9qLAXFJKlujFadzMw4J/drC42Bva\nN1nLU1FQ3ScAgdg3POOYqLGgoLskS/spiOz/VNMlMt1oGttD+UMF7dNNO70YIqNG\n/a40IxuYX2qYaZGxWfPmh+EU6NLcWQxRWb/zQTdsnlw9YMnIyXBofNbGMOqD3VzE\nE/n1G6ejuXMBfkb7/3YuLVvHPmxi7IDyiIaAvMqyr4zYKe2eAhj0VnhwOYFz7egg\nSdvgdDID4dcgjgCZdvyDBq4eL/E5Xwzu3u3G5qA+xEJAOBBfB7p/wcJ9Eni5DW/4\nisbLVEnkKxs5Hig1M8FKeDMgHbA4lHFQEy6XqczkOpxDqcx1qJMKFTSg9tVP3xJe\nq8yNspDpNt6wtg3e8K+OD2Vr2uvJjobnelYTMlN4hDGmTzVw0uwl2n/6QF5Oc88c\nXDrAviAzEBH0KiXn3RzZ4X+SHe2jVht1l0eqxNmfObekLOOL0sYdb+fYVDzQxiqM\n2ANV+ZG53mwVvhtQneFQ2j4vyn+FEBm0eTuBRfz5MuR1x8c8/5xisBXL19rhd793\njg86IW7YJ39vs6wBh5XvOSk314DxhLK+zbJrIk9mfNuZjdwNLdfBN4bdmI83RU+W\nwYlR2pjy1nax70opXOrvq2GwLdKaX/AwJqRWvFUbp6vBln/ukSe+W/bbOjm7vHk6\neUGW1HkTqTcU5H8UsnIvkAYWaPJzFqd2A6xbO+B1SvhcrZWI+XVHmm1RVmAvuq90\nR4k1/1tt+yGqjOv+9/4R+P9tSaFpDFI3y1VSH3jMZ/tQ23A8jj78EGqvynN/cCMI\nl+TGCtIBH2kefKK/ASE0BQ==\n
-----END	ENCRYPTED	PRIVATE	KEY-----\n"										]								}						
}				},				"volt":	{						"type":	"object",						"title":	
"The	Volt	configuration	information.",						"properties":	{								
"$ref":	"https://tdxvolt.com/schemas/volt-configuration"						
}				}		},		"examples":	[				{						"client_name":	"CLI",						
"credential":	{								"client_id":	"c65ab887-35d2-4955-
b777-cbc9fba32dd1",								"key":	"-----BEGIN	ENCRYPTED	
PRIVATE	KEY-----
\nMIIFHDBOBgkqhkiG9w0BBQ0wQTApBgkqhkiG9w0BBQwwHAQInAzvld0a3a4CAggA\nMAwGCCqGSIb3DQIJBQAwFAYIKoZIhvcNAwcECKXsm0+tgmFHBIIEyD+ka/hmH18r\nUfMz8iBPAyD1brAIo5ePF9RYGC95doK6hsKG2wHkXrVPZD8Qj/xTBTpvmTIzLUPb\n4sDUK/mP3CRB2wAFC0UvD4nn0DL/MnRm6C9SzoQ/nP/vN6l1g2cgc+6UpvDhS8r/\nTiXitwO5UoflZyUHCROBdqvN8fsA+J6AjkwBgI//IKxnMTNGRlwhATjbcPRbjowy\nx1lvmMhxTmSxOwNzD5xiHw/aHx7ElFGLCNsXQteGvxN0EEh1HhKpN8i0U2kouzcw\n3FU5RodlpbVvE64SYBqFwlH9p4Sog2qWTpWHgavytyMDxrl+K/q/QJVftMk5kCv8\nr78G/4s9TrOZ3rBk0fZQ+c+EGB/zSQArEhOuFKoN3ANWeGeAZB6euNqaMmMTgk+A\n37n1sNKf56hRQMfTk/28/ZCIDhdQjI6de2DH20RHwOQv+iQSI8D/8vbNRaaDcrkP\nwBa+4c8rocBJS5+bAaydXSf3ymH5Dz4Qi1Ha1rzK27VeZyOoAdKqjj5mhYSs/zsl\n5A63XpSf00mXcRyPIVm3jXEWEK01mqJYxmfR8vFrr08U8zA+pZPiz24hSRIWflT9\n3ZKMpKfo2rUuBERHgTs1TMZ/bfl1vY8NQ7VN4SyLXXBLDGLP7XfNpQIBUs0IFk2T\nyESHa7A0kZDL9+5TZcUtpSeoTYYy1MOB8TJXPVKtvKgrLLpECYRetRIpcK4cXmTP\nhlytaZdUd0yqw+mU4Nhcu602W96U0GwQjmRhF+hBdShX1PkRMvwO7DO2H3mm/iQd\nwc1j3ZpVGFfZZXHq8oAf1LyV76vX33ah8p7k9qLAXFJKlujFadzMw4J/drC42Bva\nN1nLU1FQ3ScAgdg3POOYqLGgoLskS/spiOz/VNMlMt1oGttD+UMF7dNNO70YIqNG\n/a40IxuYX2qYaZGxWfPmh+EU6NLcWQxRWb/zQTdsnlw9YMnIyXBofNbGMOqD3VzE\nE/n1G6ejuXMBfkb7/3YuLVvHPmxi7IDyiIaAvMqyr4zYKe2eAhj0VnhwOYFz7egg\nSdvgdDID4dcgjgCZdvyDBq4eL/E5Xwzu3u3G5qA+xEJAOBBfB7p/wcJ9Eni5DW/4\nisbLVEnkKxs5Hig1M8FKeDMgHbA4lHFQEy6XqczkOpxDqcx1qJMKFTSg9tVP3xJe\nq8yNspDpNt6wtg3e8K+OD2Vr2uvJjobnelYTMlN4hDGmTzVw0uwl2n/6QF5Oc88c\nXDrAviAzEBH0KiXn3RzZ4X+SHe2jVht1l0eqxNmfObekLOOL0sYdb+fYVDzQxiqM\n2ANV+ZG53mwVvhtQneFQ2j4vyn+FEBm0eTuBRfz5MuR1x8c8/5xisBXL19rhd793\njg86IW7YJ39vs6wBh5XvOSk314DxhLK+zbJrIk9mfNuZjdwNLdfBN4bdmI83RU+W\nwYlR2pjy1nax70opXOrvq2GwLdKaX/AwJqRWvFUbp6vBln/ukSe+W/bbOjm7vHk6\neUGW1HkTqTcU5H8UsnIvkAYWaPJzFqd2A6xbO+B1SvhcrZWI+XVHmm1RVmAvuq90\nR4k1/1tt+yGqjOv+9/4R+P9tSaFpDFI3y1VSH3jMZ/tQ23A8jj78EGqvynN/cCMI\nl+TGCtIBH2kefKK/ASE0BQ==\n
-----END	ENCRYPTED	PRIVATE	KEY-----\n"						},						"volt":	{								
"id":	"1947660b-fbc0-4345-aec7-03b147d4e417",								
"display_name":	"macBook	(intel)",								"address":	
"192.168.1.69:50908",								"public_key":	"-----BEGIN	
PUBLIC	KEY-----
\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA435moWiFRnDK/uUQcLuw\nCv+uPILgwy+MPOUmgoQUNsZgeH2RjFZqWv4JAr+1V67EDcLwIgxjd9pdYfdeHFoG\n5Z4t7qvpbJ0GPpj4SpQiN+XufZ4h+xe5C77pxukHKdzg4KlcE1UavxkRn/hQe/jI\n3tQDl99/iy0zdrClfcGDecTJT9th563ggVGuXi+GJ8iZMc6sNsYR5vMZcL3qJgx+\nUYe9RMqY4wDkbs8BppXLfy9WH41JREN1f9ypEHDKom+Yisbpcx4X9GSllz5Q67BA\nMrpwzzl7Q1F5Dj8oQQcBHvVq7ja33/OpK09iH1Wi6hv+nnd3Pv/8NM3QhoMWFjos\ncwIDAQAB\n
-----END	PUBLIC	KEY-----\n",								"fingerprint":	
"EPhBiNvb5RAvM1FjzrrrKYP7ggMBaJ5wM7KMTJjBfPaM",								
"ca_pem":	"-----BEGIN	CERTIFICATE-----
\nMIIDojCCAoqgAwIBAgIEBoqCUTANBgkqhkiG9w0BAQsFADBxMQswCQYDVQQGEwJH\nQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWluZHMg\nTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2IxNDdk\nNGU0MTcwHhcNMjIxMDI5MTcwNDIxWhcNMjMxMDI5MTcwNDIyWjBxMQswCQYDVQQG\nEwJHQjEUMBIGA1UEBwwLU291dGhhbXB0b24xGjAYBgNVBAoMEW5xdWlyaW5nTWlu\nZHMgTHRkMTAwLgYDVQQDDCdjYS4xOTQ3NjYwYi1mYmMwLTQzNDUtYWVjNy0wM2Ix\nNDdkNGU0MTcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDjfmahaIVG\ncMr+5RBwu7AK/648guDDL4w85SaChBQ2xmB4fZGMVmpa/gkCv7VXrsQNwvAiDGN3\n2l1h914cWgblni3uq+lsnQY+mPhKlCI35e59niH7F7kLvunG6Qcp3ODgqVwTVRq/\nGRGf+FB7+Mje1AOX33+LLTN2sKV9wYN5xMlP22HnreCBUa5eL4YnyJkxzqw2xhHm\n8xlwveomDH5Rh71EypjjAORuzwGmlct/L1YfjUlEQ3V/3KkQcMqib5iKxulzHhf0\nZKWXPlDrsEAyunDPOXtDUXkOPyhBBwEe9WruNrff86krT2IfVaLqG/6ed3c+//w0\nzdCGgxYWOixzAgMBAAGjQjBAMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD\nAgEGMB0GA1UdDgQWBBSucRk3SzUBcmL5QaqMhyfbGTXCXTANBgkqhkiG9w0BAQsF\nAAOCAQEAsmk8vUGJjoy5ZAibthGUt5qYWwpdkWK1cARZQJY4Kpn/lSTZcPlTdEpi\nxEbUZ74IV/YENQaJAT6fV3DAi3xlwsTxnvJRX94orkh/hJxai1FvWq/CaNs6rz1d\nFji4t5iMmkF+77ZOD1mmnDnvlPW2yp3SuQ26+I8XxgMGnVeNo4aIbHpJoAwXh7l9\n6uUHPfNiIQxne2x0gK9uCAIfTbWLv4XkymSrbrEIicQHgTdWNg7r82lX+DC7zghW\nWYtmx/0v4cioBkBLmMVcqsUt29wWIkl/B6ATYIzPb/ibCtKF8NWvSbr5LxRWm52D\nIJEbj3HsC7sGSQKdGAEvg91nwh8fUw==\n
-----END	CERTIFICATE-----\n",								"challenge_code":	
"w6uP8Tcg6K2QR905Rms8iXTlksL6OD1KOWBxTK7wxPI="						}				}		
]}

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started
Welcome
Quick	Start

https://json-schema.org/
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html#article
file:///Users/tobyealden/code/index.html
file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html


Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

Utilities
protoDbSync

file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html
file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html


sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Best	practice
The	following	sections	give	some	recommendations	for	best	practices	when	commissioning
and	using	the	tdx	Volt.

tdx	Volt	Key	Strategy
The	‘insecure’	Battery	mode	along	with	the	Battery	key	strategy	is	intended	for	development
and	testing	environments	only.

At	a	minimum,	the	Battery	should	be	secured	with	a	password.	In	this	configuration	the
Battery	database	is	encrypted	at	rest.	As	such,	any	tdx	Volts	that	are	configured	to	use	the
Battery	key	strategy	at	least	have	their	key	stored	in	an	encrypted	database.

However,	it	is	recommended	to	use	the	 tdx	Volt	pkcs#11	or	 local	file	key	storage.	This
enables	the	key	to	be	encrypted	and	stored	in	a	file	on	disk,	including	a	secure	removable
storage	medium.

An	added	benefit	of	the	‘local	file’	key	strategy	is	that	it	makes	it	much	easier	to	establish	a
remote	connection	to	your	tdx	Volt	via	the	fusebox,	which	requires	the	root	key	to	be
available	in	order	to	be	able	to	configure	the	connection.

Secure	the	Volt	key
Related	to	the	above,	and	in	line	with	least	privilege	practices,	it	is	recommended	to	 not	use
the	tdx	Volt	root	key	for	applications	or	scripts,	or	for	anything	other	than	securing	your	 tdx
Volt.	Instead,	create	a	separate	identity	for	each	use	case	or	scenario	and	only	share	the	data
required	to	complete	the	task	at	hand.

For	example,	when	provisioning	the	protoDbSync	utility,	create	a	new	identity	called	
protoDbSync	client	and	copy	the	configuration	into	the	required	configuration	file,	rather
than	using	the	root	tdx	Volt	key.

Skip	to	Content

tdx	Volt
putting	you	in	charge

Toggle	sidebar

Getting	Started

file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html#pkcs11
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html#file
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html#article
file:///Users/tobyealden/code/index.html


Welcome
Quick	Start

Concepts
Fundamentals
Identity
DID	registry
Verifiable	credentials
Policy
Resource
File
Database
Wire
Relay
Key	strategy

How	to...
Create	a	Volt
Start	a	Volt
Connect	to	a	Volt
Upload	files
Download	files
Publish	to	wire
Subscribe	to	wire
Create	a	database
Execute	SQL
Import	data
Establish	a	connect	stream
Approve	authenticate	request

Clients
Command	line
Native	/	C++
Web
NodeJS

Reference
Best	practice
Battery
Configuration
Connection
Connect	stream
Logging
PKCS#11

API
Discovery	API
File	API
SqliteDatabase	API
SqliteServer	API
SSI	API
Sync	API
Relay	API
Volt	API
Wire	API

file:///Users/tobyealden/code/pdf-docs/introduction.html
file:///Users/tobyealden/code/pdf-docs/getting-started/quick-start.html
file:///Users/tobyealden/code/pdf-docs/concepts/fundamentals.html
file:///Users/tobyealden/code/pdf-docs/concepts/identity.html
file:///Users/tobyealden/code/pdf-docs/concepts/did-registry.html
file:///Users/tobyealden/code/pdf-docs/concepts/verifiable-credential.html
file:///Users/tobyealden/code/pdf-docs/concepts/policy.html
file:///Users/tobyealden/code/pdf-docs/concepts/resource.html
file:///Users/tobyealden/code/pdf-docs/concepts/file.html
file:///Users/tobyealden/code/pdf-docs/concepts/database.html
file:///Users/tobyealden/code/pdf-docs/concepts/wire.html
file:///Users/tobyealden/code/pdf-docs/concepts/relay.html
file:///Users/tobyealden/code/pdf-docs/concepts/key-strategy.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/start-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/connect-volt.html
file:///Users/tobyealden/code/pdf-docs/how-to/upload-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/download-file.html
file:///Users/tobyealden/code/pdf-docs/how-to/publish-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/subscribe-wire.html
file:///Users/tobyealden/code/pdf-docs/how-to/create-database.html
file:///Users/tobyealden/code/pdf-docs/how-to/execute-sql.html
file:///Users/tobyealden/code/pdf-docs/how-to/import-data.html
file:///Users/tobyealden/code/pdf-docs/how-to/establish-connect-stream.html
file:///Users/tobyealden/code/pdf-docs/how-to/approve-authenticate-request.html
file:///Users/tobyealden/code/pdf-docs/clients/cli.html
file:///Users/tobyealden/code/pdf-docs/clients/cpp.html
file:///Users/tobyealden/code/pdf-docs/clients/web.html
file:///Users/tobyealden/code/pdf-docs/clients/nodejs.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/best-practice.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/battery.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/configuration.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connection.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/connect-stream.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/logging.html
file:///Users/tobyealden/code/pdf-docs/docs.tdxvolt.com/pkcs11.html
file:///Users/tobyealden/code/pdf-docs/api/discovery_api.html
file:///Users/tobyealden/code/pdf-docs/api/file_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_database_api.html
file:///Users/tobyealden/code/pdf-docs/api/sqlite_server_api.html
file:///Users/tobyealden/code/pdf-docs/api/ssi_api.html
file:///Users/tobyealden/code/pdf-docs/api/sync.html
file:///Users/tobyealden/code/pdf-docs/api/relay_api.html
file:///Users/tobyealden/code/pdf-docs/api/volt_api.html
file:///Users/tobyealden/code/pdf-docs/api/wire_api.html


Utilities
protoDbSync
sqliteServer
wireTransform

FAQ
Questions

Coming	soon
Roadmap

Logging
All	Volt	components	expose	logging	capabilities	which	can	produce	extensive	diagnostic
information	for	use	in	troubleshooting	and	debugging	scenarios.

Environment	variables
The	logging	mode	and	verbosity	is	controlled	via	two	environment	variables.

The	TDXVOLT_LOG_LEVEL	environment	variable	configures	the	overall	logging	mode,	and
can	take	either	ERROR	or	DEBUG	values.	The	default	value,	if	no	environment	variable	is
found,	is	dependent	on	the	build	mode	-	see	below.

The	TDXVOLT_LOG_DEBUG	environment	variable	can	be	used	to	control	the	verbosity	of
output	when	using	the	DEBUG	log	level.	This	variable	can	take	various	values	as	indicated	in
the	table	below:

value description
all All	components	emit	output.
client C++	client	library	components.
core The	Volt	core	components.
crypto All	cryptographic-related	output.
database Output	related	to	the	Volt	meta-database.	This	can	be	quite	noisy.
fusebox Fusebox-specific	debug	output.
grpc-client Client-side	grpc	diagnostics.
grpc-server Server-side	grpc	diagnostics.
perfomance Performance	and	timing	data	across	the	platform.
policy Policy	evaluation	diagnostics,	this	can	be	quite	noisy.
qml Diagostics	originating	from	QML	code.	This	is	only	used	by	the	fusebox.

The	TDXVOLT_LOG_DEBUG	variable	can	be	used	to	pick	and	mix	output	from	various	debug
components.	A	component	can	be	omitted	from	the	output	by	prefixing	the	name	with	a
minus	sign.

#	Request	all	DEBUG	information	apart	from	policy	and	
database	output.export	TDXVOLT_LOG_DEBUG=all,-policy,-
database

Terminal	window

#	Request	crypto	debug	output.export	
TDXVOLT_LOG_DEBUG=crypto

file:///Users/tobyealden/code/pdf-docs/utilities/proto-db-sync.html
file:///Users/tobyealden/code/pdf-docs/utilities/sqlite-server.html
file:///Users/tobyealden/code/pdf-docs/utilities/wire-transform.html
file:///Users/tobyealden/code/pdf-docs/faq/faq.html
file:///Users/tobyealden/code/pdf-docs/coming-soon/roadmap.html


Terminal	window

If	the	TDXVOLT_LOG_DEBUG	variable	is	unset	and	 TDXVOLT_LOG_LEVEL	is	set	to	 DEBUG	then
by	default	all	component	output	is	generated,	which	is	equivalent	to	
TDXVOLT_LOG_DEBUG=all.

Note	that	the	`TDXVOLT_LOG_DEBUG`	variable	only	affects	`DEBUG`	output.	The
`ERROR`	output	will	be	generated	for	all	components	irrespective	of	the	value	of
`TDXVOLT_LOG_DEBUG`.

Release	builds
The	default	log	level	for	release	builds	is	 ERROR,	and	the	output	is	written	to	a	file	in	the	
~/Documents/tdxVolt/logs	folder,	or	equivalent	depending	on	the	OS.

The	log	output	is	never	written	to	STDOUT	when	using	release	builds.

The	log	level	can	be	increased	to	 DEBUG	via	the	TDXVOLT_LOG_LEVEL	environment	variable,
and	similarly	the	TDXVOLT_LOG_DEBUG	variable	can	be	used	to	configure	the	verbosity	of	the
various	components,	as	outlined	above.

Debug	builds
The	default	log	level	for	debug	builds	is	 DEBUG,	and	the	output	is	written	to	STDOUT,	as	well
as	a	file	in	the	~/Documents/tdxVolt/logs	folder,	or	equivalent	depending	on	the	OS.

The	default	verbosity	level	 all,	so	all	components	will	output	debug	information.

GRPC
It	is	possible	to	enable	grpc	logging	in	addition	to	that	of	the	Volt.	This	can	be	done	using	the	
GRPC_VERBOSITY	and	GRPC_TRACE	environment	variables,	see	 this	document	for	more
information.

https://github.com/grpc/grpc/blob/master/doc/environment_variables.md


Release 3.0 © 2021 IoT Security Foundation

IoTSAF
Docs



Release 3.0 © 2021 IoT Security Foundation

Table Of Contents:
intro
How to do this
Result:
nist-brski

Devices
Mermaid charts
Project Management
Project Docs
Project Plan
Internal
Reporting
Actions
IoT Security Assurance Framework

Notices, Disclaimer, Terms of Use, Copyright and Trademarks and Licensing 
Notices 
Terms of Use 
Disclaimer 
Copyright, Trademarks and Licensing 

Acknowledgements
Acknowledgements 

Peer Reviewers 
Editors 

Introduction
1.1 Introduction 

intended-audience
1.2 Intended Audience 

scope
1.3 Scope 

1.3.1 Key Issues for IoT Security 
Security Requirements

1.3.2 The Supply Chain of Trust 
iotsf-resources-that-support-the-framework

1.4 IoTSF Resources that support the Framework 
1.4.1 Changes from Release 2.1 of the Framework 

the-process
2.1 The Process 

2.1.1 Risk Assessment 
assurance-class

2.2 Assurance Class 
2.2.1 Determining Security Goals – An Example 

using-the-assurance-questionare
2.3 Using the Assurance Questionnaire 

2.3.1 Assessment Methodology 
2.3.2 Keywords 
2.3.3 Assurance Requirements Completion Responsibilities 
2.3.4 Evidence 

assurance-terminology-and-applicability
2.4 Assurance Terminology and Applicability 

2.4.1 Terminology 
2.4.2 Level of Assurance 

2.4.8 Authentication And Authorisation
Requirement 2.4.8.1
Requirement 2.4.8.10
Requirement 2.4.8.3
Requirement 2.4.8.12
Requirement 2.4.8.8
Requirement 2.4.8.14
Requirement 2.4.8.18
Requirement 2.4.8.13
Requirement 2.4.8.9
Requirement 2.4.8.6
Requirement 2.4.8.16
Requirement 2.4.8.15
Requirement 2.4.8.4
Requirement 2.4.8.5
Requirement 2.4.8.7
Requirement 2.4.8.2
Requirement 2.4.8.11
Requirement 2.4.8.17
2.4.3 Business Process
Requirement 2.4.3.29
Requirement 2.4.3.1
Requirement 2.4.3.19
Requirement 2.4.3.23
Requirement 2.4.3.5.1
Requirement 2.4.3.6
Requirement 2.4.3.15
Requirement 2.4.3.8
Requirement 2.4.3.26
Requirement 2.4.3.16



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.5
Requirement 2.4.3.22
Requirement 2.4.3.17
Requirement 2.4.3.14
Requirement 2.4.3.13
Requirement 2.4.3.25
Requirement 2.4.3.9.1
Requirement 2.4.3.4
Requirement 2.4.3.24
Requirement 2.4.3.7
Requirement 2.4.3.21
Requirement 2.4.3.18
Requirement 2.4.3.3
Requirement 2.4.3.28
Requirement 2.4.3.22.1
Requirement 2.4.3.12
Requirement 2.4.3.10
Requirement 2.4.3.9
Requirement 2.4.3.20
Requirement 2.4.3.27
Requirement 2.4.3.11
Requirement 2.4.3.2
2.4.13 Cloud and Network Elements
Requirement 2.4.13.5
Requirement 2.4.13.17
Requirement 2.4.13.19
Requirement 2.4.13.15
Requirement 2.4.13.20
Requirement 2.4.13.6
Requirement 2.4.13.4
Requirement 2.4.13.26
Requirement 2.4.13.16
Requirement 2.4.13.3
Requirement 2.4.13.29
Requirement 2.4.13.2
Requirement 2.4.13.18
Requirement 2.4.13.33
Requirement 2.4.13.35
Requirement 2.4.13.9
Requirement 2.4.13.1
Requirement 2.4.13.25
Requirement 2.4.13.12
Requirement 2.4.13.30
Requirement 2.4.13.23
Requirement 2.4.13.32
Requirement 2.4.13.7
Requirement 2.4.13.11
Requirement 2.4.13.36
Requirement 2.4.13.14
Requirement 2.4.13.31
Requirement 2.4.13.27
Requirement 2.4.13.28
Requirement 2.4.13.13
Requirement 2.4.13.21
Requirement 2.4.13.8
Requirement 2.4.13.34
Requirement 2.4.13.24
Requirement 2.4.13.10
Requirement 2.4.13.22
2.4.15 Configuration
Requirement 2.4.15.1
Requirement 2.4.15.3
Requirement 2.4.15.2
2.4.4 Device Hardware
Requirement 2.4.4.13
Requirement 2.4.4.11
Requirement 2.4.4.2
Requirement 2.4.4.8
Requirement 2.4.4.17
Requirement 2.4.4.6
Requirement 2.4.4.15
Requirement 2.4.4.3
Requirement 2.4.4.9
Requirement 2.4.4.14
Requirement 2.4.4.16
Requirement 2.4.4.7
Requirement 2.4.4.12
Requirement 2.4.4.1
Requirement 2.4.4.5
Requirement 2.4.4.10
Requirement 2.4.4.4
2.4.7 Device Interfaces
Requirement 2.4.7.18
Requirement 2.4.7.5



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.9
Requirement 2.4.7.13
Requirement 2.4.7.2
Requirement 2.4.7.23
Requirement 2.4.7.15
Requirement 2.4.7.12
Requirement 2.4.7.7
Requirement 2.4.7.11
Requirement 2.4.7.1
Requirement 2.4.7.20
Requirement 2.4.7.24
Requirement 2.4.7.16
Requirement 2.4.7.6
Requirement 2.4.7.8
Requirement 2.4.7.21
Requirement 2.4.7.10
Requirement 2.4.7.4
Requirement 2.4.7.17
Requirement 2.4.7.25
Requirement 2.4.7.14
Requirement 2.4.7.3
Requirement 2.4.7.22
Requirement 2.4.7.19
2.4.6 Device Operating System
Requirement 2.4.6.1
Requirement 2.4.6.9
Requirement 2.4.6.5
Requirement 2.4.6.14
Requirement 2.4.6.8
Requirement 2.4.6.13
Requirement 2.4.6.12
Requirement 2.4.6.10
Requirement 2.4.6.4
Requirement 2.4.6.6
Requirement 2.4.6.3
Requirement 2.4.6.7
Requirement 2.4.6.11
Requirement 2.4.6.15
Requirement 2.4.6.2
2.4.16 Device Ownership Transfer
Requirement 2.4.16.6
Requirement 2.4.16.7
Requirement 2.4.16.5
Requirement 2.4.16.3
Requirement 2.4.16.4
Requirement 2.4.16.1
Requirement 2.4.16.2
2.4.5 Device Software
Requirement 2.4.5.31
Requirement 2.4.5.11
Requirement 2.4.5.40
Requirement 2.4.5.30
Requirement 2.4.5.25
Requirement 2.4.5.19
Requirement 2.4.5.2
Requirement 2.4.5.5
Requirement 2.4.5.20
Requirement 2.4.5.39
Requirement 2.4.5.36
Requirement 2.4.5.12
Requirement 2.4.5.10
Requirement 2.4.5.18
Requirement 2.4.5.27
Requirement 2.4.5.6
Requirement 2.4.5.38
Requirement 2.4.5.15
Requirement 2.4.5.4
Requirement 2.4.5.34
Requirement 2.4.5.23
Requirement 2.4.5.1
Requirement 2.4.5.29
Requirement 2.4.5.24
Requirement 2.4.5.13
Requirement 2.4.5.3
Requirement 2.4.5.33
Requirement 2.4.5.28
Requirement 2.4.5.37
Requirement 2.4.5.17
Requirement 2.4.5.16
Requirement 2.4.5.14
Requirement 2.4.5.8
Requirement 2.4.5.26
Requirement 2.4.5.21
Requirement 2.4.5.9



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.41
Requirement 2.4.5.32
Requirement 2.4.5.7
Requirement 2.4.5.22
Requirement 2.4.5.35
2.4.9 Encryption and Key Management for Hardware
Requirement 2.4.9.1
Requirement 2.4.9.6
Requirement 2.4.9.2
Requirement 2.4.9.3
Requirement 2.4.9.10
Requirement 2.4.9.4
Requirement 2.4.9.7
Requirement 2.4.9.9
Requirement 2.4.9.11
Requirement 2.4.9.8
Requirement 2.4.9.5
2.4.17 Infrastructure Management
Requirement
Requirement 2.4.16.3
Requirement 2.4.16.10
Requirement 2.4.16.5
Requirement 2.4.16.2
Requirement 2.4.16.9
Requirement 2.4.16.8
Requirement 2.4.16.6
Requirement 2.4.17.1
Requirement 2.4.16.7
Requirement 2.4.16.4
2.4.11 Mobile Application
Requirement 2.4.11.3
Requirement 2.4.11.1
Requirement 2.4.11.10
Requirement 2.4.11.11
Requirement 2.4.11.7
Requirement 2.4.11.2
Requirement 2.4.11.9
Requirement 2.4.11.12
Requirement 2.4.11.5
Requirement 2.4.11.13
Requirement 2.4.11.4
Requirement 2.4.11.8
Requirement 2.4.11.6
2.4.12 Data Protection and Privacy
Requirement 2.4.12.4
Requirement 2.4.12.6
Requirement 2.4.12.3
Requirement 2.4.12.10
Requirement 2.4.12.9
Requirement 2.4.12.7
Requirement 2.4.12.13
Requirement 2.4.12.8
Requirement 2.4.12.2
Requirement 2.4.12.14
Requirement 2.4.12.11
Requirement 2.4.12.12
Requirement 2.4.12.1
Requirement 2.4.12.5
Requirement 2.4.12.15
Product Security and Telecommunications Infrastructure
2.4.14 Secure Supply Chain and Production
Requirement 2.4.14.10
Requirement 2.4.14.9
Requirement 2.4.14.8
Requirement 2.4.14.22
Requirement 2.4.14.15
Requirement 2.4.14.17
Requirement 2.4.14.4
Requirement 2.4.14.2
Requirement 2.4.14.18
Requirement 2.4.14.20
Requirement 2.4.14.24
Requirement 2.4.14.25
Requirement 2.4.14.21
Requirement 2.4.14.5
Requirement 2.4.14.7
Requirement 2.4.14.14
Requirement 2.4.14.13
Requirement 2.4.14.12
Requirement 2.4.14.11
Requirement 2.4.14.19
Requirement 2.4.14.16
Requirement 2.4.14.23
Requirement 2.4.14.1



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.6
Requirement 2.4.14.3
2.4.10 Web User Interface
Requirement 2.4.10.6.1
Requirement 2.4.10.11
Requirement 2.4.10.13
Requirement 2.4.10.2
Requirement 2.4.10.5
Requirement 2.4.10.16
Requirement 2.4.10.6
Requirement 2.4.10.1
Requirement 2.4.10.7
Requirement 2.4.10.18
Requirement 2.4.10.15
Requirement 2.4.10.3
Requirement 2.4.10.4
Requirement 2.4.10.14
Requirement 2.4.10.10
Requirement 2.4.10.9
Requirement 2.4.10.17
Requirement 2.4.10.19
Requirement 2.4.10.12
Requirement 2.4.10.8
3.1 References & Standards
3.2 Definitions and Abbreviations

3.2.1 Definitions 
3.2.2 Acronyms 

Risk-Assessment-Steps
1 Risk Assessment Steps 

Security-Objectives-and-Requirements
2 Security Objectives and Requirements 

Security-Requirements-Design-and-Implementation
3 Security Requirements Design and Implementation 

Appendix B Introduction to Supply Chain Security Requirements
B1-Motivation

B1 Motivation 
B2-Definition-of-Terms

B2 Definition of Terms 
B3-Approach

B2 Approach 



Release 3.0 © 2021 IoT Security Foundation

Intro
test edit



Release 3.0 © 2021 IoT Security Foundation

How To Do This

Result:

Nist-Brski
BRSKI demo for NIST

Devices
On the office network, I have set up the following devices:

Server, has 2x USB WiFi AP

Admins: , 

Admins: , 

Admins: , 

import ExternalContent from '@site/src/components/externalContent.js';

<ExternalContent link="https://raw.githubusercontent.com/nqminds/nist-brski/main/README.md"/>

nqm-britannic-brski.local

alois alexandru

nqm-benign-brski.local

alois alexandru

nqm-biddable-brski.local
alois alexandru



Release 3.0 © 2021 IoT Security Foundation

Mermaid Charts

A

B

C

D



Release 3.0 © 2021 IoT Security Foundation

Project Management



Release 3.0 © 2021 IoT Security Foundation

Project Docs



Release 3.0 © 2021 IoT Security Foundation

Project Plan



Release 3.0 © 2021 IoT Security Foundation

Internal



Release 3.0 © 2021 IoT Security Foundation

Reporting



Release 3.0 © 2021 IoT Security Foundation

Actions
 Create actions page



Release 3.0 © 2021 IoT Security Foundation

IoT Security Assurance Framework
Release 3.0, November 2021

Notices, Disclaimer, Terms Of Use, Copyright And
Trademarks And Licensing

Notices
Documents published by the IoT Security Foundation (“IoTSF”) are subject to regular review and may be updated or subject to change at any time. The current status of IoTSF
publications, including this document, can be seen on the public website at: https://iotsecurityfoundation.org.

Terms Of Use
The role of IoTSF in providing this document is to promote contemporary best practices in IoT security for the benefit of society. In providing this document, IoTSF does not certify,
endorse or affirm any third parties based upon using content provided by those third parties and does not verify any declarations made by users. In making this document available, no
provision of service is constituted or rendered by IoTSF to any recipient or user of this document or to any third party.

Disclaimer
IoT security (like any aspect of information security) is not absolute and can never be guaranteed. New vulnerabilities are constantly being discovered, which means there is a need to
monitor, maintain and review both policy and practice as they relate to specific use cases and operating environments on a regular basis. IoTSF is a non-profit organisation which
publishes IoT security best practice guidance materials. Materials published by IoTSF include contributions from security practitioners, researchers, industrially experienced staff and
other relevant sources from IoTSF membership and partners. IoTSF has a multi-stage process designed to develop contemporary best practice with a quality assurance peer review
prior to publication. While IoTSF provides information in good faith and makes every effort to supply correct, current and high-quality guidance, IoTSF provides all materials (including
this document) solely on an ‘as is’ basis without any express or implied warranties, undertakings or guarantees. The contents of this document are provided for general information only
and do not purport to be comprehensive. No representation, warranty, assurance or undertaking (whether express or implied) is or will be made, and no responsibility or liability to a
recipient or user of this document or to any third party is or will be accepted by IoTSF or any of its members (or any of their respective officers, employees or agents), in connection with
this document or any use of it, including in relation to the adequacy, accuracy, completeness or timeliness of this document or its contents. Any such responsibility or liability is expressly
disclaimed. Nothing in this document excludes any liability for: (i) death or personal injury caused by negligence; or (ii) fraud or fraudulent misrepresentation. By accepting or using this
document, the recipient or user agrees to be bound by this disclaimer. This disclaimer is governed by English law.

Copyright, Trademarks And Licensing
All product names are trademarks, registered trademarks, or service marks of their respective owners. Copyright © 2016-2021, IoTSF. All rights reserved. This work is licensed under the
Creative Commons Attribution 4.0 International License. To view a copy of this license, visit Creative Commons Attribution 4.0 International License.

https://iotsecurityfoundation.org/
https://creativecommons.org/licenses/by/4.0/


Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Acknowledgements

Acknowledgements
We wish to acknowledge significant contributions from IoTSF members to this document:

Abhay Soorya, Gemserv Ltd

Alex Margulis, Intel Corp

Andrew Bott, Secure Thingz Ltd

Arun Sambordaran, Gemserv Ltd

Chris Hills, Phaedrus Systems Ltd

Chris Shire, Infineon Technologies Ltd

Graham Markall, Embecosm Ltd

Ian Phillips, Roke Manor Research Ltd

Ian Poyner, IoTSF

Isaac Dangana, Red Alert Labs Ltd

Jan Krueger, Intel Corp

Jeremy Bennett, Embecosm Ltd

John Moor, IoT Security Foundation

Lokesh Johri, Tantiv 4

Mark Beaumont, Roke Manor Research Ltd

Michael Richardson, Sandelman Software Works

Nick Hayes, Thinkstream Ltd

Pamela Gupta, Outsecure Inc

Peter Burgers, DisplayLink Ltd

Richard Marshall, Xitex Ltd

Richard Storer, MathEmbedded Ltd

Robert Dobson, Device Authority Ltd

Roger Shepherd, Chipless Ltd

Sean Gulliford, Gemserv Ltd

Trevor Hall, Synaptics / DisplayLink Ltd

Peer Reviewers

Andrew Bott, Secure Thingz Ltd

Jeff Day, BT Plc

James Willison, Unified Security Ltd

Plus others – you know who you are!

Editors

Trevor Hall, Synaptics Chair Assurance Framework WG

Ian Poyner, IoTSF

Amyas Phillips, Ambotec Ltd - Chair Supply Chain WG

Richard Marshall, Xitex Ltd

Graham Markall



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Introduction

1.1 Introduction
The IoT Security Foundation (IoTSF) was established to address the challenges of IoT security in an increasingly connected world. It has a specific mission “to help secure the
Internet of Things, in order to aid its adoption and maximise its benefits. To do this IoTSF will promote knowledge and clear best practice in appropriate security to those
who specify, make and use IoT products and systems”.

In more concise terms for vendors, operators, and end-users: “Build Secure, Buy Secure, Be Secure”.

This IoT Security Assurance Framework (‘Framework’) leads its user through a structured process of questioning and evidence gathering. This ensures suitable security mechanisms
and practices are implemented. It was previously published as the IoT Security Compliance Framework up until Release 2.1, and this version remains fully backward compatible with the
same sections and requirement numbering. The terminology better reflects the risk-based system and is better aligned with how governments and international bodies are approaching
IoT security.

The Framework is intended to help all companies make high-quality, informed security choices by guiding them through a comprehensive requirement checklist and evidence gathering
process. The evidence gathered during the process can be used to declare conformance with best practice to customers and other stakeholders.

Providing good security capability requires decisions upfront in design and use – often referred to as secure by design. In most cases, addressing the security of a product at the
design stage is proven to be lower cost, and requiring less effort than trying to “put security” into or around a product after it has been created (which may not even be possible).
Decisions need to be made to address use-case, business model, liability level and risk management in addition to technical concerns such as architecture, design features,
implementation, testing, configuration and maintenance.

Throughout this document, and others published by the IoTSF, reference is made to “best practice” or “best practice security engineering”. These best practices are derived from the
combined expertise of the IoTSF members, used and tested within their own companies, and from the publications and guidance of other relevant organisations. Wherever possible,
reference is made to existing standards and best practice materials to avoid unnecessary duplication. A list of external reference materials and related bodies is included at the end of
this document in the section References and Abbreviations.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Intended-Audience

1.2 Intended Audience
The Framework can be used internally in an organisation as a pre-compliance tool to self-assess or self-certify against, or by a third-party auditor. It can also be used ‘in part’, as a
procurement mechanism to help specify security requirements of a supplier contract. The Framework is aimed at the following stakeholders:

For Managers in organisations that provide IoT products, technology and or services. It gives a comprehensive overview of the management process needed to adopt best
practice. It will be useful for executive, programme, and project managers, by enabling them to ask the right questions and assess the answers.

For Developers and Engineers, Logistics and Manufacturing Staff, it provides detailed requirements to use in their daily work and in project reviews to validate the use of best
practice by different functions (e.g. hardware and software development, logistics etc.). Documentary evidence may be assembled using this Framework as a guide or by
completing the Assurance Questionnaire (see below 1.4 IoTSF Resources That Support The Framework). In this way, documentary evidence will be compiled to demonstrate
assurance both at development gates, and with third parties such as auditors or customers.

For Supply Chain Managers, the structure can be used to guide the auditing of security practices. It may therefore be applied within a producer organisation (as described
above); and inspected by a customer of the producer.

For Trusted Third Parties as part of an audit or certification process.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Scope

1.3 Scope
The scope of this document includes (but is not limited to):

Business processes

The “Things” in IoT, i.e. network connected products and/or devices

Aggregation points such as gateways and hubs that form part of the connectivity

Networking including wired, and radio connections, cloud and server elements

1.3.1 Key Issues For IoT Security

The key compliance requirements can be summarised as follows:

Security Requirements
The following table outlines key security requirements and associated actions:

Key Requirement Action Required
Framework
Reference

Management

governance

There must be a named executive responsible for product security, and privacy

of customer information.
2.4.3, 2.4.11

Engineered for

security
The hardware and software must be designed with attention to security threats.

2.4.4, 2.4.5,

2.4.6, 2.4.7

Fit for purpose

cryptography
These functions should be from the best practice industry standards. 2.4.8, 2.4.9

Secure network

framework and

applications

Precautions have been taken to secure Apps, web interfaces, and server

software.
2.4.12, 2.4.13

Secure production

processes and supply

chain

Making sure the security of the product is not compromised in the

manufacturing process or in the end customer delivery and installation.

2.4.10, 2.4.12,

2.4.13

Safe and secure for

the customer

The product is safe and secure "out of the box" and in its day-to-day use. The

configuration and control should guide the person managing the device into

maintaining security and provide for software updates, vulnerability disclosure

policy, and life cycle management.

2.4.14

1.3.2 The Supply Chain Of Trust



Release 3.0 © 2021 IoT Security Foundation

All end-use products are constructed using a set of component parts, typically sourced from a variety of suppliers. These parts may be electronic or mechanical components, software
modules or packages, including open source. Many of these parts will be procured from third party suppliers. It is important that all parts, together with the supply chain logistics, be
subject to a security review/audit.

The final IoT product can then be provided with its own evidence of security assessment, together with the component parts documents, as a complete package of auditable evidence.
This will help users to assess how the product conforms to the overall “supply chain of trust” [ref 36].

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Iotsf-Resources-That-Support-The-
Framework

1.4 IoTSF Resources That Support The Framework
The IoTSF provides a number of resources to foster security best practice:

This Framework document [ref 19] is a structured list of security requirements intended to aid the evidence gathering process to guide an organisation through assurance.

The Assurance Questionnaire is a companion audit and assessment tool to the Framework to aid the setting of security objectives and thereafter the collection of documentation
and evidence. The Assurance Questionnaire is available to IoTSF members only for free.

Additional Best Practice Guidelines are provided by the Foundation to help understanding of the most important topics [ref 45].

Further resources including guides, documents, articles and blogs can be found on the IoTSF website.

All IoTSF publications are maintained and reviewed on a regular basis to keep them current – which is a crucial attribute, given the dynamic nature of cyber security.

This is the latest public release and user feedback is welcome as part of its maintenance and evolution for addressing new security threats. You can send feedback and suggestions to
improve the Framework by emailing contact@iotsecurityfoundation.org with a subject line of “Assurance Framework Feedback”.

1.4.1 Changes From Release 2.1 Of The Framework

Release 2.1 of the Framework was restricted to consumer class products. This Release 3.0 of the Framework includes expanded mapping to standards that have emerged since release
2.1 was published and introduced additional sub sections. New items for this release:

Change of name from “Compliance Framework” to “Assurance Framework”

Updated requirements mapping to ETSI standard EN 303 645

Added new requirements mapping for NIST standard 8259A

Expanded the Supply Chain section’s requirements

The Assurance Applicability (requirements) elements detailed in section 2.4 and the numbering have been maintained where possible from prior releases of the Framework to maintain
consistency.

mailto:contact@iotsecurityfoundation.org


Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

The-Process

2.1 The Process
The Framework sets out a comprehensive set of security requirements for aspects of the organisation and product. A response to each requirement needs to be recorded, with
supporting statements or evidence. The Assurance Questionnaire is available to IoTSF Members to facilitate evidence collation. For requirements deemed “not applicable”, an
explanation must be provided as to why. Any alternative countermeasures to reduce any security risk should also be listed.

The assurance process breaks down into a number of steps:

2.1.1 Risk Assessment

In security terms, context is everything - each application differs in use-case and operating environment. It is the responsibility of the Framework user to determine their risk appetite
within their stated usage environment and therefore the specific assurance class (section 2.2) of the security measures applied.

To achieve this, a comprehensive risk assessment is a pre-requisite to using the Framework. The risk assessment process will help determine the assurance class for the
product/service. Section 2.2 has more details on assurance classes and how they relate to the Confidentiality, Integrity and Availability, otherwise known as the CIA Triad [ref 46] model,
commonly used by security professionals. Generally, the highest possible assurance class should be adopted, considering not just the immediate context of the product, but also the
potential hazards to the system(s) that the product/service may eventually be used in.

A basic outline of the risk assessment process can be found in Appendix A. Risk management techniques can also be found in publications from organisations such as NCSC, ENISA
and NIST [ref 40, 41 and 42].



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Assurance-Class

2.2 Assurance Class
Determining the security objectives across the full diversity of IoT-class applications is a subjective endeavour. Even within vertical sectors such as consumer and enterprise, the security
measures and strength of controls will vary depending on the actual use case. In making the Framework more practical across a range of applications, this version has adopted a risk-
based approach derived from the commonly used CIA Triad [ref 46]. Whilst it is not a perfect model, its simplicity is its strength, and good security practice can be derived from the core
principles.

Depending on the market and application into which the product is intended to be used, a risk assessment may require a higher assurance class to mitigate the determined level of risk.
Consider the following example: a fictional case of a Wi-Fi relay box used in a remote monitoring station, where the threat to the enterprise operation is considered low, could be
assessed under Assurance Class 1 requirements. However, when deployed into a hospital, with higher threat dependencies, it could be assessed to be under Assurance Class 4
requirements. A further example is provided in section 2.2.1.

In order to apply an appropriate level of security assurance to a product, the requirements in the Framework are classified using the following assurance classes:

Class 0: where compromise to the data generated or loss of control is likely to result in little discernible impact on an individual or organisation

Class 1: where compromise to the data generated or loss of control is likely to result in no more than limited impact on an individual or organisation (requirements in ETSI. DCMS,
NCSC CoP demand Class 1 at a minimum)

Class 2: in addition to class 1, the device is designed to resist attacks on availability that would have significant impact on an individual or organisation or impact many individuals.
For example, by limiting operations of an infrastructure to which it is connected

Class 3: in addition to class 2, the device is designed to protect sensitive data including Personally identifiable information (PII)

Class 4: in addition to class 3, where compromise to the data generated or loss of control have the potential to affect critical infrastructure or cause personal injury

For each assurance class, indicative levels of confidentiality, integrity and availability are shown in Table 1 below.

Security Objective

Assurance Class Confidentiality Integrity Availability

Class 0 Basic Basic Basic

Class 1 Basic Medium Medium

Class 2 Medium Medium High

Class 3 High Medium High

Class 4 High High High

Table 1: Assurance Class Security Objectives

The definitions of the levels of confidentiality, integrity, and availability are as follows:

Confidentiality

Basic – devices or services processing public information

Medium – devices or services processing sensitive information, including Personally Identifiable Information, whose compromise would have limited impact on an individual
or organisation

High – devices or services processing very sensitive information, including sensitive personal data whose compromise would have significant impact on an individual or
organisation

Integrity



Release 3.0 © 2021 IoT Security Foundation

Basic – devices or services whose compromise could have a minor or negligible impact on an individual or organisation

Medium – devices or services whose compromise could have limited impact on an individual or organisation

High – devices or services whose compromise could have a significant or catastrophic impact on an individual or organisation

Availability

Basic – devices or services whose lack of availability would cause minor disruption

Medium – devices or services whose lack of availability would have limited impact on an individual or organisation

High – devices or services whose lack of availability would have significant impact to an individual or organisation, or impacts many individuals

[ref 11, 12, 13 & 14 were used as the basis of the above definitions]

Please Note: The Framework Assurance Class is provided for guidance only. A supplier may know of application specific concerns that would change the class values. Requirements
deemed “not applicable” must be supported by credible evidence to explain the case.

2.2.1 Determining Security Goals – An Example

To illustrate via a practical example, consider the security features required by a connected thermostat used in a commercial greenhouse. The Assurance Class selection for the device
might be determined in the following way:

Confidentiality is Basic: the underlying assumption is that the thermostat does not store sensitive, confidential, or personally identifiable information

Integrity is Medium: for a thermostat in a commercial greenhouse, poor data integrity could have a business/financial impact

Availability is Medium: the thermostat in a commercial greenhouse setting is likely to be part of an environmental control system. As such an individual sensor failure will have little
impact, yet a denial- of-service attack across multiple sensors carries a greater commercial risk

In this case, the thermostat may be classified in the following way:

Security Objective

Assurance Class Confidentiality Integrity Availability

Class 1 Basic Medium Medium

Table 2: Example of Assurance Class Security Objectives

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Using-The-Assurance-Questionare



Release 3.0 © 2021 IoT Security Foundation

2.3 Using The Assurance Questionnaire
It is anticipated that assurance with the Framework will become an integral part of an organisation’s security process and will provide the supporting evidence for business assurance. An
accompanying audit and assessment tool (available to IoTSF Members), the Assurance Questionnaire, may be used at various stages in the product lifecycle. Firstly, by identifying the
need for security at the concept stage; secondly listing evidence gathered; to finally signing off security requirements for production release.

The evidence gathering process can only commence after establishing the Assurance Class described in section 2.2. This is done using a risk assessment (see Appendix A).

Once the Assurance Class is determined, the applicable requirements are automatically derived by the accompanying Assurance Questionnaire tool as either mandatory (M) or advisory
(A). The Assurance Questionnaire could also be used to optimise the product design and establish if a change would allow a lower Assurance Class to be selected. For example, by not
collecting or processing sensitive personal data or perhaps providing automatic failover to alternative services for customers to maintain service availability.

2.3.1 Assessment Methodology

The assessment method is determined by the context i.e. Business (process) or System (technical) and the Class.This determines both the type of assessment e.g. physical testing or
document review, along with the degree of rigour from Self-Assessment for lower Classes to full third-party audit for high classes.

2.3.2 Keywords

To improve the usability of this document the requirements in sections 2.4.3 to 2.4.16 have been categorised using the keywords defined in the Table 3 below.

Primary
Keyword

Description
Secondary
keyword

Description

System

The requirement is applicable to the

technical elements of the device/

product or service

Software
The requirement is directly applicable to the

software of the device or service

Hardware

The requirement is directly applicable to the

electronics of the device/service hardware

(PCB, processor, components etc.)

Physical

The requirement is directly applicable to

mechanical aspects of the device such as the

casing, form factor etc.

Business

A business requirement not directly

related to the operational function of

the device/ product or service

Process

A flow of activities that indirectly contributes to

the security characteristics of a device or

service

Policy

The instructions and guidelines that indirectly

contribute to the security characteristics of a

device or service

Responsibility

A role or responsibility that indirectly

contributes to the security characteristics of a

device or service

Table 3: Keyword Categories

Please Note: the terms Device and Product are interchangeable in this document

2.3.3 Assurance Requirements Completion Responsibilities

The Assurance requirements completion will be addressed by a variety of roles in an organisation. These roles cannot be prescribed exactly as every organisation is different, but each
section of requirements may require the attention of Managers and other specialist staff as suggested in Table 4 below. Responsibility for any individual requirement may be determined



Release 3.0 © 2021 IoT Security Foundation

by use of the associated keywords, which can be selected by filter, for users of the Assurance Questionnaire.

Section Topic Topic Audience & Typical Responsibilities

2.4.3
Business Security Processes,

Policies and Responsibilities

Management responsible for governance of a business developing and

deploying IoT Devices.

2.4.4
Device Hardware & Physical

Security

Design and Production staff responsible for hardware and mechanical

quality.

2.4.5 Device Software
Device application quality management by Software Architects, Product

Owners and Release Managers.

2.4.6 Device Operating System

Management and Design staff responsible for selection of a third- party

operating system or assessing the quality of ‘in-house’ developed

software.

2.4.7
Device Wired and Wireless

Interfaces

Design and Production staff responsible for device communications

security.

2.4.8 Authentication and Authorisation
Design and Production staff responsible for security of the IoT systems

interfaces and foundations of authentication.

2.4.9
Encryption and Key Management

for Hardware

Design and Production staff responsible for security of the IoT systems

hardware key management and encryption.

2.4.10 Web User Interface
Design and Production staff responsible for security of the IoT Product or

Services’ Web Systems.

2.4.11 Mobile Application
Design and Production staff responsible for security of the IoT Product or

Services’ Mobile Application.

2.4.12 Privacy
Management and staff responsible for Data Protection and Privacy

regulatory compliance.

2.4.13 Cloud and Network Elements
Design and Production staff responsible for security of the IoT Product or

Services’ Cloud or Network Systems.

2.4.14
Secure Supply Chain and

Production

Management, Design and Production staff responsible for security of the

IoT Product or Services’ Supply Chain.

2.4.15 Configuration
Design and Production staff responsible for security of the device and IoT

Services configurations.

2.4.16 Device Ownership Transfer
Management, Design and Production staff responsible for a products and

services’ Supply Chain.

Table 4: Assurance Responsibilities

Relevant requirements should be shown as “addressed” and a reference made to the applicable evidence for the product design.



Release 3.0 © 2021 IoT Security Foundation

The accompanying Assurance Questionnaire allows for entries, against each relevant requirement, of either the evidence gathered to prove assurance or a link to that evidence. The
evidence may be compiled from a number of sources and people. Evidence should be verified by the person responsible for completion of the Framework and such verification should
be recorded.

An example of completed Assurance Questionnaire fragment on Business Processes for a high-risk Class 3 device is shown Figure 1 below.

ReqNo Requirement
Required
Assessment
Method

Evidence Type
Pre-
Assurance

Evidence Responsability

2.4.3.1

There is a

person or role,

typically a

board level

executive, who

takes

ownership of

and is

responsible for

product,

service and

business level

security and

makes and

monitors the

security policy

SA

Document

review + TP

Inquiry

Organisation al Chart and

Job role

description/documentation

and Proof of Competence

(certification/attestation)

URL or

reference

to

document

with Third

party

attestation

CIO name

2.4.3.2

There is a

person or role,

who takes

ownership for

adherence to

this compliance

framework

process.

SA

Document

review + TP

Inquiry

Organisation al Chart and

Job role

description/documentation

and Proof of Competence

(certification/attestation)

URL or

reference

to

document

with Third

party

attestation

CIO name

2.4.3.4

The company

follows industry

standard cyber

security

recommenda

tions (e.g. UK

Cyber

Essentials,

NIST Cyber

Security

Framework,

ISO27000 etc.).

SA

Document

review + TP

Inquiry

Organisation al Chart and

Job role

description/documentation

and Proof of Competence

(certification/attestation)

URL or

reference

to

document

with Third

party

attestation

CIO name

Figure 2: Assurance Questionnaire Partially Completed Example



Release 3.0 © 2021 IoT Security Foundation

2.3.4 Evidence

This Framework offers a comprehensive set of security requirements (see section 2.4 under Assurance Applicability) and should be used with the products or services design
documentation including the Risk Register. Evidence of the mitigations made to address each risk line item must also be recorded. Users of the Framework should therefore create their
own records and IoTSF members are encouraged to use the Assurance Questionnaire for the recording process.

Such records should be kept safe and secure, we recommend having back-up copies. They could be useful in the case of real-world threats to the product, but also as evidence for any
business assurance regimes used in the organisation. The record keeper should enable access, for auditing, to any referenced evidence and supporting documents. URLs especially
should be checked to ensure they will remain accessible at least for the life of the product plus any warranty period. Attention should also be paid to maintaining any tools or applications
needed to view the evidence material.

An organisation procuring products, systems and services from a supplier, which declares it has used the Framework, may request an audit of the evidence assembled, using either
internal resources or a Trusted Third Party (“T3P”). A T3P might be used in situations where the documented evidence would expose sensitive information such as intellectual property
or commercial aspects.

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Assurance-Terminology-And-Applicability

2.4 Assurance Terminology And Applicability
2.4.1 Terminology

The following terms "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may" and "optional" are used in accordance with the definitions in
RFC2119 [ref 25].

2.4.2 Level Of Assurance

The applicability levels are defined as follows

Mandatory This requirement shall be met, as it is vital to meet the security objectives of the product.

Advisory

This requirement should be met unless there are sound product reasons (e.g. economic viability, hardware

complexity). The reasons for deviating from the requirement and alternative countermeasures to reduce any

security risk should be documented.

For example in the following tables, where it shows “M of 2 and above” assurance class, this means that the requirement is mandatory for the stated level and all higher levels i.e. 2, 3 &
4.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

2.4.8 Authentication And Authorisation
This section's intended audience is for those personnel who are responsible for the security of the IoT systems interfaces and authentication processes. Guidance is available from the IoTSF
Best Practice Guides [ref 44] regarding Credential Management (part F).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.1

The product

contains a

unique and

tamper-

resistant device

identifier.

E.g.: the chip serial

number or other unique

silicon identifier, for

example to bind code

and data to a specific

device hardware. This is

to mitigate threats from

cloning and also to

ensure authentication

may be done assuredly

using the device

identifier e.g. using a

device certificate

containing the device

identifier.

Mandatory for

all classes
System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.10

The access control privileges

are defined, justified and

documented.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.3

Where a user interface password

is used for login authentication,

the factory issued or reset

password is randomly unique for

every device in the product

family. If a password-less

authentication is used the same

principles of uniqueness apply.

Mandatory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.12

The product allows the factory

issued or OEM login accounts to

be disabled or erased or

renamed when installed or

commissioned.

Advisory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.8

The product securely stores any

passwords using an industry

standard cryptographic algorithm,

compliant with an industry

standard.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.14

If the product has a password

recovery or reset mechanism,

an assessment has been made

to confirm that this mechanism

cannot readily be abused by an

unauthorised party.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.18

Devices are provided with a

RoT-backed unique

authenticable logical identity.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.13

The product supports having

any or all of the factory default

user login passwords altered

when installed or commissioned.

Mandatory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.9

The product supports access

control measures to the

root/highest privilege account to

restrict access to sensitive

information or system processes.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.6

Password entry follows industry

standard practice on password

length, characters from the

groupings and special

characters.

Mandatory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.16

The product allows an

authorised and complete factory

reset of all of the device’s

authorisation information.

Advisory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.15

Where passwords are entered

on a user interface, the actual

pass phrase is obscured by

default.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.4
The product does not accept the

use of null or blank passwords.
Mandatory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.5

The product will not allow new

passwords containing the user

account name with which the

user account is associated.

Mandatory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.7

The product has defence against

brute force repeated login

attempts, such as exponentially

increasing retry attempt delays.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.2

Where the product has a secure

source of time there is a method

of validating its integrity.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.11

The product only allows

controlled user account access;

access using anonymous or

guest user accounts is not

supported without justification.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.8.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.8.17

Where the product  has the

ability to remotely recover from

attack, it should rely on a known

good state, to enable safe

recovery and updating of the

device, but should limit access

to sensitive assets until the

devices is in a known secure

condition.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

2.4.3 Business Process
This section's intended audience is those personnel who are responsible for governance of a business developing and deploying IoT Devices. There must be named executive(s) responsible for
product security, and privacy of customer information. There are several classes of requirements, which have been identified by a keyword. Each class should be allocated to a specified person
or persons for the product being assessed. Further guidance is available from the IoTSF Best Practice Guidelines [ref 44]. The applicability of each requirement is defined as Advisory or
Mandatory for the assessed risk level of any device, the default is Advisory.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.29
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.29

The organisation retains

an enduring competency

to revisit and act upon

such information during

product upgrades or in

the event of a potential

vulnerability being

identified.

(Key security design

information and risk

analysis is retained over

the whole lifecycle of the

product or service.)

Mandatory for

all classes
business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.1

There is a person or role,

accountable to the Board, who

takes ownership of and is

responsible for product, service

and business level security, and

mandates and monitors the

security policy.

Mandatory for all classes business responsibility



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.19
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.19

Whilst overall accountability for

the product or service remains

with the person in 2.4.3.1,

responsibility can be delegated

for each domain involved in any

system or device update

process, e.g. new binary code to

add features or correct

vulnerabilities.

Mandatory for Class 2 and above business responsibility



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.23
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.23

The security update policy for

devices with a constrained

power source shall be assessed

to balance the needs of

maintaining the integrity and

availability of the device.

Mandatory for Class 2 and above business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.5.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.5.1

The third party policy shall be

publicly available and include

contact information for reporting

issues and information on

timelines to acknowledge and

provide status updates.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.6

A policy has been

established for

addressing risks

that could impact

security and

affect or involve

technology or

components

incorporated into

the product or

service provided.

At a minimum this

should include a threat

model, risk analysis

and security

requirements for the

product and its supply

chain through its

whole stated

supported life. This

should be maintained,

communicated,

prioritised and

addressed internally

as part of product

development

throughout the product

support period.

Mandatory for

Class 2 and

above

business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.15
Intentionally left blank to

maintain requirement numbering
business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.8

A process is in place for

consistent briefing of senior

executives in the event of the

identification of a vulnerability or

a security breach, especially

those executives who may deal

with the media or make public

announcements.

Mandatory for all classes business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.26
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.26

As part of the security policy,

define a process for maintaining

a central inventory of third party

components and services, and

their suppliers, for each product.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.16

As part of the Security Policy,

develop security advisory

notification steps.

Mandatory for all classes business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.5

A policy has been established for

interacting with both internal and

third party security researcher(s)

on the products or services.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.22
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.22

Where remote update is

supported, there is an

established process/plan for

validating "updates" and

updating devices on an on-going

or remedial basis.

Mandatory for Class 2 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.17

The Security Policy shall be

compliant with ISO 30111 or

similar standard.

Mandatory for Class 3 and above business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.14

As part of the Security Policy,

publish the organisation’s

conflict resolution process for

Vulnerability Disclosures.

Mandatory for Class 1 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.13

As part of the Security Policy,

develop a conflict resolution

process for Vulnerability

Disclosures.

Mandatory for all classes business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.25
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.25

Where a remote software

upgrade can be supported by

the device, there should be a

transparent and auditable policy

with a schedule of actions of an

appropriate priority, to fix any

vulnerabilities in a timely

manner.

Mandatory for Class 2 and above business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.9.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.9.1

There is a minimum support

period during which security

updates will be made available

to all stakeholders.

Mandatory for all classes business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.4

The company follows industry

standard cyber security

recommendations.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.24
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.24

There is a named owner

responsible for assessing third

party (including open-sourced)

supplied components (hardware

and software) used in the

product

Mandatory for Class 2 and above business responsibility



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.7

Processes and plans are in place

based upon the IoTSF

“Vulnerability Disclosure

Guidelines” [ref 19], or a similar

recognised process, to deal with

the identification of a security

vulnerability or compromise when

they occur.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.21
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.21

There is a point of contact for

third party suppliers and open

source communities to raise

security issues.

Mandatory for Class 1 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.18

Where the a device may be

used in real-time or high-

availability systems, a procedure

must be defined for notifying

operators of connected

components and system

management of impending

downtime for updates. In such

real time or high availability

system the end user should be

able to decide whether to

automatically install updates or

to chose to manually install an

update at a time of their

choosing (or to ignore an

update).

Mandatory for Class 2 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.3
Intentionally left blank to maintain

requirement numbering
-



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.28
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.28

As part of the procurement

policy, a supplier should be

awarded a higher score where

they demonstrate that they

implement secure design in

accordance with industry

implementation standards or

guidelines.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.22.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.22.1
Users must have the ability to

disable updating.
Mandatory for Class 1 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.12

As part of the Security Policy,

provide a dedicated security

email address and/or secure

online page for Vulnerability

Disclosure communications.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.10

A security threat and risk

assessment shall have been

carried out using a standard

methodology appropriate to IoT

products and services, to

determine the risks and evolving

threats before a design is

started -this should cover the

entire system being assessed.

Mandatory for Class 1 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.9

There is a secure notification

process based upon the

IoTSF “Vulnerability

Disclosure Guidelines” [ref

19], ISO/IEC 29147, or a

similar recognised process,

for notifying partners/users of

any security updates, and

what vulnerability is

addressed by the update.

Mandatory

for all

classes

business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.20
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.20

Responsibility is allocated for

control, logging and auditing of

the update process.

Mandatory for Class 2 and above business process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.27
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.27

As part of the security policy,

define how security

requirements on third party

components and services

(including open-source) will be

established and assessed.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.11

As part of the Security Policy,

include a specific contact and

web page for Vulnerability

Disclosure reporting.

Mandatory for all classes business policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.3.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.3.2

There is a person or role, who

takes ownership for adherence to

this assurance framework

process.

Mandatory for all classes business responsibility



Release 3.0 © 2021 IoT Security Foundation

2.4.13 Cloud And Network Elements
This section's intended audience is for those personnel who are responsible for the security of the IoT Product or Services Cloud or Network Systems.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.5

The Product Manufacturer or Service Provider has a

process to monitor the relevant security advisories to

ensure all the product related web servers use protocols

with no publicly known weaknesses.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.17

All the related servers and network elements support

access control measures to restrict access to sensitive

information or system processes to privileged accounts.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.19
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.19
If run as a cloud service, the service meets industry

standard cloud security principles.
Advisory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.15

Brute force attacks are impeded by introducing

escalating delays following failed user account login

attempts, and/or a maximum permissible number of

consecutive failed attempts.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.20
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.20

Where a Product or Services includes any safety critical

or life-impacting functionality, the services infrastructure

shall incorporate protection against DDOS attacks,

such as dropping of traffic or sink-holing.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.6

The product related web servers support appropriately

secure TLS/DTLS ciphers and disable/remove support

for deprecated ciphers.

Advisory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.4

All the product related web servers’ TLS certificate(s) are

signed by trusted certificate authorities; are within their

validity period; and processes are in place for their

renewal.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.26
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.26

Product-related cloud services bind API keys to specific

IoT applications and are not installed on non-authorised

devices.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.16

All the related servers and network elements store any

passwords using a cryptographic implementation using

industry standard cryptographic algorithms.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.3
All product related web servers have their webserver

HTTP trace and trace methods disabled.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.29
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.29
Product-related cloud service databases are encrypted

during storage.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.2
Any product related web servers have their webserver

identification options (e.g. Apache or Linux) switched off.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.18

All the related servers and network elements prevent

anonymous/guest access except for read only access

to public information.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.33
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.33

Product-related cloud services monitor for compliance

with connection policies and report out-of-compliance

connection attempts.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.35
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.35

Any personal data communicated between the mobile

app and the device shall be encrypted. Where the data

includes sensitive personal data then the encryption

must be appropriately secure.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.9

Where a product related to a webserver encrypts

communications using TLS and requests a client

certificate, the server(s) only establishes a connection if

the client certificate and its chain of trust are valid.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.1

All the product related cloud and network elements have

the latest operating system(s) security updates

implemented and processes are in place to keep them

updated.

Mandatory for Class 2 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.25
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.25

Where device identity and/or configuration registries

(e.g., "thing shadows") are implemented to "on-board"

devices within a cloud service, the registries are

configured to restrict access to only authorized

administrators.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.12
Intentionally left blank to maintain requirement

numbering
-



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.30
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.30

Product-related cloud service databases restrict

read/write access to only authorized individuals,

devices and services.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.23
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.23

If run as a cloud service, the cloud service TCP based

communications (such as MQTT connections) are

encrypted and authenticated using the latest TLS

standard.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.32
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.32

When implemented as a cloud service, all remote

access to cloud services is via secure means (e.g.

SSH).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.7
The product related web servers have repeated

renegotiation of TLS connections disabled.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.11
All the related servers and network elements prevent

the use of null or blank passwords.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.36
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.36

Subject to user permission, telemetry data from the

device should be analysed for anomalous behaviour to

detect malfunctioning or malicious activity.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.14
All the related servers and network elements enforce

passwords that follows industry good practice.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.31
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.31

Product-related cloud services are designed using a

defence-in-depth architecture consisting of Virtual

Private Clouds (VPCs), firewalled access, and cloud-

based monitoring.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.27
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.27
Product-related cloud services API keys are not hard-

coded into devices or applications.
Mandatory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.28
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.28

If run as a cloud service, privileged roles are defined

and implemented for any gateway/service that can

configure devices.

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.13
Intentionally left blank to maintain requirement

numbering
-



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.21
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.21

Where a Product or Service includes any safety critical

or life-impacting functionality, the services infrastructure

shall incorporate redundancy to ensure service

continuity and availability.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.8 The related servers have unused IP ports disabled. Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.34
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.34

IoT edge devices should connect to cloud services

using secure hardware and services (e.g. TLS using

private keys stored in secure hardware).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.24
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.24

If run as a cloud service, UDP-based communications

are encrypted using the latest Datagram Transport

Layer Security (DTLS).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.10

Where a product related to a webserver encrypts

communications using TLS, certificate pinning is

implemented.

Advisory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.13.22
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.13.22
Input data validation should be maintained in

accordance with industry best practice methods.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

2.4.15 Configuration
This section's intended audience is for those personnel who are responsible for the security of the device and IoT Services configurations.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.15.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.15.1

The configuration of the device

and any related web services is

secure and tamper resistant i.e.

sensitive configuration

parameters should only be

changeable by authorised

people (evidence should list the

parameters and who is

authorised to change e.g.

Owners / Guests). Sensitive

parameters include

cryptographic configuration

settings.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.15.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.15.3

The manufacturer should

provide users with guidance on

how to check whether their

device is securely set up.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.15.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.15.2

Updates to configuration should

be provisioned securely and

just-in-time, maintaining

consistency . Irrelevant

components of the configuration

must be removed at the same

time.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

2.4.4 Device Hardware
This section's intended audience is those personnel who are responsible for hardware and mechanical quality. Guidance is available from the IoTSF [ref 44] regarding Physical Security (part B)
Secure Boot (part C) and Secure Operating Systems (part D).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.13

In production devices the

microcontroller/

microprocessor(s) shall not

allow the firmware to be read

out of the products non-volatile

[FLASH] memory. Where a

separate non-volatile memory

device is used the contents shall

be encrypted.

Mandatory for Class 1 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.11

Tamper Evident measures have

been used to identify any

interference to the assembly to

the end user.

Mandatory for Class 2 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.2

The product’s processor system

has an irrevocable “Trusted Root

Hardware Secure Boot”.

Mandatory for Class 2 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.8

The hardware incorporates

physical, electrical & logical

protection against reverse

engineering. The level of

protection must be determined by

the risk assessment.

Mandatory for Class 3 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.17

The product shall have a

hardware source for generating

true random numbers.

Mandatory for Class 2 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.6

The hardware

incorporates

protection against

tampering and this

has been enabled.

The level of tamper

protection must be

determined by the

risk assessment.

Mandatory for Class

1 and above
System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.15

Where a production device has

a CPU watchdog, it is enabled

and will reset the device in the

event of any unauthorised

attempts to pause or suspend

the CPU’s execution.

Mandatory for Class 1 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.3

The product’s processor boot

process provides an appropriate

level of trustworthiness by using

a hardware root of trust (RoT) to

verify trusted boot or measured

boot methods. This may be

referred to as 'secure boot', but

absolute security cannot be

assured.

Mandatory for Class 3 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.9

All communications port(s)

which are not used as part of the

product’s normal operation are

not physically accessible or only

communicate with authorised

and authenticated entities.

Mandatory for Class 1 and above System
Hardware Physical

Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.14

Where the product's

credential/key storage is

external to its processor, the

storage and processor shall be

cryptographically paired to

prevent the credential/key

storage being used by

unauthorised software.

Mandatory for Class 1 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.16

Where the product has a

hardware source for generating

true random numbers, it is used

for all relevant cryptographic

operations including nonce,

initialisation vector and key

generation algorithms.

Mandatory for Class 1 and above System Hardware Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.7

The hardware incorporates

physical, electrical and logical

protection against tampering to

reduce the attack surface. The

level of protection must be

determined by the risk

assessment.

Mandatory for Class 2 and above System Hardware Physical



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.12
Intentionally left blank to

maintain requirement numbering
-



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.1

The product’s processor system

has an irrevocable hardware

Secure Boot process.

Mandatory for all classes System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.5

Any debug interface

only communicates with

authorised and

authenticated entities

on the production

devices.(note: 2.4.4.6-8

should be considered

as advisory)

The

functionality of

any interface

should be

minimised to its

essential

task(s).

Mandatory for Class 1

and above
System

Hardware

Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.10

All the product’s development

test points are securely disabled

or removed wherever possible in

production devices.

Mandatory for Class 2 and above System Hardware Physical



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.4.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.4.4
The Secure Boot process is

enabled by default.
Mandatory for all classes System Hardware



Release 3.0 © 2021 IoT Security Foundation

2.4.7 Device Interfaces
This section's intended audience is for those personnel who are responsible for device security. Guidance is available from the IoTSF Best Practice Guidelines [ref 44] regarding Credential
Management (part F) and Network Connections (part H).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.18

The product only initialises and enables the

communications interfaces, network protocols,

application protocols and network services necessary for

the product’s operation.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.5

If a potential unauthorised change is

detected (e.g.: an access fails

authentication or integrity checks), the

device should alert the user/administrator to

the issue and should not connect to wider

networks than those necessary to perform

the alerting function.

Failed attempts

should be logged,

but without providing

any information

about the failure to

the initiator.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.9

Where a wireless interface has an initial pairing process,

the passkeys are changed from the factory issued, or

reset password prior to providing normal service.

Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.13

Where a TCP protocol, such as MQTT, is used, it is

protected by a TLS connection with no known

vulnerabilities.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.2

The network component and firewall (if applicable)

configuration has been reviewed and documented for the

required/defined secure behaviour.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.23
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.23
Protocol anonymity features are enabled in protocols

(e.g., Bluetooth) to limit location tracking capabilities.
Advisory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.15

Where cryptographic suites are used such as TLS, all

cipher suites shall be listed and validated against the

current security recommendations such as NIST 800-

131A [ref 2] or OWASP. Where insecure ciphers suites

are identified they shall be removed from the product.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.12
All network communications keys are stored securely, in

accordance with industry standards.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.7

If a connection requires a password or passcode or

passkey for connection authentication, the factory issued

or reset password is unique to each device.

Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.11

Where WPA-2 WPS is used it has a unique, random key

per device and enforces exponentially increasing retry

attempt delays.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.1
The product prevents unauthorised connections to it or

other devices the product is connected to.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.20
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.20

Post product launch, communications protocols should

be reviewed throughout the product life cycle against

publicly known vulnerabilities and changed to the most

secure versions available if appropriate.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.24
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.24

As far as reasonably possible, devices should

remain operating and locally functional in the

case of a loss of network connection.

Mandatory for

Class 1 and

above

System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.16

All use of cryptography by the product, such as TLS

cipher suites, shall be listed and validated against the

import/export requirements for the territories where the

product is to be sold and/or shipped. 

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.6
All the product's unused ports (or interfaces) are closed

and only the necessary ones are active.
Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.8

Where using initial pairing process, a Strong

Authentication shall be used, requiring physical interaction

with the device or possession of a shared secret.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.21
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.21
If a factory reset is made, the device should warn that

secure operation may be compromised until updated.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.10

For any Wi-Fi connection, WPA-2

AES [ref 51] or a similar strength

encryption has been used.

Migration to the latest standard

should be planned.(e.g. WPA3).

Older insecure protocols

such as WEP, WPA/WPA2

(Auto), WPA-TKIP and WPA-

2 TKIP/AES (Mixed Mode)

are disabled.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.4

Devices support only the versions of application layer

protocols that have been reviewed and evaluated against

publicly known vulnerabilities.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.17
Where there is a loss of communications or availability it

shall not compromise the local integrity of the device.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.25
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.25

Following restoration of power or network connection,

devices should be able to return to a network in a

sensible state and in an orderly fashion, rather than in a

massive scale reconnect, which collectively could

overwhelm a network.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.14

Where a UDP protocol is used, such as CoAP, it is

protected by a DTLS connection with no known

vulnerabilities.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.3

To prevent bridging of security domains within products

with network interfaces, forwarding functions should be

blocked by default.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.22
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.22

Where RF communications are enabled (e.g., ZigBee,

etc.) antenna power is configured to limit ability of

mapping assets to limit attacks such as WAR-Driving.

Advisory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.7.19
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.7.19

Communications protocols should be latest versions with

no publicly known vulnerabilities and/or appropriate for

the product.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

2.4.6 Device Operating System
This section's intended audience are the personnel responsible for the selection of a third-party Operating System or assessing the quality of 'in-house' developed schedulers and control
sequencers quality. The term Operating System (OS) is below used for sake of brevity to imply all such options. Guidance is available from the IoTSF [ref 44] regarding Secure Operating
Systems (part D).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.1
The OS is implemented with relevant

security updates prior to release.

Mandatory for Class 2

and above
Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.9

All software is operated at the least privilege level

possible and only has access to the resources needed as

controlled through appropriate access control

mechanisms.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.5

Security parameters and passwords should not be hard-

coded into source code or stored in a local file. If

passwords absolutely must be stored in a local file, then

the password file(s) are owned by, and are only

accessible to and writable by, the Device's OS most

privileged account and are obfuscated.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.14

The Product OS should be reviewed for known security

vulnerabilities particularly in the field of cryptography

prior to each update and after release. Cryptographic

algorithms, primitives, libraries and protocols should be

updateable to address any vulnerabilities.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.8

All of the product’s OS kernel

and services or functions are

disabled by default unless

specifically required.

Essential kernel, services or

functions are prevented from being

called by unauthorised external

product level interfaces and

applications.

Mandatory for Class 1 and

above
System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.13

The product’s OS kernel is designed such that each

component runs with the least security privilege required

(e.g. a microkernel architecture), and the minimum

functionality needed (2.4.6.6 - 2.4.6.8 requires non-

essential components are disabled or removed).

Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.12
The OS implements a separation architecture to

separate trusted from untrusted applications.
Mandatory for Class 2 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.10
All the applicable security features supported by the OS

are enabled.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.4
Files, directories and persistent data are set to minimum

access privileges required to correctly function.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.6
All OS non-essential services have been removed from

the product’s software, image or file systems.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.3

All unnecessary accounts or logins have been disabled or

eliminated from the software at the end of the software

development process, e.g. development or debug

accounts and tools.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.7
All OS command line access to the most privileged

accounts has been removed from the OS.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.11
The OS is separated from the application(s) and is only

accessible via defined secure interfaces.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.15
As per 2.4.10.5, the user interface is protected by an

automatic session idle logout timeout function.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.6.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.6.2 Intentionally left blank to maintain requirement numbering -



Release 3.0 © 2021 IoT Security Foundation

2.4.16 Device Ownership Transfer
This section's intended audience is for those personnel who are responsible for Data Protection and Device Ownership management.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.6

The device manufacturer

ensures that the exposed

identity of the device cannot be

linked by unauthorised actors to

the end user, to ensure

anonymity and comply with

relevant local data privacy laws

e.g. GDPR [ref 14] in the EU.

Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.7

Where transfer of a device to a

new end user is supported, user

settings and confidential user

data on the device should be

reliably erasable by triggering a

user reset function. This is so

the new user can be confident in

the device state and also so the

previous user can be confident

their data has been

unrecoverably erased to

maintain confidentiality (see

alongside 2.4.12.13 and

2.4.12.11).

Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.5

The device registration with the

Service Provider shall use a

secure connection.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.3

The Service Provider should not

have the ability to do a reverse

lookup of device ownership from

the device identity.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.4

If ownership change is

required/allowed, the device

must have an irrevocable

method of decommissioning and

recommissioning.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.1

Where a device may

have its ownership

transferred to a different

owner, the supplier or

manufacturer of any

devices and/or services

shall provide information

about how the device(s)

removal and/or disposal

or replacement shall be

carried out to maintain

the end user’s privacy

and security, including

deletion of all Personal

Information from the

device and any

associated services.

This option

must be

available when

a transfer of

ownership

occurs or when

an end user

wishes to

delete their

Personal

Information

from the

service or

device.

Mandatory for Class 1

and above
Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.2

Where a device User

wishes to dispose of

the device or end the

service, the supplier or

manufacturer of any

devices and/or

services shall provide

information about how

the device(s) removal

and/or disposal or

replacement shall be

carried out to maintain

the end user’s privacy

and security, including

secure erasure of all

Personal Information

from the device and

deletion of personal

information from any

associated services

(other than that

required for legitimate

reasons such as

billing).

A clear

confirmation is

provided to the

user.

Examples of a

user include a

renter of

accommodation,

a vehicle or

medical aids.

Mandatory for Class 1

and above
Business Process



Release 3.0 © 2021 IoT Security Foundation

2.4.5 Device Software
This section's intended audience is for those personnel who are responsible for device application quality e.g. Software Architects, Product Owners, and Release Managers. Guidance is
available from the IoTSF [ref 44] regarding Secure Operating Systems (part D), Credential Management (part F), and Software Updates (part J).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.31
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.31 Withdrawn as duplicate requirement



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.11
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.11

Development software versions have any debug functionality switched off if

the software is operated on the product outside of the product vendor’s trusted

environment.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.40
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.40

Hard-coded critical/ security parameters in device software source code shall

not be used; if needed these should be injected in a separate (secure)

process.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.30
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.30

An update to a device must be authenticated before it is installed. Where

the update fails authentication, the device should, if possible, revert to

the last known good (current stable) configuration/software image which

was stored on the device.

Mandatory for

all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.25
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.25

Support for partially installing updates is provided for devices whose on-time is

insufficient for the complete installation of a whole update (constrained

devices).

Advisory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.19
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.19 Where present, production software signing keys are under access control. Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.2
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.2

Where remote software updates can be supported by the device, the software

images must be digitally signed by an appropriate signing authority - e.g.

manufacturer/supplier or public. The Signing Authority should be clearly

identified.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.5
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.5

If the product has any virtual port(s) that are not required for normal operation,

they are only allowed to communicate with authorised and authenticated

entities or are securely disabled when shipped. When a port is initialised or

used for field diagnostics, the port input commands are deactivated and the

output provides no information which could compromise the device, such as

credentials, memory address or function names.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.20
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.20

The production software signing keys are stored and secured in a storage

device compliant to FIPS-140-2/FIPS-140-3 level 2, or equivalent or higher

standard.

Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.39
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.39
IoT devices must allow software updates to maintain security over the product

lifetime.
Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.36
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.36

Updates should be provided for a period appropriate to the device, and this

period shall be made clear to a user when supplying the device. Updates

should, where possible, be configurable to be automatically or manually

installed. The supply chain partners should inform the user that an update is

required.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.12
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.12

Steps have been taken to protect the product's software from sensitive

information leakage, including at network interfaces during initialisation, and

side-channel attacks.

Mandatory for Class 3 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.10
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.10

Production software images shall be compiled in such a way that all

unnecessary debug and symbolic information is removed, to prevent

accidental release of superfluous data.

Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.18
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.18

The build environment and toolchain used to create the software is under

configuration management and version control, and its integrity is validated

regularly.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.27
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.27

Where real-time expectations of performance are present, update

mechanisms must not interfere with meeting these expectations (e.g. by

running update processes at low priority, or notifying the user of the priority

and duration of the update and with the option of postponing or disabling the

update).

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.6
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.6
To prevent the stalling or disruption of the device’s software operation,

watchdog timers are present, and cannot be disabled.
Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.38
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.38 Maintenance changes should trigger full security regression testing. Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.15
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.15

The software must be architected to identify and ring fence sensitive software

components, including cryptographic processes, to aid inspection, review and

test. The access from other software components must be controlled and

restricted to known and acceptable operations. For example security related

processes should be executed at higher privilege levels in the application

processor hardware.

Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.4
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.4
If remote software upgrade is supported by a device, software images shall be

encrypted or transferred over an encrypted channel.
Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.34
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.34
Any caches which potentially store sensitive material are cleared flushed after

memory locations containing sensitive material have been sanitised.
Mandatory for Class 3 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.23
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.23

All inputs and outputs are checked for validity e.g. use “Fuzzing” tests to check

for acceptable responses or output for both expected (valid) and unexpected

(invalid) input stimuli.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.1
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.1

The product has measures to prevent unauthorised and unauthenticated

software, configurations and files being loaded onto it. If the product is intended

to allow un-authenticated software, such software should only be run with

limited permissions and/or sandbox.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.29
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.29

Where a device cannot verify authenticity of updates itself (e.g. due to no

cryptographic capabilities), only a local update by a physically present user is

permitted and is their responsibility.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.24
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.24

The software has been designed to meet the safety requirements identified in

the risk assessment; for example in the case of unexpected invalid inputs, or

erroneous software operation, the product does not become dangerous, or

compromise security of other connected systems.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.13
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.13
The product’s software source code follows the basic good practice of a

Language subset coding standard.
Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.3
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.3

Where updates are supported, the software update package has its digital

signature, signing certificate and signing certificate chain verified by the device

before the update process begins.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.33
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.33

Memory locations used to store sensitive material (e.g. cryptographic keys,

passwords/passphrases, etc.) are sanitised as soon as possible after they are

no longer needed. These can include but are not limited to locations on the

heap, the stack, and statically-allocated storage [ref 47].

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.28
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.28
Where a device doesn’t support secure boot, upon a firmware update the user

data and credentials should be re-initialised.
Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.37
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.37

The device manufacturer should ensure that shared libraries (e.g. Clib or

Crypto libraries) that deliver network and security functionalities have been

reviewed or evaluated (note that the actual review or evaluation does not have

to be conducted by the manufacturer if it has been conducted by another

reputable organisation or government entity). Cryptography libraries should be

re-reviewed for known security vulnerabilities on each update of the device.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.17
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.17
The build environment and toolchain used to compile the application is run on

a build system with controlled and auditable access.
Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.16
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.16
Software source code is developed, tested and maintained following defined

repeatable processes.
Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.14
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.14
The product’s software source code follows the basic good practice of static

vulnerability analysis [ref 37] by the developer.
Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.8
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.8

The product has protection against unauthorised

reversion of the software to an earlier and

potentially less secure version.

Only authorised entities can

restore the software to an earlier

secure version.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.26
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.26
Support for partially downloading updates is provided for devices whose

network access is limited or sporadic.
Advisory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.21
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.21

Where the device software communicates with a product related webserver or

application over TCP/IP or UDP/IP, the device software uses certificate pinning

or public/private key equivalent, where appropriate.

Mandatory for Class 2 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.9
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.9
There are measures to prevent the installation of non-production (e.g.

development or debug) software onto production devices.
Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.41
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.41

Where the device is capable, it should check after

initialization, and then periodically, whether security updates

are available, either autonomously or as part of the support

service.

Otherwise, the support

service should push

updates to the device.

Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.32
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.32
There is secure provisioning of cryptographic keys for updates during

manufacture in accordance with industry standards.
Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.7
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.7
The product’s software signing root of trust is stored in tamper-resistant

memory.
Mandatory for Class 1 and above



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.22
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.22

For a device with no possibility of a

software update, the conditions for and

period of replacement support should be

clear.

A replacement strategy must be

communicated to the user, including a

schedule for when the device should be

replaced or isolated.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.5.35
ReqNo Requirement AssuranceClassAndApplicability

2.4.5.35

An end-of-life policy shall be published

which explicitly states the minimum length

of time for which a device will receive

software updates and the reasons for the

length of the support period. The need for

each update should be made clear to users

and an update should be easy to

implement.

At the end of the support period, the

device should reduce the risk of a latent

vulnerability being exploited. This could be

by indicating an error condition to the user

or curtailing functionality. This action

should be clearly communicated to the

user during the procurement stage.

Mandatory for all classes



Release 3.0 © 2021 IoT Security Foundation

2.4.9 Encryption And Key Management For
Hardware
This section's intended audience is for those personnel who are responsible for the security of the IoT systems hardware key management and encryption. Guidance is available from the IoTSF
[ref 44] regarding Encryption (Part G).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.1
Intentionally left blank to maintain

requirement numbering
-



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.6

All the product related

cryptographic functions are

sufficiently secure for the lifecycle

of the product, or cryptographic

algorithms and primitives should

be updateable ("cryptoagility")".

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.2

If present, a true random number

generator source has been

validated for true randomness.

Mandatory for Class 2 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.3

There is a process for secure

provisioning of security

parameters and keys that

includes random and individual

(unique) generation, distribution,

update, revocation and

destruction.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.10
All key lengths are sufficient for

the level of assurance required.
Mandatory for Class 2 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.4

There is a secure method of key

insertion that protects keys

against copying.

Mandatory for Class 1 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.7

The product stores all sensitive

unencrypted parameters (e.g.

keys) in a secure, tamper-

resistant location.

Mandatory for Class 1 and above System Hardware



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.9

In device manufacture, all

asymmetric encryption private

keys that are unique to each

device are secured. They must

be truly randomly internally

generated or securely

programmed into each device.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.11

In systems with many layered

sub devices, key management

should follow best practice.

Mandatory for all classes Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.8

The cryptographic key chain

used for signing production

software is different from that

used for any other test,

development or other software

images or support requirement.

Advisory for all classes System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.9.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.9.5

All the product related

cryptographic functions have no

publicly known unmitigated

weaknesses in the algorithms or

implementation, for example

MD5 and SHA-1 are not used.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

2.4.17 Infrastructure Management
This schema defines the structure for capturing and organizing the security requirements and standards compliance information as specified in the IoT Security Assurance Framework.



Release 3.0 © 2021 IoT Security Foundation

Requirement
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.3
An Asset management policy for

security related equipment
Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.10 HR Security Policy Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.5
Data Backup processes for

critical and secret data
Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.2
A document final release

process
Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.9 Data destruction Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.8 Security Risk Assesment Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.6

Access Control both Physical

and for code repositories, and

build artifacts

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.17.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.17.1
A documented Software

Development Lifecycle,( SDLC )
Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.7
Secure Assets and Key

Management
Mandatory for Class 1 and above Business Policy



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.16.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.16.4

is there a defined Document

Management classification

process and management plan

for material that contains

security related informaton

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

2.4.11 Mobile Application
This section's intended audience is for those personnel who are responsible for the security of the IoT Product or Services Mobile Application. Guidance is available from the IoTSF [ref 44]
regarding Application Security (part E) and Credential Management (part F).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.3

The mobile application ensures that any related

databases or files are either tamper resistant or restricted

in their access. Upon detection of tampering of the

databases or files, they are re-initialised.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.1

Where an application’s user interface password is used

for login authentication, the initial password or factory

reset password is unique to each device in the product

family.

Mandatory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.10
Mobile Apps should be developed using best practice

secure coding techniques and server frameworks.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.11

App interface should provide a simple method (one to

two clicks) to initiate any security update to the end

device.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.7

All data being transferred over interfaces should be

validated where appropriate. This could include checking

the data type, length, format, range, authenticity, origin

and frequency.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.2 Password entry follows industry standard practice. Mandatory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.9

All application inputs and outputs are validated using for

example an allowed-list containing authorised origins of

data and valid attributes of such data.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.12

Access to device functionality via a network/web

browser interface in the initialized state should only be

permitted after successful Authentication using current

best practice secure cryptographic modules.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.5
The product securely stores any passwords using an

industry standard cryptographic algorithm.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.13

Any personal data communicated between the mobile

app and the device shall be encrypted. Where the data

includes sensitive personal data then the encryption

must be appropriately secure.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.4

Where the application communicates with a product

related remote server(s), or device, it does so over a

secure connection.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.8

Secure Administration Interfaces; It is important that

configuration management functionality is accessible

only by authorised operators and administrators. Enforce

Strong Authentication over administration interfaces, for

example, by using certificates.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.11.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.11.6

Where passwords are entered on a user interface, the

actual pass phrase is obscured by default to prevent the

capture of passwords.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

2.4.12 Data Protection And Privacy
This section's intended audience is for those personnel who are responsible for Data Protection and Privacy regulatory compliance.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.4

The product/service ensures that Personal Information is

anonymised whenever possible and in particular in any

reporting.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.6

There is a method or methods for the product owner to

be informed about what Personal Information is

collected, why, where it will be stored and processed,

and by whom and for what purposes. This includes

sensing capabilities, such as sound or video recording,

biometrics, location, etc.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.3
The product/service ensures that only authorised

personnel have access to personal data of users.
Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.10

The supplier or manufacturer of any devices or devices

shall provide clear information about how the device(s)

should be set up to maintain the end user’s privacy and

security.

Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.9

The supplier or manufacturer of any device shall provide

documented information to end users about how the

device(s) functions within the end user’s network may

affect their privacy.

Advisory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.7
There is a method or methods for each user to

check/verify what Personal Information is collected.
Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.13

Security of devices and services should be designed

with usability in mind (reducing user decision points that

may have a detrimental impact on privacy and security).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.8

The product / service can be made compliant with the

local and/or regional Personal Information protection

legislation where the product is to be sold. For example

GDPR [ref 14].

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.2

The product/service ensures that all

Personal Information is encrypted

for confidentiality (both when stored

and if communicated out of the

device) and only accessible after

successful authentication and

authorisation.

Note: authentication only

proves who you are, but

authorisation confirms if you

are allowed access to the

PI.

The cryptography must be of

sufficient strength to protect

the Personal Information for

however long it is expected

to be retained (or remain

confidential).

Mandatory for Class 3 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.14

The product or service only records audio/visual/or any

other data in accordance with the authorisation of the

user (e.g., no passive recording without explicit

authorisation).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.11

The supplier or manufacturer of any devices and/or

services shall provide information about how the

device(s) removal and/or disposal or replacement shall

be carried out to maintain the end user’s privacy and

security, including deletion of all personal information

from the device and any associated services.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.12

The supplier or manufacturer of any devices or services

shall provide clear information about the end user’s

responsibilities to maintain the devices and/or services

privacy and security.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.1

The product/service stores the minimum amount of

Personal Information from users required for the

operation of the service.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.5

The Product Manufacturer or Service Provider shall

ensure that a data retention policy is in place and

documented for users.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.12.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.12.15

The supplier or manufacturer performs a privacy impact

assessment (PIA) to identify Personally Identifiable

Information (PII) and design approaches for

safeguarding user privacy compliant with the legal

requirements of the user's location (e.g. GDPR). This

should extend to data gathered via Web APIs from third

party platform suppliers.

Advisory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Product Security And Telecommunications
Infrastructure
Schema defining the necessary details of manufacturers, importers, and products under the Product Security and Telecommunications Infrastructure Act requirements. This includes
identification, compliance, and security update commitments.



Release 3.0 © 2021 IoT Security Foundation

2.4.14 Secure Supply Chain And Production
This section's intended audience is for those personnel who are responsible for the security of the IoT Product or Services' Supply Chain and Production.



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.10

An authorised actor in physical

possession of a device can

discover and authenticate its

RoT-backed logical identity e.g.

for inspection, verification of

devices being onboarded (this

may need electrical

connection).

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.9

In manufacture, all encryption

keys that are unique to each

device are either securely and

truly randomly internally

generated or securely

programmed into each device in

accordance with industry

standard FIPS140-2 [ref 5] or

equivalent. Any secret key

programmed into a product at

manufacture is unique to that

individual device, i.e. no global

secret key is shared between

multiple devices, unless this is

required by a licensing authority.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.8

An auditable manifest of all

libraries used within the product

(open source, etc.) is

maintained to inform

vulnerability management

throughout the device lifecycle

and whole of the support period.

Advisory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.22
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.22

The OEM retains

authorisation of secure

production control methods

to prevent a third party

manufacturer (CEM etc.)

from producing

overproduction and/or

unauthorised devices.

Mandatory

for Class 2

and above

Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.15

Production assets are

encrypted during transport to

the intended production facility,

area or system, or delivered

via private channel. Examples

of production assets include

firmware images, device

certificate CA keys, onboarding

credentials, production tools

and manufacturing files.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.17

Steps have been taken to

prevent inauthentic devices

from being programmed with

confidential firmware images

and configuration data. This is

to prevent IP theft and reverse

engineering.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.4

The production system for a

device has a process to ensure

that any devices with duplicate

serial numbers are not shipped

and are either reprogrammed or

destroyed.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.2

Any hardware design files,

software source code and final

production software images with

full descriptive annotations are

stored encrypted in off-site

locations or by a 3rd party

Escrow service.

Advisory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.18

Steps have been taken to

prevent inauthentic devices

from being signed into

certificate chains of trust or

otherwise onboarded. For

example, a policy or checklist

describing which devices may

be onboarded exists and is

followed.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.20
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.20

If time critical delivery of

products is needed, availability

of production resources

accessed in real time over the

Internet is assured, by

providing them with alternative

access channels not

susceptible to DOS attacks.

Mandatory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.24
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.24

An end of life disposal process

shall be provided to ensure

that retired devices are

permanently disconnected

from their cloud services and

that any confidential user data

is securely erased from both

the device and the cloud

services.

| Mandatory for Class 1 and above | Business | Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.25
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.25

Where contractual supply

arrangements and software

licence agreements allow, a

software bill of materials

(SBOM) shall be available and

notified (URL) to customers

with product documentation.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.21
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.21

Operators of production

servers, computers and

network equipment keep their

software up to date and

monitor them for signs of

compromise e.g. unusual

activity.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.5

Where a product includes a

trusted Secure Boot process,

the entire production test and

any related calibration is

executed with the processor

system operating in its secured

boot, authenticated software

mode.

Advisory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.7

A cryptographic protected

ownership proof shall be

transferred along the supply

chain and extended if a new

owner is added in the chain.

This process shall be based on

open standards such as

Enhanced Privacy ID,

Certificates per definition in ISO

20008/20009 [ref 42].

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.14

Procedures for proper disposal

of scrap product exist at

manufacturing facilities, and

compliance is monitored. This

is to prevent scrap entering

grey markets.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.13

Products ship with information

(documents or URL) about

their operations and normal

behaviour e.g. domains

contacted, volume of

messaging, Manufacturer

Usage Description (MUD).

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.12

IoT devices' RoT-backed

logical identity is used to

identify them in logs of their

physical chain of custody. This

is to facilitate tracking through

the supply chain.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.11

Devices are shipped with

readily-accessible physical

identifiers derived from their

RoT-backed IDs. This is to

facilitate both tracking through

the supply chain and for the

user to identify the device-

type/model and SKU

throughout the support period.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.19
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.19

Device certificate signing keys

and other onboarding

credentials are secured against

unauthorised access. For

example, they may be stored

encrypted and managed or

created by an HSM and

delivered by the secure signing

process.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.16

Device firmware images and

configuration data are secured

against unauthorised

modification in manufacturing

environments, including during

programming. If IP protection is

required then the images and

data need to be protected

against unauthorised access.

Mandatory for Class 2 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.23
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.23

The supplier or

manufacturer of any

devices and/or services

shall provide information

about how the device(s)

removal and/or disposal

or replacement shall be

carried out to maintain the

end user’s privacy and

security, including deletion

of all personal information

from the device and any

associated services.

Mandatory for

Class 2 and

above

Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.1

Ensure the entire production test

and calibration software used

during manufacture is removed

or secured before the product is

dispatched from the factory. This

is to prevent alteration of the

product post manufacture when

using authorised production

software, for example hacking of

the RF characteristics for

greater RF ERP. Where such

functionality is required in a

service centre, it shall be

removed upon completion of

any servicing activities.

Mandatory for Class 2 and above System Software



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.6

A securely controlled area and

process shall be used for device

provisioning where the

production facility is untrusted.

Advisory for all classes Business Process



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.14.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword SecondaryKeyword

2.4.14.3

In manufacture, all the devices

are logged by the product

vendor, utilizing unique tamper

resistant identifiers such as

serial number so that cloned or

duplicated devices can be

identified and either disabled or

prevented from being used with

the system.

Mandatory for Class 1 and above Business Process



Release 3.0 © 2021 IoT Security Foundation

2.4.10 Web User Interface
This section's intended audience is for those personnel who are responsible for the security of the IoT Product or Services Web Systems. Guidance is available from the IoTSF [ref 44] regarding
Application Security (part E), and Credential Management (part F).



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.6.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.6.1
Strong passwords are required, and a random salt

value is incorporated with the password.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.11
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.11

Sanitise input in Web applications by using URL

encoding or HTML encoding to wrap data and treat it as

literal text rather than executable script.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.13
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.13

Administration Interfaces are accessible only by

authorised operators. Mutual Authentication is used

over administration interfaces, for example, by using

certificates.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.2
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.2

Where the product or service provides a web browser

based interface, access to any restricted/administrator

area or functionality shall require authentication.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.5
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.5
The web user interface is protected by an automatic

session idle logout timeout function.
Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.16
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.16

Web Interfaces should be developed using best

practice secure coding techniques and server

frameworks.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.6
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.6 User passwords are not stored in plain text. Mandatory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.1
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.1

Where the product or service provides a web based user

interface, Authentication is secured using current best

practice cryptography.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.7
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.7

Where passwords are entered on a user interface, the

actual pass phrase is obscured by default to prevent the

capture of passwords.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.18
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.18

Web interface should provide a simple method (one to

two clicks) to initiate any security update to the end

device

Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.15
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.15

All inputs and outputs are checked for validity. Tests to

include both expected (valid) and unexpected (invalid)

input stimuli.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.3
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.3

Where the product or service provides a web based

management interface, Authentication is secured using

current best practice cryptography.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.4
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.4

Where a web user interface password is used for login

authentication, the initial password or factory reset

password is unique for every device in the product family.

Mandatory for all classes System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.14
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.14

Reduce the lifetime of sessions to mitigate the risk of

session hijacking and replay attacks. (For example to

reduce the time an attacker has to capture a session

cookie and use it to access an application).

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.10
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.10

All data being transferred over interfaces should be

validated where appropriate. This could include

checking the data type, length, format, range,

authenticity, origin and frequency.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.9
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.9

A vulnerability assessment has been performed before

deployment, and is repeated periodically throughout the

lifecycle of the service or product.

Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.17
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.17 Password entry follows industry standard practice. Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.19
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.19

Any personal data communicated between the web

interface and the device shall be encrypted. Where the

data includes sensitive personal data then the

encryption must be appropriately secure.

Mandatory for all classes Business



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.12
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.12

All inputs and outputs are validated using for example

an allow list (formerly 'whitelist') containing authorised

origins of data and valid attributes of such data.

Mandatory for Class 1 and above System



Release 3.0 © 2021 IoT Security Foundation

Requirement 2.4.10.8
ReqNo Requirement AssuranceClassAndApplicability PrimaryKeyword

2.4.10.8
The web user interface shall follow good practice

guidelines.
Mandatory for Class 1 and above Business



Release 3.0 © 2021 IoT Security Foundation

3.1 References & Standards
The following organisations, publications and/or standards have been used for the source of references in this document:

3GPP (3rd Generation Partnership Project)

CSA (Cloud Security Alliance)

DoD (US Department of Defense)

ENISA (European Union Agency for Network and Information Security)

ETSI (European Telecommunications Standards Institute)

EU (European Union)

FIPS (US Federal Information Processing Standard)

GSMA (GSM Association)

IETF (Internet Engineering Task Force)

IoTSF (Internet of Things Security Foundation

ISO (International Standard Organisation)

JTAG (Joint Test Action Group)

NCSC (UK National Cyber Security Centre)

NIST (US National Institute of Standards and Technology)

OWASP (Open Web Application Security Project)

The following references are used in this document:

1. NIST Special Publication SP800-57 Part 3 Revision 1” NIST Special Publication 800 – 57 Part 3 Revision 1 Recommendation for Key Management Part 3: Application – Specific
Key Management Guidance” January 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

2. NIST Special Publication 800-131A Revision 1 ”Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths” November 2015

3. NIST Special Publication 800-90A Revision 1 “Recommendation for Random Number Generation Using Deterministic Random Bit Generators” June 2015
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

4. Special Publication 800-22 Revision 1a “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications” April 2010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762

5. FIPS PUB 140-2, Security Requirements for Cryptographic Modules, May 2001. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

6. Common Criteria for Information Technology Security Evaluation Part 1: Introduction and general model September 2012 Version 3.1 CCMB-2012-09-001 CCMB-2012-09-003
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4_marked_changes.pdf

7. Common Criteria for Information Technology Security Evaluation Part 2: Security functional components September 2012 Version 3.1 Revision 4 CCMB-2012-09-002
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf

8. Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components September 2012 Version 3.1 Revision 4
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf

9. Draft Framework for Cyber-Physical Systems; NIST; October 2016 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf

10. UK Government advice on Password Guidance, Simplifying your approach, CESG and CPNI Sept 2015:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/458857/Password_guidance_-_simplifying_your_approach.pdf

11. DoDI-8500.2 IA Controls: http://www.dote.osd.mil/tempguide/index.html

12. NIST Guide to Protecting the Confidentiality of Personally Identifiable Information (PII), Special Publication 800-122, NIST, April 2010:
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf

13. Key definitions of the Data Protection Act, ICO: https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions

14. Overview of the General Data Protection Regulations (GDPR), ICO: https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr

15. TS-0003 Annex J (normative): List of Privacy Attributes and Clause 11 Privacy Protection Architecture using Privacy Policy Manager (PPM)
https://www.onem2m.org/technicalpublished-specifications

16. Example of IoT application ID registry and possible privacy profile registry

17. https://www.onem2m.org/images/ppt/TP-2017-0200-AppID_Registry_A_Foundation_for_Trusted_Interoperability.pdf 3GPP TS33.117. Catalogue of general security assurance
requirements produced by ESTI https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2928

18. Cloud Security Alliance, Cloud Security Alliance is a not-for-profit organization promoting best practices for security assurance within Cloud Computing
https://cloudsecurityalliance.org

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4_marked_changes.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/458857/Password_guidance_-_simplifying_your_approach.pdf
http://www.dote.osd.mil/tempguide/index.html
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
https://ico.org.uk/for-organisations/guide-to-data-protection/key-definitions
https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-gdpr
https://www.onem2m.org/technicalpublished-specifications
https://www.onem2m.org/images/ppt/TP-2017-0200-AppID_Registry_A_Foundation_for_Trusted_Interoperability.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2928
https://cloudsecurityalliance.org/


Release 3.0 © 2021 IoT Security Foundation

19. IoTSF Vulnerability Disclosure Guidelines can be found https://iotsecurityfoundation.org/best-practice-guidelines

20. NIST National Institute of Standards and Technology www.nist.gov

21. NIST Cyber Security Framework https://www.nist.gov/cyberframework

22. Octave, programming language https://www.gnu.org/software/octave/

23. UK Cyber Essentials: UK government-backed, industry supported scheme to help organisations protect themselves against common cyber-attacks
https://www.cyberaware.gov.uk/cyberessentials

24. UK Government Cloud Security Principles is for consumers and providers using cloud services https://www.gov.uk/government/publications/cloud-service-security-
principles/cloud-service-security-principles

25. IETF – RFC2119 “Key words for use in RFCs to Indicate Requirement Levels” https://www.ietf.org/rfc/rfc2119.txt

26. NIST SP800-63b Revision 1” NIST Special Publication 800-63B Digital Identity Guidelines Authentication and Lifecycle Management” June 2017 https://pages.nist.gov/800-63-
3/sp800-63b.html

27. ENISA “Algorithms, Key Sizes and Parameters Report – 2013” https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report

28. IETF RFC7525 “Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)” https://tools.ietf.org/html/rfc7525

29. SSL Labs “SSL-and-TLS-Deployment-Best-Practices” 31 March 2017 https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

30. OWASP “Transport Layer Protection Cheat Sheet” https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

31. OWASP Certificate and Public Key Pinning https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

32. NIST Special Publication 800-53, Revision 4, “Security and Privacy Controls for Federal Information Systems and Organizations” – SC-5 Denial of Service Protection
https://nvd.nist.gov/800-53/Rev4/control/SC-5

33. NIST 800-53, Revision 4, “Security Controls and Assessment Procedures for Federal Information Systems and Organizations” - SI10 Information Input Validation
https://nvd.nist.gov/800-53/Rev4/control/SI-10

34. NIST Special Publication 800–167 “Guide to Application Whitelisting” http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-167.pdf

35. NIST SP 800-37 Rev. 1 “Guide for Applying the Risk Management Framework to Federal Information Systems: a Security Life Cycle Approach Risk Management Framework”
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final or Octave from ENISA

36. Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE), an approach for managing information security risks. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=51546

37. Supply Chain of Trust by Hayden Povey of Secure Thingz and the IoTSF http://www.newelectronics.co.uk/article-images/152099/P18-19.pdf

38. Static Code Analysis Tools https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

39. Bluetooth Numeric Comparison https://csrc.nist.gov/publications/detail/sp/800-121/rev-1/archive/2012-06-11 page 14

40. UK Government Cyber security risk assessment guidance https://www.ncsc.gov.uk/guidance/risk-management-collection

41. NIST Special Publication 800-30 guidance for conducting risk assessments https://www.nist.gov/publications/guide-conducting-risk-assessments

42. EU ENISA guidance of Cyber Security Risk Management https://www.enisa.europa.eu/topics/threat-risk-management/risk-management

43. Security Policy ISO/IEC Standards for Vulnerability Disclosures ISO/IEC 29147 and ISO/IEC 30111
http://standards.iso.org/ittf/PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.zip and https://www.iso.org/standard/53231.html

44. Enhanced Privacy standard for Anonymous Signatures ISO/IEC20008 https://www.iso.org/standard/57018.html

45. IoTSF Best Practice Guidelines for Connected Consumer Products V1.1 https://www.iotsecurityfoundation.org/best-practice-guidelines/#ConnectedConsumerProducts includes at
time of publication individual guidelines for the following topics:

    A. Classification of data

    B. Physical security

    C. Device secure boot

    D. Secure operating system

    E. Application security

https://iotsecurityfoundation.org/best-practice-guidelines
http://www.nist.gov/
https://www.nist.gov/cyberframework
https://www.gnu.org/software/octave/
https://www.cyberaware.gov.uk/cyberessentials
https://www.gov.uk/government/publications/cloud-service-security-principles/cloud-service-security-principles
https://www.gov.uk/government/publications/cloud-service-security-principles/cloud-service-security-principles
https://www.ietf.org/rfc/rfc2119.txt
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
https://tools.ietf.org/html/rfc7525
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://nvd.nist.gov/800-53/Rev4/control/SC-5
https://nvd.nist.gov/800-53/Rev4/control/SI-10
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-167.pdf
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
http://www.newelectronics.co.uk/article-images/152099/P18-19.pdf
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://csrc.nist.gov/publications/detail/sp/800-121/rev-1/archive/2012-06-11
https://www.ncsc.gov.uk/guidance/risk-management-collection
https://www.nist.gov/publications/guide-conducting-risk-assessments
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management
http://standards.iso.org/ittf/PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.zip
https://www.iso.org/standard/53231.html
https://www.iso.org/standard/57018.html
https://www.iotsecurityfoundation.org/best-practice-guidelines/#ConnectedConsumerProducts


Release 3.0 © 2021 IoT Security Foundation

    F. Credential management

    G. Encryption

    H. Network connections

    J. Securing software updates

    K. Logging

    L. Software update policy

46. CIA Triad has no original source, but for more info visit: https://www.techrepublic.com/blog/it-security/the-cia-triad

47. Examples of security vulnerability advisory programs: https://www.us-cert.gov/report and https://ics-cert.us-cert.gov/ICS-CERT-Vulnerability-Disclosure-Policy

48. Example of memory sanitisation:

        SEI CERT C Coding Standard Recommendation MEM03-C: “Clear sensitive information stored in reusable resources” https://wiki.sei.cmu.edu/confluence/display/c/MEM03-
C.+Clear+sensitive+information+stored+in+reusable+resources

    ISO/IEC TR 24772:2013 “Information technology -- Programming languages -- Guidance to avoiding vulnerabilities in programming languages through language selection and use”
“Sensitive Information Uncleared Before Use” https://www.iso.org/standard/61457.html

    Other references:

        MITRE CWE-226 “Sensitive Information Uncleared Before Release” https://cwe.mitre.org/data/definitions/226.html

        CWE-244 “Improper Clearing of Heap Memory Before Release ('Heap Inspection')” https://cwe.mitre.org/data/definitions/244.html

49. NCSC password guidance https://www.ncsc.gov.uk/guidance/password-collection

50. Privacy Impact Assessment advice can be found at https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-
protection-impact-assessments/ and https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-122.pdf

51. NCSC guidance on TLS management https://www.ncsc.gov.uk/guidance/tls-external-facing-services

52. WPA - Wi-Fi Protected Access is the name given to wireless security standard IEEE 802.11i-2004 https://standards.ieee.org/standard/802_11i-2004.html

53. The ETSI Technical Committee on Cybersecurity EN 303 645 version 2.1.1 “CYBER; Cyber Security for Consumer Internet of Things: Baseline Requirements” June 2020, , a
standard for cybersecurity in the Internet of Things that establishes a security baseline for internet-connected consumer products and provides a basis for future IoT certification
schemes. https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf

54. NIST 8259A “IoT Device Cybersecurity Capability Core Baseline” May 2020 https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf

Release 3.0 © 2021 IoT Security Foundation

https://www.techrepublic.com/blog/it-security/the-cia-triad
https://www.us-cert.gov/report
https://ics-cert.us-cert.gov/ICS-CERT-Vulnerability-Disclosure-Policy
https://wiki.sei.cmu.edu/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://wiki.sei.cmu.edu/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://www.iso.org/standard/61457.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://www.ncsc.gov.uk/guidance/password-collection
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-assessments/
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/data-protection-impact-assessments/
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-122.pdf
https://www.ncsc.gov.uk/guidance/tls-external-facing-services
https://standards.ieee.org/standard/802_11i-2004.html
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8259A.pdf


Release 3.0 © 2021 IoT Security Foundation

3.2 Definitions And Abbreviations
For the purposes of the present document, the following abbreviations apply.

3.2.1 Definitions

Anonymity
In case of market requirements, an anonymous identity is required during ownership transfer. EU data privacy

Privacy Regulations may apply.

Application

Applications (also called end-user programs) are software programs designed to perform a group of coordina

tasks that may vary by installation or model. Examples of IoT applications include a web browser, sensor man

actuator controller. This contrasts with system software, which executes the operating software of the main pr

device.

Authentication
Authentication is the process of recognising an identity. It is the mechanism of associating an incoming reque

identifying credentials. The credentials provided are checked with those in the device or within an authenticat

Authentication
Authentication is the process of recognising an identity. It is the mechanism of associating an incoming reque

identifying credentials. The credentials provided are checked with those in the device or within an authenticat

Boot
The initial process used by the device when turned on that prepares the system for operation (normally conta

Boot steps).

Consumer
An end user, and not necessarily a purchaser, in the distribution chain of a good or service who make persona

and/or service.

Deployment The placing of the product into customer trial or service.

Encrypted
Data secured using a recognised algorithm and protected keys, so as to be meaningful, only if decoded, and 

those with access to the relevant algorithm and keys.

Enterprise An organisation in business for commercial or not-for-profit purposes that share information technology resou

Firmware
Computer programs and data stored in hardware – typically in read only memory(ROM) or programmable rea

(PROM) – such that the programs and data cannot be dynamically written or modified during execution of the

IoT Product
Class

Class of network products that all implement a common set of IoTSF defined functions for that particular IoT p

Interactive
Account

Interactive accounts include non-personal accounts such as root, admin, service, batch, super user or privileg

permit system configuration changes.

Mutual
Authentication

Mutual authentication refers to a security process or technology in which two entities in a communications link

and integrity of each other before any sensitive data is sent over the connection.

In a network, the client authenticates the server and vice-versa. It is a default mode of authentication in some

SSH (see https://tools.ietf.org/html/rfc4250) and optional in others, such as TLS (see https://tools.ietf.org/html

https://tools.ietf.org/html/rfc4250
https://tools.ietf.org/html/rfc8446


Release 3.0 © 2021 IoT Security Foundation

Nonce
Nonce is an abbreviation of the term "number used once”. It is often a random or pseudo-random number issu

authentication protocol to ensure that old communications messages cannot be reused in replay attacks.

Operating
System

An operating system (OS) is system software that manages device hardware and software resources and pro

services for software programs.

On boarding The method to register a device into its service or solution to enable device registration [ref 16], configuration 

Ownership
Transfer

In case a device is transferred through a supply chain and changes owner, this method ensures a reliable and

ownership.

Personal
Information

Personal Information is defined by the EU General Data Protection Regulation (GDPR): https://ec.europa.eu/i

topic/data-protection_en.

‘personal data’ means any information relating to an identified or identifiable natural person (‘data subject’). An

person is one who can be identified,directly or indirectly, in particular by reference to an identifier such as a na

identification number, location data, an online identifier or to one or more factors specific to the physical, phys

mental, economic, cultural or social identity of that natural person.

Other jurisdictions may have different definitions.

Secure Boot Process that ensures a device only starts software that is trusted by the OEM.

Secure
Protocol

The method of exchanging information that ensures protection and reliability of the data (usually though crypt

techniques).

Software
Unless otherwise explicitly stated, for the purposes of this document the term software also includes any firmw

product.

Strong
Authentication

A procedure based on the use of two or more of the following elements, categorised as knowledge, ownership

i) Something only the user or device knows, e.g. static password, code, personal identification number;  

ii)Something only the user or device possesses, e.g. token, smart card, mobile phone;  

iii) Something the user or device is, e.g. biometric characteristic, such as a fingerprint.

In addition, the elements selected must be mutually independent, i.e. the breach of one does not compromise

least one of the elements should be non-reusable and non-replicable (except for inherence), and not capable 

surreptitiously stolen via the internet. The strong authentication procedure should be designed in such a way 

confidentiality of the authentication data defined other examples include NIST Special Publication 800-63B se

European Central Bank: Recommendations For The Security Of Internet Payments

http://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversiona

95e6bba1ef875877ad3c35cf3b12399c

Supply Chain
of Trust

Where an IoT system uses device or service components with more than one source, all sources demonstrate

relevant requirements of this framework. This will lead to the Devices and services in an IoT system exhibiting

attributes:

- Engender robust Root of Trust and secure identities

- Safeguard application code at source Inhibit grey-manufacturing and protect IP

- Ensure only valid applications are programmed

- Integrate robust key structures for ownership delegation

- Enable lifecycle updates and patching

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en
http://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf?95e6bba1ef875877ad3c35cf3b12399c
http://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf?95e6bba1ef875877ad3c35cf3b12399c


Release 3.0 © 2021 IoT Security Foundation

Tamper
Evident

The enclosure of the product has measures to ensure that any unauthorised attempt to open it leaves evidenc

example, labelling across a product’s enclosure joint that fragments when the joint is disturbed.

Tamper
Resistant

The enclosure of the product has measures to prevent its unauthorised opening. Typically, with specialist fast

features that require the use of specialist tooling, unique to the product.

3.2.2 Acronyms

CoAP     Constrained Application Protocol
DDoS     Distributed Denial of Service
DTLS     Datagram Transport Layer Security
EAL     Evaluation Assurance Level
ERP     Effective Radiated Power
HTML     Hypertext Markup Language
HTTP     Hypertext Transfer Protocol
IP     Internet Protocol
MD     Message Digest
MQTT     Message Queue Telemetry Transport - ISO standard ISO/IEC PRF 20922
OEM     Original Equipment Manufacturer
PRNG     Pseudo Random Number Generator
ROT     Root Of Trust
SHA     Secure Hash Algorithm
SSH     Secure Socket Shell
TRNG     True Random Number Generator
TBC     To Be Confirmed
TBD     To Be Determined
TCP     Transmission Control Protocol
TLS     Transport Layer Security
T3P     Trusted Third Party
UDP     User Datagram Protocol
URL     Uniform Resource Locator
WPS     Wi-Fi Protected Setup

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Risk-Assessment-Steps

1 Risk Assessment Steps
The core of the security process is to understand what is being protected and from what or whom. It is also important to identify what is not being protected. There are many ways to
accomplish this procedure, but it is recommended to use well-known, best practice, risk management standards [ref 39, 40 and 41]. Risk management techniques can also be found in
several common business training publications. An outline of the Risk Assessment process used in this document can be seen in the flow diagram and bullet list below:

Create a list of security risks to the product
Use brainstorming techniques, mind mapping or other Group Creativity techniques.

Generate a list covering both business and technical threats:
E.g. “Brand Image damage due to adverse publicity”, “cost of product recall”, “product exposes users Wi-Fi credentials”

Safety aspects of the product that affect users if the security is compromised

The Framework can be used to support the creation of the list of risks by considering the Assurance Class criteria

Assess the “probability” of each item on the Risk List happening

Assess the “Cost” (impact in terms of the detectability and recovery) of each item on the Risk List – if it happens

Multiply the Cost by the Probability, this gives a “Risk Factor”

Order list by “Risk Factor”. This could be a percentage or simply Probability x Impact number

This list becomes the “Risk Register” document and may then be used to guide and justify the work needed to address product security. The aim of the work is to reduce the risk
“probability” factor to an acceptable level.

Threat Description
Probability (0-
100%)

Impact/Cost to company of threat
happening (0-5)

Risk Factor

Compromise of Encryption and Key

Management
5% 5

(0.05*5) =

0.25

Web User Interface subversion 90% 4 (0.9*4) =3.6



Release 3.0 © 2021 IoT Security Foundation

Threat Description
Probability (0-
100%)

Impact/Cost to company of threat
happening (0-5)

Risk Factor

Mobile Application hacked 15% 2
(0.15*2) =

0.3

Leakage of Private personal data 15% 5
(0.15*5) =

0.75

Table 5

This is showing the biggest risk is the web User Interface, so the priority should be on mitigating this to reduce the probability.

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Security-Objectives-And-Requirements

2 Security Objectives And Requirements
The next step is to identify the security objectives and security non-objectives for the product. Items with high risk factors that need mitigation by design are usually considered as
security objectives and items with low risk factors for which investment in mitigation is not justified are considered as non-objectives. Each objective must clearly state the asset that
needs protection and relevant threats. Any excluded objectives should also be stated and explained, to make clear that they have been considered.

Security requirements are then derived from the security objectives. The main difference between those two is that security objectives specify what needs to be protected and security
requirements are the means to achieve the required protection. The Security requirements document is a major milestone in the product development life cycle and should be ready
before design is started.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Security-Requirements-Design-And-
Implementation

3 Security Requirements Design And
Implementation
The Security requirements document feeds the design and validation teams. Design methodology of security features is not different from the general design methodology of regular
functional requirements. However, this is not true for validation methodology. The aim of the functional requirements validation is to verify that a system is able to do properly what it was
designed to do. Security validation shall also try to simulate illegal or unexpected scenarios (e.g. writing to reserved bits in a register or applying an incorrect power up sequence) and
verify that a system behaviour is predictable and security assets are not compromised.

The Risk Register should be maintained throughout the project, and the threat probabilities reassessed given the mitigations put in place to reduce the Risk Factor to an Acceptable
level.

What is Acceptable? This is a qualitative assessment that needs to be made by the product owner against risk to reputation, customer expectation and cost of rectification in case of a
security failure.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

Appendix B Introduction To Supply Chain
Security Requirements

The core of the security process is to understand what is being protected and from what or whom. It is also important to identify what is not being protected



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

B1-Motivation

B1 Motivation
IT systems, including IoT systems, can be compromised by cyber-attacks in their supply chain. Components compromised in the supply chain open the way for a variety of exploits when
deployed into operational environments. Supply chain attacks are extremely cost effective from attackers’ points of view. IT assets coming from development, manufacturing and
distribution environments are often trusted implicitly by downstream users, despite weak or unknown security controls in those environments. Furthermore, a successful compromise of a
single well-chosen IT vendor environment can fan out to the vendor’s entire customer base as products and software updates are deployed. It is no coincidence that many of the most
notorious cyber attacks have been supply chain attacks.

In recent years the ICT security literature has increasingly recognised the problem of protecting both software and hardware assets in the supply chain and has developed a variety of
recommendations in response. However, while many of these recommendations are applicable to IoT devices, interpreting them requires a detailed understanding of the IoT supply
chain. There is also a need for IoT-specific security recommendations to accommodate IoT device supply chains’ unique characteristics.

An IoTSF working group was formed in April 2020 to supply both these needs with an expanded and updated set of security requirements concerning smart devices’ supply chains. The
group received contributions from 43 experts representing 34 organisations resulting in 29 specific, implementable recommendations. These have been mapped into this edition of the
Framework in 5 pre-existing and 24 new requirements.



Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

B2-Definition-Of-Terms

B2 Definition Of Terms
The job of an IoT device supply chain is to deliver devices into an application in a known, trustworthy, and trusted state. As well as delivering hardware and software, an IoT device
supply chain must establish trust relationships. This characteristic is not shared by ICT supply chains in general.

Each component of an IoT device is the product of a preceding design and production process. It is more accurate to think of the supply “chain” as a supply “network”. Anyone in the
supply network with access to unprotected assets becomes part of the trust base of that device. Producers of key components such as embedded operating systems, cryptographic
libraries and ICs carry a significant burden of trust and must demonstrate that they deserve it. But, as the designer of the production process, it is the device OEM who chooses whom to
trust and is responsible for securing it overall.

The supply network is comprised of four basic types of operation: hardware assembly, which progressively integrates components and subassemblies into complete devices,
programming, which installs logical assets onto those devices, personalisation, which generates a unique identity for each device, and on boarding, which places those devices into trust
relationships with other systems. Programming, personalisation and on boarding together comprise the provisioning process, by which hardware is put into a functioning state.

While device hardware is undoubtedly important, it isn’t likely to be attacked in the supply chain. In any case by far the biggest hardware determinant of devices’ behaviour is the
processor IC, the design and manufacture of which is outside of device OEMs’ control. For most OEMs the main hardware risk is the use by Contract Electronics Manufacturers (CEMs)
of grey market parts, which have been known to include manufacturing discards, recycled parts and counterfeits1. Much more vulnerable to cyber-attacks are the various provisioning
operations (Table 6).

Operation Description

Programming Programming is always performed via a programming interface exposed by the target. Programming

operations place software and configuration assets onto devices. These can include assets such as:

- software images and server certificates, which are the same for every device

- manufacturing data and customer-specific settings, which change per batch

- identity secrets and device certificates, which are individually personalised for each device.



Release 3.0 © 2021 IoT Security Foundation

Operation Description

Device operators rely on the authenticity and integrity of all these assets - and, in the case of identity

secrets, also their confidentiality. Device OEMs and ODMs on their part often have an interest in

maintaining the confidentiality of their software IP.

Secure programming is rarely as straightforward as installing a binary image. Sometimes binaries are

rebuilt per device to check for a specific IC hardware ID, as a defence against cloning. In other cases,

configuration data is installed as late as possible in production, or even deferred into distribution. Device

identities might be generated externally and programmed individually.

Programmed assets must be protected not just in the programming environment but on the target IC.

Because of this, ICs entering a secure programming environment must be authentically what they are

believed to be, and they must be configured to prevent unauthorised readout or modification of assets

before they leave.

RoT

Establishment

With no identity or correspondent software already present, ICs fresh off the wafer typically expose a

hardware-level programming interface. This channel is necessarily unencrypted and unauthenticated.

The first programming step, RoT establishment, must therefore take place in a secure facility.

RoTs once established can expose secure interfaces for provisioning subsequent assets. Examples of

this pattern include secure boot managers which can detect and install new valid software images and

secure programming interfaces. Both are often found as features of RoTs installed by IC vendors.

Claiming

An OEM making use of a secure boot manager established by the IC vendor must claim it by

programming it with a trust anchor with which to validate the next software in the boot chain. Like ROT

establishment, this is a special case of programming. Claiming is a key moment in the life of an IoT

device because whoever installs that trust anchor chooses what software runs and thereby takes full

control of the behaviour of the device.

Personalisation

Every connected device requires a unique, authenticable identity. Ideally devices should generate

asymmetric identity key pairs internally, so the private key need never be exposed externally. Most

modern microcontroller RoTs are able to generate high quality key pairs. Older or smaller

microcontrollers may lack robust sources of high-quality entropy. Their private keys must be generated

externally. Ideally this is done as close to the target device as possible to limit the potential exposure of

those keys. The provisioning tool is an ideal place to accomplish this. Personalisation can also include

serial numbers and other public identifiers.

Onboarding IoT devices are useless until they are connected into larger applications. Those applications need to be

told which devices to trust and how to authenticate them. There are various ways of doing this, but all

involve telling the central application to trust devices which can prove possession of specified secret

keys. This is called on boarding.

The act of on boarding is a major trust decision. When a device operator makes a decision to trust an

IoT device they’re making a decision to trust it, and the supply chain that delivered it to them, including

everyone who has had access to the device and its components. For a device with a RoT those

components include

I. The initial bootloader, on which the operator is relying to ensure only properly signed code runs,

II. The RoT runtime services, on which they are relying to provide unimpeachable security services, and

III. The embedded software developed by the device OEM or ODM, which the operator is expecting to

behave exactly according to specification.

Device operators unfortunately are not usually in a position to determine for themselves whether an IoT

device has been provisioned into a known, trusted, functional initial state. Instead they must rely on



Release 3.0 © 2021 IoT Security Foundation

Operation Description

someone else’s assurances. Someone they trust, often the OEM, needs to assert “this device is in a

known trusted state”. Where devices are identified using asymmetric (private and public) keys this is

accomplished by on boarding the public key to central services. This can be done in several ways.

The simplest method is to take a copy of each devices’ public key on the production line and upload it to

the central service. The copy should be taken when the device is fully provisioned, but before it leaves

the trusted manufacturing environment.

A more powerful and flexible method is to sign each device’s public key into a certificate chain on the

production line and load that certificate chain back into the device. The device can later deliver its public

key to the central service itself, as part of a TLS handshake. Central services can on board that key on

the authority of any Certificate Authority (CA) certificate in the chain. Because this allows large volumes

of devices to be on boarded in a single operation it is convenient for device operators to have their

devices signed into their own certificate chain of trust.

In each case, whether keys are on boarded directly to the central service from the production line or

signed into certificate chains of trust, it is essential that only trusted parties perform that operation. The

fewer entities involved the better. Signing devices into chains of trust offers a distinct advantage over

other on boarding methods in this respect, because the CA keys can be stored in an onsite HSM or

secure element, or offsite in a secure facility, where they can be used without ever being exposed in

manufacturing environments.

It is important to note that the private keys of all the CAs in the chain of trust must be similarly protected,

because an attacker gaining the use of any of them gains the ability to on board any device they choose

[2].

Table 6: Provisioning operations

To reach a known functional initial state, devices must be provisioned with many software and data assets and into many trust relationships, often in a sequence of provisioning steps
that begins with a blank IC and ends with a fully functional and secured device. Each step may be performed by a different actor, each provisioning the device into an intermediate state.
The process may begin upstream of the OEM, with IC vendors provisioning naked dies, and it may extend to as late as immediately before devices’ live deployment, with installers
commissioning devices on site.

IoT OEMs already design provisioning sequences and create or specify provisioning tools (Figure 3) for each step of those sequences, as part of their device development. Because
manufacturing environments have generally been assumed secure it has been rare to give further consideration to protecting these tools and processes against deliberate attack. In
essence though security is just another design goal. OEMs can use their control of this process to allocate key steps to more-trusted suppliers. Alternatively, they can engineer
provisioning tools to keep assets out of harm’s way in untrusted environments.



Release 3.0 © 2021 IoT Security Foundation

1. 2015, Rob Wood, NCC Group, Secure Device Manufacturing: Supply Chain Security Resilience

2. 2021, Michael Richardson, IETF, A Taxonomy of operational security considerations for manufacturer installed keys and Trust Anchors

Release 3.0 © 2021 IoT Security Foundation



Release 3.0 © 2021 IoT Security Foundation

B3-Approach

B2 Approach
Submissions were invited from representatives of IoT users and vendors and categorised into lists of actors, principles, attacks, references, characteristics, assets, objectives,
mitigations, and definitions. Using these inputs as an initial guide the working group developed the general characterisation of IoT device supply chains outlined above before proceeding
to a threat analysis using the method of attack trees 3 . Security recommendations were developed to address these threats. In parallel, the group surveyed a range of standards and
literature for known attacks and existing advice. Both were used to check the completeness of the ab initio analysis4 before the recommendations were mapped into the Framework.

This Appendix (B) was created from a white paper generated by the IoTSF Supply Chain Working Group Our thanks go to

Editor and chair

Amyas Phillips, Ambotec Consulting

Working group members

Amit Rao, Trusted Objects

Anjana Priya, Microchip

Michael Richardson, Sandelman Software Works

Prof. Paul Dorey, CSO Confidential

Rob Brown, Jitsuin

Contributors

Alagar Gandhi, FCA

Alexandru Suditu, OMV Petrom

Andrew Frame, Secure Thingz / IAR Systems

Angela Mison, University of South Wales

3. 1999, Bruce Schneier, Dr Dobb’s Journal, Attack Trees (see https://www.schneier.com/academic/archives/1999/12/attack_trees.html)

4. A full bibliography is not provided here, however special attention was given to associating actionable recommendations to the principles proposed in ENISA’s 2020 publication
“Guidelines for Securing the Internet of Things: Secure Supply Chain for IoT”.

https://www.schneier.com/academic/archives/1999/12/attack_trees.html


Release 3.0 © 2021 IoT Security Foundation

Release 3.0 © 2021 IoT Security Foundation



NIST SPECIAL PUBLICATION 1800-36A 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and 
Network Security 

Volume A: 
Executive Summary 

Michael Fagan 
Jeffrey Marron 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence 
Information Technology Laboratory 

Blaine Mulugeta 
Susan Symington  
The MITRE Corporation 
McLean, Virginia 

Dan Harkins 
Aruba, a Hewlett Packard Enterprise company 
San Jose, California 

William Barker 
Dakota Consulting 
Silver Spring, Maryland 

Michael Richardson 
Sandelman Software Works 
Ottawa, Ontario 

May 2024 

DRAFT 

This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-
management  

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Executive Summary 

Establishing trust between a network and an Internet of Things (IoT) device (as defined in NIST Internal 2 

Report 8425) prior to providing the device with the credentials it needs to join the network is crucial for 3 

mitigating the risk of potential attacks. There are two possibilities for attack. One happens when a 4 

device is convinced to join an unauthorized network, which would take control of the device. The other 5 

occurs when a network is infiltrated by a malicious device. Trust is achieved by attesting and verifying 6 

the identity and posture of the device and the network before providing the device with its network 7 

credentials—a process known as network-layer onboarding. In addition, scalable, automated 8 

mechanisms are needed to safely manage IoT devices throughout their lifecycles, such as safeguards 9 

that verify the security posture of a device before the device is permitted to execute certain operations. 10 

In this practice guide, the National Cybersecurity Center of Excellence (NCCoE) applies standards, best 11 

practices, and commercially available technology to demonstrate various mechanisms for trusted 12 

network-layer onboarding of IoT devices in Internet Protocol based environments. This guide shows how 13 

to provide network credentials to IoT devices in a trusted manner and maintain a secure device posture 14 

throughout the device lifecycle, thereby enhancing IoT security in alignment with the IoT Cybersecurity 15 

Improvement Act of 2020.  16 

CHALLENGE 17 

With 40 billion IoT devices expected to be connected worldwide by 2025, it is unrealistic to onboard or 18 

manage these devices by manually interacting with each device. In addition, providing local network 19 

credentials at the time of manufacture requires the manufacturer to customize network-layer 20 

onboarding on a build-to-order basis, which prevents the manufacturer from taking full advantage of the 21 

economies of scale that could result from building identical devices for its customers. 22 

There is a need to have a scalable, automated mechanism to securely manage IoT devices throughout 23 

their lifecycles and, in particular, a trusted mechanism for providing IoT devices with their network 24 

credentials and access policy at the time of deployment on the network. It is easy for a network to 25 

falsely identify itself, yet many IoT devices onboard to networks without verifying the network’s identity 26 

and ensuring that it is their intended target network. Also, many IoT devices lack user interfaces, making 27 

it cumbersome to manually input network credentials. Wi-Fi is sometimes used to provide credentials 28 

over an open (i.e., unencrypted) network, but this onboarding method risks credential disclosure. Most 29 

home networks use a single password shared among all devices, so access is controlled only by the 30 

device’s possession of the password and does not consider a unique device identity or whether the 31 

device belongs on the network. This method also increases the risk of exposing credentials to 32 

unauthorized parties. Providing unique credentials to each device is more secure, but providing unique 33 

credentials manually would be resource-intensive and error-prone, would risk credential disclosure, and 34 

cannot be performed at scale.  35 

Once a device is connected to the network, if it becomes compromised, it can pose a security risk to 36 

both the network and other connected devices. Not keeping such a device current with the most recent 37 

software and firmware updates may make it more susceptible to compromise. The device could also be 38 

attacked through receipt of malicious payloads. Once compromised, it may be used to attack other 39 

devices on the network.  40 

https://doi.org/10.6028/NIST.IR.8425
https://doi.org/10.6028/NIST.IR.8425


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

OUTCOME 41 

The outcome of this project is development of example trusted onboarding solutions, demonstration 42 

that they support various scenarios, and publication of the findings in this practice guide, a NIST Special 43 

Publication (SP) 1800 that is composed of multiple volumes targeting different audiences. 44 

This practice guide can help IoT device users: 

Understand how to onboard their IoT devices in a trusted manner to: 

▪ Ensure that their network is not put at risk as new IoT devices are added to it

▪ Safeguard their IoT devices from being taken over by unauthorized networks

▪ Provide IoT devices with unique credentials for network access

▪ Provide, renew, and replace device network credentials in a secure manner

▪ Support ongoing protection of IoT devices throughout their lifecycles

This practice guide can help manufacturers and vendors of semiconductors, secure 
storage components, IoT devices, and network onboarding equipment: 

Understand the desired security properties for supporting trusted network-layer 

onboarding and explore their options with respect to recommended practices for: 

▪ Providing unique credentials into secure storage on IoT devices at the time of

manufacture to mitigate supply chain risks (i.e., device credentials)

▪ Installing onboarding software onto IoT devices

▪ Providing IoT device purchasers with information needed to onboard the IoT

devices to their networks (i.e., device bootstrapping information)

▪ Integrating support for network-layer onboarding with additional security

capabilities to provide ongoing protection throughout the device lifecycle

SOLUTION 45 

The NCCoE recommends the use of trusted network-layer onboarding to provide scalable, automated, 46 

trusted ways to provide IoT devices with unique network credentials and manage devices throughout 47 

their lifecycles to ensure that they remain secure. The NCCoE is collaborating with technology providers 48 

and other stakeholders to implement example trusted network-layer onboarding solutions for IoT 49 

devices that: 50 

▪ provide each device with unique network credentials,51 

▪ enable the device and the network to mutually authenticate,52 

▪ send devices their credentials over an encrypted channel,53 

▪ do not provide any person with access to the credentials, and54 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

▪ can be performed repeatedly throughout the device lifecycle.  55 

The capabilities demonstrated include: 56 

▪ trusted network-layer onboarding of IoT devices, 57 

▪ repeated trusted network-layer onboarding of devices to the same or a different network, 58 

▪ trusted application-layer onboarding (i.e., automatic establishment of an encrypted connection 59 
between an IoT device and a trusted application service after the IoT device has performed 60 
trusted network-layer onboarding and used its credentials to connect to the network), and 61 

▪ software-based methods to provide device credentials in the factory and transfer device 62 
bootstrapping information from device manufacturer to device purchaser.  63 

Future capabilities may include demonstrating the integration of trusted network-layer onboarding with 64 

zero trust-inspired [Note: See NIST SP 800-207] mechanisms such as ongoing device authorization, 65 

renewal of device network credentials, device attestation to ensure that only trusted IoT devices are 66 

permitted to be onboarded, device lifecycle management, and enforcement of device communications 67 

intent. 68 

This demonstration follows an agile methodology of building implementations (i.e., builds) iteratively 69 

and incrementally, starting with network-layer onboarding and gradually integrating additional 70 

capabilities that improve device and network security throughout a managed device lifecycle. This 71 

includes factory builds that simulate activities performed to securely provide device credentials during 72 

the manufacturing process, and five network-layer onboarding builds that demonstrate the Wi-Fi Easy 73 

Connect, Bootstrapping Remote Secure Key Infrastructure (BRSKI), and Thread Commissioning protocols. 74 

These builds also demonstrate both streamlined and independent trusted application-layer onboarding 75 

approaches, along with policy-based continuous assurance and authorization. The example 76 

implementations use technologies and capabilities from our project collaborators (listed below).  77 

Collaborators 78 

Aruba, a Hewlett Packard 79 

Enterprise company 80 

CableLabs 81 

Cisco 82 

Foundries.io 83 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity 

Foundation (OCF)

Sandelman Software Works 

SEALSQ, a subsidiary of 

WISeKey 

Silicon Labs 

While the NCCoE uses a suite of commercial products, services, and proof-of-concept technologies to 84 

address this challenge, this guide does not endorse these particular products, services, and technologies, 85 

nor does it guarantee compliance with any regulatory initiatives. Your organization's information 86 

security experts should identify the products and services that will best integrate with your existing 87 

tools, IT and IoT system infrastructure, and operations. Your organization can adopt these solutions or 88 

one that adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring 89 

and implementing parts of a solution. 90 

https://csrc.nist.gov/pubs/sp/800/207/final
https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36A: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

HOW TO USE THIS GUIDE 91 

Depending on your role in your organization, you might use this guide in different ways: 92 

Business decision makers, such as chief information security, product security, and technology 93 

officers, can use this part of the guide, NIST SP 1800-36A: Executive Summary, to understand the 94 

project’s challenges and outcomes, as well as our solution approach. 95 

Technology, security, and privacy program managers who are concerned with how to identify, 96 

understand, assess, and mitigate risk can use NIST SP 1800-36B: Approach, Architecture, and Security 97 

Characteristics. This part of the guide describes the architecture and different implementations. Also, 98 

NIST SP 1800-36E: Risk and Compliance Management, maps components of the trusted onboarding 99 

reference architecture to security characteristics in broadly applicable, well-known cybersecurity 100 

guidelines and practices. 101 

IT professionals who want to implement an approach like this can make use of NIST SP 1800-36C: How-102 

To Guides. It provides product installation, configuration, and integration instructions for building 103 

example implementations, allowing them to be replicated in whole or in part. They can also use NIST SP 104 

1800-36D: Functional Demonstrations, which provides the use cases that have been defined to 105 

showcase trusted network-layer onboarding and lifecycle management security capabilities and the 106 

results of demonstrating these capabilities with each of the example implementations. These use cases 107 

may be helpful when developing requirements for systems being developed. 108 

SHARE YOUR FEEDBACK 109 

You can view or download the preliminary draft guide at https://www.nccoe.nist.gov/projects/building-110 

blocks/iot-network-layer-onboarding. NIST is adopting an agile process to publish this content. Each 111 

volume is being made available as soon as possible rather than delaying release until all volumes are 112 

completed. 113 

Help the NCCoE make this guide better by sharing your thoughts with us as you read the guide. As 114 

example implementations continue to be developed, you can adopt this solution for your own 115 

organization. If you do, please share your experience and advice with us. We recognize that technical 116 

solutions alone will not fully enable the benefits of our solution, so we encourage organizations to share 117 

lessons learned and recommended practices for transforming the processes associated with 118 

implementing this guide. 119 

To provide comments, join the community of interest, or learn more by arranging a demonstration of 120 

these example implementations, contact the NCCoE at iot-onboarding@nist.gov. 121 

122 

COLLABORATORS 123 

Collaborators participating in this project submitted their capabilities in response to an open call in the 124 

Federal Register for all sources of relevant security capabilities from academia and industry (vendors 125 

and integrators). Those respondents with relevant capabilities or product components signed a 126 

Cooperative Research and Development Agreement (CRADA) to collaborate with NIST in a consortium to 127 

build this example solution.  128 

https://www.nccoe.nist.gov/projects/building-blocks/iot-network-layer-onboarding
https://www.nccoe.nist.gov/projects/building-blocks/iot-network-layer-onboarding
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36A: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

Certain commercial entities, equipment, products, or materials may be identified by name or company 129 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 130 

experimental procedure or concept adequately. Such identification is not intended to imply special 131 

status or relationship with NIST or recommendation or endorsement by NIST or the NCCoE; neither is it 132 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 133 

for the purpose. 134 



NIST SPECIAL PUBLICATION 1800-36B 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and 
Network Security 
 
 

Volume B: 
Approach, Architecture, and Security Characteristics 
 
Michael Fagan 
Jeffrey Marron 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 
 

William Barker 
Dakota Consulting 
Silver Spring, Maryland 
 

Chelsea Deane 
Joshua Klosterman 
Charlie Rearick 
Blaine Mulugeta 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 
 

Dan Harkins 
Danny Jump 
Aruba, a Hewlett Packard Enterprise Company 
San Jose, California

Andy Dolan 
Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs 
Louisville, Colorado 
 

Peter Romness 
Cisco 
San Jose, California 
 

Tyler Baker 
David Griego 
Foundries.io 
London, United Kingdom 
 

Brecht Wyseur 
Kudelski IoT 
Cheseaux-sur-Lausanne, 
Switzerland 
 

Alexandru Mereacre 
Nick Allott 
Ashley Setter 
NquiringMinds 
Southampton, United Kingdom 
 

Julien Delplancke 
NXP Semiconductors 
Mougins, France 
 

Michael Richardson 
Sandelman Software Works 
Ontario, Canada 
 

Steve Clark 
SEALSQ, a subsidiary of WISeKey 
Geneva, Switzerland 
 

Mike Dow 
Steve Egerter 
Silicon Labs 
Austin, Texas 

 

 

May 2024 
 

DRAFT 

 
This publication is available free of charge from 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 

 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 

experimental procedure or concept adequately. Such identification is not intended to imply special 4 

status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 

for the purpose. 7 

National Institute of Standards and Technology Special Publication 1800-36B, Natl. Inst. Stand. Technol. 8 

Spec. Publ. 1800-36B, 114 pages, May 2024, CODEN: NSPUE2 9 

FEEDBACK 10 

You can improve this guide by contributing feedback regarding which aspects of it you find helpful as 11 

well as suggestions on how it might be improved. Should we provide guidance summaries that target 12 

specific audiences? What trusted IoT device onboarding protocols and related features are most 13 

important to you? Is there some content that is not included in this document that we should cover? Are 14 

we missing anything in terms of technologies or use cases? In what areas would it be most helpful for us 15 

to focus our future related efforts? For example, should we consider implementing builds that onboard 16 

devices supporting Matter and/or the Fast Identity Online (FIDO) Alliance application onboarding 17 

protocol? Should we implement builds that integrate security mechanisms such as lifecycle 18 

management, supply chain management, attestation, or behavioral analysis? As you review and adopt 19 

this solution for your own organization, we ask you and your colleagues to share your experience and 20 

advice with us. 21 

Comments on this publication may be submitted to: iot-onboarding@nist.gov. 22 

Public comment period: May 31, 2024 through July 30, 2024 23 

All comments are subject to release under the Freedom of Information Act. 24 

National Cybersecurity Center of Excellence 25 

National Institute of Standards and Technology 26 

100 Bureau Drive 27 

Mailstop 2002 28 

Gaithersburg, MD 20899 29 

Email: nccoe@nist.gov  30 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 31 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 32 

and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 33 

academic institutions work together to address businesses’ most pressing cybersecurity issues. This 34 

public-private partnership enables the creation of practical cybersecurity solutions for specific 35 

industries, as well as for broad, cross-sector technology challenges. Through consortia under 36 

Cooperative Research and Development Agreements (CRADAs), including technology partners—from 37 

Fortune 50 market leaders to smaller companies specializing in information technology security—the 38 

NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 39 

solutions using commercially available technology. The NCCoE documents these example solutions in 40 

the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 41 

and details the steps needed for another entity to re-create the example solution. The NCCoE was 42 

established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 43 

Maryland. 44 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 45 

https://www.nist.gov. 46 

NIST CYBERSECURITY PRACTICE GUIDES 47 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 48 

challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 49 

adoption of standards-based approaches to cybersecurity. They show members of the information 50 

security community how to implement example solutions that help them align with relevant standards 51 

and best practices, and provide users with the materials lists, configuration files, and other information 52 

they need to implement a similar approach. 53 

The documents in this series describe example implementations of cybersecurity practices that 54 

businesses and other organizations may voluntarily adopt. These documents do not describe regulations 55 

or mandatory practices, nor do they carry statutory authority. 56 

KEYWORDS 57 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 58 

(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 59 

ACKNOWLEDGMENTS 60 

We are grateful to the following individuals for their generous contributions of expertise and time. 61 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

Name Organization 

Eliot Lear Cisco 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT 

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors 

Mihai Chelalau NXP Semiconductors 

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor NXP Semiconductors 

Karen Scarfone Scarfone Cybersecurity 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 62 

response to a notice in the Federal Register. Respondents with relevant capabilities or product 63 

components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 64 

NIST, allowing them to participate in a consortium to build this example solution. We worked with: 65 

Technology Collaborators 66 

Aruba, a Hewlett Packard 67 

Enterprise company 68 

CableLabs 69 

Cisco 70 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

DOCUMENT CONVENTIONS 71 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 72 

publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 73 

among several possibilities, one is recommended as particularly suitable without mentioning or 74 

excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 75 

the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 76 

“may” and “need not” indicate a course of action permissible within the limits of the publication. The 77 

terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal.  78 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

CALL FOR PATENT CLAIMS 79 

This public review includes a call for information on essential patent claims (claims whose use would be 80 

required for compliance with the guidance or requirements in this Information Technology Laboratory 81 

(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 82 

or by reference to another publication. This call also includes disclosure, where known, of the existence 83 

of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 84 

unexpired U.S. or foreign patents. 85 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 86 

written or electronic form, either: 87 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 88 

currently intend holding any essential patent claim(s); or 89 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 90 

to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 91 

publication either: 92 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or 93 

2. without compensation and under reasonable terms and conditions that are demonstrably free of 94 

any unfair discrimination. 95 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 96 

behalf) will include in any documents transferring ownership of patents subject to the assurance, 97 

provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 98 

and that the transferee will similarly include appropriate provisions in the event of future transfers with 99 

the goal of binding each successor-in-interest. 100 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 101 

whether such provisions are included in the relevant transfer documents. 102 

Such statements should be addressed to: iot-onboarding@nist.gov. 103 

   

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 104 

1 Summary ............................................................................................. 1 105 

1.1 Challenge ....................................................................................................................... 1 106 

1.2 Solution.......................................................................................................................... 2 107 

1.3 Benefits .......................................................................................................................... 3 108 

2 How to Use This Guide ......................................................................... 3 109 

2.1 Typographic Conventions .............................................................................................. 5 110 

3 Approach ............................................................................................. 5 111 

3.1 Audience ........................................................................................................................ 7 112 

3.2 Scope ............................................................................................................................. 8 113 

3.3 Assumptions and Definitions......................................................................................... 8 114 

3.3.1 Credential Types ........................................................................................................... 8 115 

3.3.2 Integrating Security Enhancements ........................................................................... 10 116 

3.3.3 Device Limitations ...................................................................................................... 12 117 

3.3.4 Specifications Are Still Improving ............................................................................... 12 118 

3.4 Collaborators and Their Contributions ........................................................................ 12 119 

3.4.1 Aruba, a Hewlett Packard Enterprise Company ......................................................... 14 120 

3.4.2 CableLabs .................................................................................................................... 16 121 

3.4.3 Cisco ............................................................................................................................ 17 122 

3.4.4 Foundries.io ................................................................................................................ 17 123 

3.4.5 Kudelski IoT ................................................................................................................. 18 124 

3.4.6 NquiringMinds ............................................................................................................ 18 125 

3.4.7 NXP Semiconductors .................................................................................................. 20 126 

3.4.8 Open Connectivity Foundation (OCF) ......................................................................... 21 127 

3.4.9 Sandelman Software Works ....................................................................................... 21 128 

3.4.10 SEALSQ, a subsidiary of WISeKey ............................................................................... 22 129 

3.4.11 VaultIC408 .................................................................................................................. 23 130 

3.4.12 Silicon Labs.................................................................................................................. 23 131 

4 Reference Architecture ...................................................................... 25 132 

4.1 Device Manufacture and Factory Provisioning Process .............................................. 26 133 

4.2 Device Ownership and Bootstrapping Information Transfer Process ........................ 28 134 

4.3 Trusted Network-Layer Onboarding Process .............................................................. 31 135 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

4.4 Trusted Application-Layer Onboarding Process .......................................................... 32 136 

4.5 Continuous Verification ............................................................................................... 35 137 

5 Laboratory Physical Architecture ....................................................... 37 138 

5.1 Shared Environment .................................................................................................... 40 139 

5.1.1 Domain Controller ...................................................................................................... 40 140 

5.1.2 Jumpbox...................................................................................................................... 40 141 

5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture ................................. 41 142 

5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture ....................... 42 143 

5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture .......................... 43 144 

5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture ........................... 44 145 

5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture .............................. 46 146 

5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture ................................................ 47 147 

5.6.1 BRSKI Factory Provisioning Build Physical Architecture ............................................. 48 148 

6 General Findings ................................................................................ 49 149 

6.1 Wi-Fi Easy Connect ...................................................................................................... 49 150 

6.1.1 Mutual Authentication ............................................................................................... 50 151 

6.1.2 Mutual Authorization ................................................................................................. 50 152 

6.1.3 Secure Storage ............................................................................................................ 50 153 

6.2 BRSKI ............................................................................................................................ 50 154 

6.2.1 Reliance on the Device Manufacturer ........................................................................ 51 155 

6.2.2 Mutual Authentication ............................................................................................... 51 156 

6.2.3 Mutual Authorization ................................................................................................. 51 157 

6.2.4 Secure Storage ............................................................................................................ 51 158 

6.3 Thread.......................................................................................................................... 51 159 

6.4 Application-Layer Onboarding .................................................................................... 52 160 

6.4.1 Independent Application-Layer Onboarding .............................................................. 52 161 

6.4.2 Streamline Application-Layer Onboarding ................................................................. 52 162 

7 Additional Build Considerations ......................................................... 53 163 

7.1 Network Authentication .............................................................................................. 53 164 

7.2 Device Communications Intent ................................................................................... 53 165 

7.3 Network Segmentation ............................................................................................... 54 166 

7.4 Integration with a Lifecycle Management Service ...................................................... 54 167 

7.5 Network Credential Renewal ...................................................................................... 54 168 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ix 

7.6 Integration with Supply Chain Management Tools..................................................... 54 169 

7.7 Attestation ................................................................................................................... 54 170 

7.8 Mutual Attestation ...................................................................................................... 54 171 

7.9 Behavioral Analysis ...................................................................................................... 55 172 

7.10 Device Trustworthiness Scale ...................................................................................... 55 173 

7.11 Resource Constrained Systems ................................................................................... 55 174 

Appendix A List of Acronyms ................................................................. 56 175 

Appendix B Glossary .............................................................................. 59 176 

Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE) ............................. 60 177 

C.1 Technologies ................................................................................................................ 60 178 

C.2 Build 1 Architecture ..................................................................................................... 62 179 

C.2.1 Build 1 Logical Architecture ........................................................................................ 62 180 

C.2.2 Build 1 Physical Architecture ...................................................................................... 64 181 

Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) ...................... 65 182 

D.1 Technologies ................................................................................................................ 65 183 

D.2 Build 2 Architecture ..................................................................................................... 67 184 

D.2.1 Build 2 Logical Architecture ........................................................................................ 67 185 

D.2.2 Build 2 Physical Architecture ...................................................................................... 70 186 

Appendix E Build 3 (BRSKI, Sandelman Software Works) ....................... 71 187 

E.1 Technologies ................................................................................................................ 71 188 

E.2 Build 3 Architecture ..................................................................................................... 73 189 

E.2.1 Build 3 Logical Architecture ........................................................................................ 73 190 

E.2.2 Build 3 Physical Architecture ...................................................................................... 75 191 

Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski KeySTREAM) 76 192 

F.1 Technologies ................................................................................................................ 76 193 

F.2 Build 4 Architecture ..................................................................................................... 78 194 

F.2.1 Build 4 Logical Architecture ........................................................................................ 78 195 

F.2.2 Build 4 Physical Architecture ...................................................................................... 83 196 

Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds) .......................... 84 197 

G.1 Technologies ................................................................................................................ 84 198 

G.2 Build 5 Architecture ..................................................................................................... 86 199 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management x 

G.2.1 Build 5 Logical Architecture ........................................................................................ 86 200 

G.2.2 Build 5 Physical Architecture ...................................................................................... 89 201 

Appendix H Factory Provisioning Process ............................................... 90 202 

H.1 Factory Provisioning Process ....................................................................................... 90 203 

H.1.1 Device Birth Credential Provisioning Methods .......................................................... 90 204 

H.2 Factory Provisioning Builds – General Provisioning Process ....................................... 92 205 

H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ)................................ 93 206 

H.3.1 BRSKI Factory Provisioning Build Technologies .......................................................... 93 207 

H.3.2 BRSKI Factory Provisioning Build Logical Architectures ............................................. 95 208 

H.3.3 BRSKI Factory Provisioning Build Physical Architectures ........................................... 98 209 

H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and Aruba/HPE).................. 98 210 

H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies .................................... 98 211 

H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture ......................... 99 212 

H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture ..................... 100 213 

Appendix I References ........................................................................ 101 214 

 

List of Figures 215 

Figure 3-1 Aruba/HPE DPP Onboarding Components......................................................................... 16 216 

Figure 3-2 Components for Onboarding an IoT Device that Communicates Using Thread to AWS IoT .. 24 217 

Figure 4-1 Trusted IoT Device Network-Layer Onboarding and Lifecycle Management Logical  218 

Reference Architecture .................................................................................................................... 25 219 

Figure 4-2 IoT Device Manufacture and Factory Provisioning Process................................................. 27 220 

Figure 4-3 Device Ownership and Bootstrapping Information Transfer Process .................................. 29 221 

Figure 4-4 Trusted Network-Layer Onboarding Process ..................................................................... 31 222 

Figure 4-5 Trusted Streamlined Application-Layer Onboarding Process .............................................. 33 223 

Figure 4-6 Continuous Verification .................................................................................................... 35 224 

Figure 5-1 NCCoE IoT Onboarding Laboratory Physical Architecture ................................................... 38 225 

Figure 5-2 Physical Architecture of Build 1 ........................................................................................ 42 226 

Figure 5-3 Physical Architecture of Wi-Fi Easy Connect Factory Provisioning Build.............................. 43 227 

Figure 5-4 Physical Architecture of Build 2 ........................................................................................ 44 228 

Figure 5-5 Physical Architecture of Build 3 ........................................................................................ 45 229 

Figure 5-6 Physical Architecture of Build 4 ........................................................................................ 47 230 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management xi 

Figure 5-7 Physical Architecture of Build 5 ........................................................................................ 48 231 

Figure 5-8 Physical Architecture of BRSKI Factory Provisioning Build.................................................. 49 232 

Figure C-1 Logical Architecture of Build 1 .......................................................................................... 63 233 

Figure D-1 Logical Architecture of Build 2 .......................................................................................... 68 234 

Figure E-1 Logical Architecture of Build 3 .......................................................................................... 73 235 

Figure F-1 Logical Architecture of Build 4: Device Preparation ........................................................... 80 236 

Figure F-2 Logical Architecture of Build 4: Connection to the OpenThread Network ........................... 81 237 

Figure F-3 Logical Architecture of Build 4: Application-Layer Onboarding using the Kudelski 238 

keySTREAM Service .......................................................................................................................... 82 239 

Figure G-1 Logical Architecture of Build 5 .......................................................................................... 87 240 

Figure H-1 Logical Architecture of the First Version of the BRSKI Factory Provisioning Build ............... 97 241 

Figure H-2 Logical Architecture of the Second Version of the BRSKI Factory Provisioning Build ........... 98 242 

Figure H-3 Logical Architecture of the Wi-Fi Easy Connect Factory Provisioning Build ....................... 100 243 

List of Tables 244 

Table 3-1 Capabilities and Components Provided by Each Technology Partner/Collaborator .............. 13 245 

Table 5-1 Build 1 Products and Technologies ..................................................................................... 40 246 

Table C-1 Build 1 Products and Technologies..................................................................................... 60 247 

Table E-1 Build 3 Products and Technologies ..................................................................................... 71 248 

Table F-1 Build 4 Products and Technologies ..................................................................................... 76 249 

Table G-1 Build 5 Products and Technologies .................................................................................... 84 250 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Summary 251 

IoT devices are typically connected to a network. As with any other device needing to communicate on a 252 

network securely, an IoT device needs credentials that are specific to that network to help ensure that 253 

only authorized devices can connect to and use the network. A typical commercially available, mass-254 

produced IoT device cannot be pre-provisioned with local network credentials by the manufacturer 255 

during the manufacturing process. Instead, the local network credentials will be provisioned to the 256 

device at the time of its deployment. This practice guide is focused on trusted methods of providing IoT 257 

devices with the network-layer credentials and policy they need to join a network upon deployment, a 258 

process known as network-layer onboarding. 259 

Establishing trust between a network and an IoT device (as defined in NIST Internal Report 8425) prior to 260 

providing the device with the credentials it needs to join the network is crucial for mitigating the risk of 261 

potential attacks. There are two possibilities for attack. One is where a device is convinced to join an 262 

unauthorized network, which would take control of the device. The other is where a network is 263 

infiltrated by a malicious device. Trust is achieved by attesting and verifying the identity and posture of 264 

the device and the network before providing the device with its network credentials—a process known 265 

as network-layer onboarding. In addition, scalable, automated mechanisms are needed to safely manage 266 

IoT devices throughout their lifecycles, such as safeguards that verify the security posture of a device 267 

before the device is permitted to execute certain operations. 268 

In this practice guide, the National Cybersecurity Center of Excellence (NCCoE) applies standards, best 269 

practices, and commercially available technology to demonstrate various mechanisms for trusted 270 

network-layer onboarding of IoT devices. This guide shows how to provide network credentials to IoT 271 

devices in a trusted manner and maintain a secure device posture throughout the device lifecycle. 272 

1.1 Challenge 273 

With 40 billion IoT devices expected to be connected worldwide by 2025 [1], it is unrealistic to onboard 274 

or manage these devices by visiting each device and performing a manual action. While it is possible for 275 

devices to be securely provided with their local network credentials at the time of manufacture, this 276 

requires the manufacturer to customize network-layer onboarding on a build-to-order basis, which 277 

prevents the manufacturer from taking full advantage of the economies of scale that could result from 278 

building identical devices for all its customers. 279 

The industry lacks scalable, automatic mechanisms to safely manage IoT devices throughout their 280 

lifecycles and lacks a trusted mechanism for providing IoT devices with their network credentials and 281 

policy at the time of deployment on the network. It is easy for a network to falsely identify itself, yet 282 

many IoT devices onboard to networks without verifying the network’s identity and ensuring that it is 283 

their intended target network. Also, many IoT devices lack user interfaces, making it cumbersome to 284 

manually input network credentials. Wi-Fi is sometimes used to provide credentials over an open (i.e., 285 

unencrypted) network, but this onboarding method risks credential disclosure. Most home networks use 286 

a single password shared among all devices, so access is controlled only by the device’s possession of 287 

the password and does not consider a unique device identity or whether the device belongs on the 288 

network. This method also increases the risk of exposing credentials to unauthorized parties. Providing 289 

https://doi.org/10.6028/NIST.IR.8425


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

unique credentials to each device is more secure, but doing so manually would be resource-intensive 290 

and error-prone, would risk credential disclosure, and cannot be performed at scale. 291 

Once a device is connected to the network, if it becomes compromised, it can pose a security risk to 292 

both the network and other connected devices. Not keeping such a device current with the most recent 293 

software and firmware updates may make it more susceptible to compromise. The device could also be 294 

attacked through the receipt of malicious payloads. Once compromised, it may be used to attack other 295 

devices on the network. 296 

1.2 Solution 297 

We need scalable, automated, trusted mechanisms to safely manage IoT devices throughout their 298 

lifecycles to ensure that they remain secure, starting with secure ways to provision devices with their 299 

network credentials, i.e., beginning with network-layer onboarding. Onboarding is a particularly 300 

vulnerable point in the device lifecycle because if it is not performed in a secure manner, then both the 301 

device and the network are at risk. Networks are at risk of having unauthorized devices connect to them, 302 

and devices are at risk of being taken over by networks that are not authorized to onboard or control 303 

them. 304 

The NCCoE has adopted the trusted network-layer onboarding approach to promote automated, trusted 305 

ways to provide IoT devices with unique network credentials and manage devices throughout their 306 

lifecycles to ensure that they remain secure. The NCCoE is collaborating with CRADA consortium 307 

technology providers in a phased approach to develop example implementations of trusted network-308 

layer onboarding solutions. We define a trusted network-layer onboarding solution to be a mechanism 309 

for provisioning network credentials to a device that: 310 

▪ provides each device with unique network credentials, 311 

▪ enables the device and the network to mutually authenticate, 312 

▪ sends devices their network credentials over an encrypted channel, 313 

▪ does not provide any person with access to the network credentials, and 314 

▪ can be performed repeatedly throughout the device lifecycle to enable: 315 

• the device’s network credentials to be securely managed and replaced as needed, and 316 

• the device to be securely onboarded to other networks after being repurposed or resold. 317 

The use cases designed to be demonstrated by this project’s implementations include: 318 

▪ trusted network-layer onboarding of IoT devices 319 

▪ repeated trusted network-layer onboarding of devices to the same or a different network 320 

▪ automatic establishment of an encrypted connection between an IoT device and a trusted 321 
application service (i.e., trusted application-layer onboarding) after the IoT device has 322 
performed trusted network-layer onboarding and used its credentials to connect to the network 323 

▪ policy-based ongoing device authorization 324 

▪ software-based methods to provision device birth credentials in the factory  325 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

▪ mechanisms for IoT device manufacturers to provide IoT device purchasers with information 326 
needed to onboard the IoT devices to their networks (i.e., device bootstrapping information) 327 

1.3 Benefits 328 

This practice guide can benefit both IoT device users and IoT device manufacturers. The guide can help 329 

IoT device users understand how to onboard IoT devices to their networks in a trusted manner to: 330 

▪ Ensure that their network is not put at risk as IoT devices are added to it 331 

▪ Safeguard their IoT devices from being taken over by unauthorized networks 332 

▪ Provide IoT devices with unique credentials for network access 333 

▪ Provide, renew, and replace device network credentials in a secure manner 334 

▪ Ensure that IoT devices can automatically and securely perform application-layer onboarding 335 
after performing trusted network-layer onboarding and connecting to a network 336 

▪ Support ongoing protection of IoT devices throughout their lifecycles 337 

This guide can help IoT device manufacturers, as well as manufacturers and vendors of semiconductors, 338 

secure storage components, and network onboarding equipment, understand the desired security 339 

properties for supporting trusted network-layer onboarding and demonstrate mechanisms for: 340 

▪ Placing unique credentials into secure storage on IoT devices at time of manufacture (i.e., device 341 
birth credentials) 342 

▪ Installing onboarding software onto IoT devices 343 

▪ Providing IoT device purchasers with information needed to onboard the IoT devices to their 344 
networks (i.e., device bootstrapping information) 345 

▪ Integrating support for network-layer onboarding with additional security capabilities to provide 346 
ongoing protection throughout the device lifecycle 347 

2 How to Use This Guide 348 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 349 

implementing trusted IoT device network-layer onboarding and lifecycle management and describes 350 

various example implementations of this reference design. Each of these implementations, which are 351 

known as builds, is standards-based and is designed to help provide assurance that networks are not put 352 

at risk as new IoT devices are added to them and help safeguard IoT devices from connecting to 353 

unauthorized networks. The reference design described in this practice guide is modular and can be 354 

deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 355 

onboarding and lifecycle management into their legacy environments according to goals that they have 356 

prioritized based on risk, cost, and resources. 357 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 358 

possible rather than delaying release until all volumes are completed. 359 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

This guide contains five volumes: 360 

▪ NIST Special Publication (SP) 1800-36A: Executive Summary – why we wrote this guide, the 361 
challenge we address, why it could be important to your organization, and our approach to 362 
solving this challenge 363 

▪ NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 364 
(you are here) 365 

▪ NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 366 
including all the security-relevant details that would allow you to replicate all or parts of this 367 
project 368 

▪ NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 369 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 370 
and the results of demonstrating these use cases with each of the example implementations 371 

▪ NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 372 
device network-layer onboarding and lifecycle management security characteristics to 373 
cybersecurity standards and recommended practices 374 

Depending on your role in your organization, you might use this guide in different ways: 375 

Business decision makers, including chief security and technology officers, will be interested in the 376 

Executive Summary, NIST SP 1800-36A, which describes the following topics: 377 

▪ challenges that enterprises face in migrating to the use of trusted IoT device network-layer 378 
onboarding 379 

▪ example solutions built at the NCCoE 380 

▪ benefits of adopting the example solution 381 

Technology or security program managers who are concerned with how to identify, understand, assess, 382 

and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 383 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 384 

components of the general trusted IoT device network-layer onboarding and lifecycle management 385 

reference design to security characteristics listed in various cybersecurity standards and recommended 386 

practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 387 

Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 388 

(NIST SP 800-53). 389 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 390 

them understand the importance of using standards-based implementations for trusted IoT device 391 

network-layer onboarding and lifecycle management. 392 

IT professionals who want to implement similar solutions will find all volumes of the practice guide 393 

useful. You can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the 394 

builds created in our lab. The how-to portion of the guide provides specific product installation, 395 

configuration, and integration instructions for implementing the example solution. We do not re-create 396 

the product manufacturers’ documentation, which is generally widely available. Rather, we show how 397 

we incorporated the products together in our environment to create an example solution. Also, you can 398 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

use Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined 399 

to showcase trusted IoT device network-layer onboarding and lifecycle management security 400 

capabilities and the results of demonstrating these use cases with each of the example 401 

implementations. Finally, NIST SP 1800-36E will be helpful in explaining the security functionality that 402 

the components of each build provide. 403 

This guide assumes that IT professionals have experience implementing security products within the 404 

enterprise. While we have used a suite of commercial products to address this challenge, this guide does 405 

not endorse these particular products. Your organization can adopt this solution or one that adheres to 406 

these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 407 

parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 408 

organization’s security experts should identify the products that will best integrate with your existing 409 

tools and IT system infrastructure. We hope that you will seek products that are congruent with 410 

applicable standards and recommended practices. 411 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 412 

feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 413 

stories will improve subsequent versions of this guide. Please contribute your thoughts to  414 

iot-onboarding@nist.gov. 415 

2.1 Typographic Conventions 416 

The following table presents typographic conventions used in this volume. 417 

Typeface/Symbol Meaning Example 

Italics file names and path names; 
references to documents that are 
not hyperlinks; new terms; and 
placeholders 

For language use and style guidance, see 
the NCCoE Style Guide. 

Bold names of menus, options, command 
buttons, and fields 

Choose File > Edit. 

Monospace command-line input, onscreen 
computer output, sample code 
examples, and status codes 

mkdir 

Monospace Bold command-line user input contrasted 
with computer output 

service sshd start 

blue text link to other parts of the document, 
a web URL, or an email address 

All publications from NIST’s NCCoE are 
available at https://www.nccoe.nist.gov. 

3 Approach 418 

This project builds on the document-based research presented in the NIST Draft Cybersecurity White 419 

Paper, Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management [2]. 420 

That paper describes key security and other characteristics of a trusted network-layer onboarding 421 

solution as well as the integration of onboarding with related technologies such as device attestation, 422 

device communications intent [3][4], and application-layer onboarding. The security and other 423 

mailto:iot-onboarding@nist.gov
https://www.nccoe.nist.gov/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

attributes of the onboarding process that are cataloged and defined in that paper can provide assurance 424 

that the network is not put at risk as new IoT devices are added to it and also that IoT devices are 425 

safeguarded from being taken over by unauthorized networks. 426 

To kick off this project, the NCCoE published a Federal Register Notice [5] inviting technology providers 427 

to participate in demonstrating approaches to deploying trusted IoT device network-layer onboarding 428 

and lifecycle management in home and enterprise networks, with the objective of showing how trusted 429 

IoT device network-layer onboarding can practically and effectively enhance the overall security of IoT 430 

devices and, by extension, the security of the networks to which they connect. The Federal Register 431 

Notice invited technology providers to provide products and/or expertise to compose prototypes. 432 

Components sought included network onboarding components and IoT devices that support trusted 433 

network-layer onboarding protocols; authorization services; supply chain integration services; access 434 

points, routers, or switches; components that support device communications intent management; 435 

attestation services; controllers or application services; IoT device lifecycle management services; and 436 

asset management services. Cooperative Research and Development Agreements (CRADAs) were 437 

established with qualified respondents, and teams of collaborators were assembled to build a variety of 438 

implementations. 439 

NIST is following an agile methodology of building implementations iteratively and incrementally, 440 

starting with network-layer onboarding and gradually integrating additional capabilities that improve 441 

device and network security throughout a managed device lifecycle. The project team began by 442 

designing a general, protocol-agnostic reference architecture for trusted network-layer onboarding (see 443 

Section 4) and establishing a laboratory infrastructure at the NCCoE to host implementations (see 444 

Section 5). 445 

Five build teams were established to implement trusted network-layer onboarding prototypes, and a 446 

sixth build team was established to demonstrate multiple builds for factory provisioning activities 447 

performed by an IoT device manufacturer to enable devices to support trusted network-layer 448 

onboarding. Each of the build teams fleshed out the initial architectures of their example 449 

implementations. They then used technologies, capabilities, and components from project collaborators 450 

to begin creating the builds: 451 

▪ Build 1 (Wi-Fi Easy Connect, Aruba/HPE) uses components from Aruba, a Hewlett Packard 452 
Enterprise company, to support trusted network-layer onboarding using the Wi-Fi Alliance’s Wi-453 
Fi Easy Connect Specification, Version 2.0 [6] and independent (see Section 3.3.2) application-454 
layer onboarding to the Aruba User Experience Insight (UXI) cloud. 455 

▪ Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) uses components from CableLabs to support 456 
trusted network-layer onboarding using the Wi-Fi Easy Connect protocol that allows 457 
provisioning of per-device credentials and policy management for each device. Build 2 also uses 458 
components from the Open Connectivity Foundation (OCF) to support streamlined (see Section 459 
3.3.2) trusted application-layer onboarding to the OCF security domain. 460 

▪ Build 3 (BRSKI, Sandelman Software Works) uses components from Sandelman Software Works 461 
to support trusted network-layer onboarding using the Bootstrapping Remote Secure Key 462 
Infrastructure (BRSKI) [7] protocol and an independent, third-party Manufacturer Authorized 463 
Signing Authority (MASA). 464 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

▪ Build 4 (Thread [8], Silicon Labs, Kudelski IoT) uses components from Silicon Labs to support 465 
connection to an OpenThread [9] network using pre-shared credentials and components from 466 
Kudelski IoT to support trusted application-layer onboarding to the Amazon Web Services (AWS) 467 
IoT core. 468 

▪ Build 5 (BRSKI over Wi-Fi, NquiringMinds) uses components from NquiringMinds to support 469 
trusted network-layer onboarding using the BRSKI protocol over 802.11 [10]. Additional 470 
components from NquiringMinds support ongoing, policy-based, continuous assurance and 471 
authorization, as well as device communications intent enforcement. 472 

▪ The BRSKI Factory Provisioning Build uses components from NquiringMinds to implement the 473 
factory provisioning flows. The build is implemented on Raspberry Pi devices, where the IoT 474 
secure element is an integrated Infineon Optiga™ SLB 9670 TPM 2.0. The device certificate 475 
authority (CA) is externally hosted on NquiringMinds servers. This build demonstrates activities 476 
for provisioning IoT devices with their initial (i.e., birth—see Section 3.3) credentials for use with 477 
the BRSKI protocol and for making device bootstrapping information available to device owners. 478 

▪ The Wi-Fi Easy Connect Factory Provisioning Build uses Raspberry Pi devices and code from 479 
Aruba and secure storage elements, code, and a CA from SEALSQ, a subsidiary of WISeKey. This 480 
build demonstrates activities for provisioning IoT devices with their birth credentials for use with 481 
the Wi-Fi Easy Connect protocol and for making device bootstrapping information available to 482 
device owners. 483 

Each build team documented the architecture and design of its build (see Appendix C, Appendix D, 484 

Appendix E, Appendix F, Appendix G, and Appendix H). As each build progressed, its team also 485 

documented the steps taken to install and configure each component of the build (see NIST SP 1800-486 

36C). 487 

The project team then designed a set of use case scenarios designed to showcase the builds’ security 488 

capabilities. Each build team conducted a functional demonstration of its build by running the build 489 

through the defined scenarios and documenting the results (see NIST SP 1800-36D). 490 

The project team also conducted a risk assessment and a security characteristic analysis and 491 

documented the results, including mappings of the security capabilities of the reference solution to both 492 

the Framework for Improving Critical Infrastructure Cybersecurity (NIST Cybersecurity Framework) [11] 493 

and Security and Privacy Controls for Information Systems and Organizations (NIST SP 800-53 Rev. 5) 494 

(see NIST SP 1800-36E). 495 

Finally, the NCCoE worked with industry and standards-developing organization collaborators to distill 496 

their findings and consider potential enhancements to future support for trusted IoT device network-497 

layer onboarding (see Section 6 and Section 7). 498 

3.1 Audience 499 

The intended audience for this practice guide includes: 500 

▪ IoT device manufacturers, integrators, and vendors 501 

▪ Semiconductor manufacturers and vendors 502 

▪ Secure storage manufacturers 503 

https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

▪ Network equipment manufacturers 504 

▪ IoT device owners and users 505 

▪ Owners and administrators of networks (both home and enterprise) to which IoT devices 506 
connect 507 

▪ Service providers (internet service providers/cable operators and application platform 508 
providers) 509 

3.2 Scope 510 

This project focuses on the trusted network-layer onboarding of IoT devices in both home and 511 

enterprise environments. Enterprise, consumer, and industrial use cases for trusted IoT device network-512 

layer onboarding are all considered to be in scope at this time. The project encompasses trusted 513 

network-layer onboarding of IoT devices deployed across different Internet Protocol (IP) based 514 

environments using wired, Wi-Fi, and broadband networking technologies. The project addresses the 515 

onboarding of IP-based devices in the initial phase and will consider using technologies such as Zigbee or 516 

Bluetooth in future phases of this project. 517 

The project’s scope also includes security technologies that can be integrated with and enhanced by the 518 

trusted network-layer onboarding mechanism to protect the device and its network throughout the 519 

device’s lifecycle. Examples of these technologies include supply chain management, device attestation, 520 

trusted application-layer onboarding, device communications intent enforcement, device lifecycle 521 

management, asset management, the dynamic assignment of devices to various network segments, and 522 

ongoing device authorization. Aspects of these technologies that are relevant to their integration with 523 

network-layer onboarding are within scope. Demonstration of the general capabilities of these 524 

technologies independent of onboarding is not within the project’s scope. For example, demonstrating a 525 

policy that requires device attestation to be performed before the device will be permitted to be 526 

onboarded would be within scope. However, the details and general operation of the device attestation 527 

mechanism would be out of scope. 528 

3.3 Assumptions and Definitions 529 

This project is guided by a variety of assumptions, which are categorized by subsection below. 530 

3.3.1 Credential Types 531 

There are several different credentials that may be related to any given IoT device, which makes it 532 

important to be clear about which credential is being referred to. Two types of IoT device credentials are 533 

involved in the network-layer onboarding process: birth credentials and network credentials. Birth 534 

credentials are installed onto the device before it is released into the supply chain; trusted network-535 

layer onboarding solutions leverage birth credentials to authenticate devices and securely provision 536 

them with their network credentials. If supported by the device and the application service provider, 537 

application-layer credentials may be provisioned to the device after the device performs network-layer 538 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

onboarding and connects to the network, during the application-layer onboarding process. These 539 

different types of IoT device credentials are defined as follows: 540 

▪ Birth Credential: In order to participate in trusted network-layer onboarding, devices must be 541 
equipped with a birth credential, which is sometimes also referred to as a device birth identity 542 
or birth certificate. A birth credential is a unique, authoritative credential that is generated or 543 
installed into secure storage on the IoT device during the pre-market phase of the device’s 544 
lifecycle, i.e., before the device is released for sale. A manufacturer, integrator, or vendor 545 
typically generates or installs the birth credential onto an IoT device in the form of an Initial 546 
Device Identifier (IDevID) [12] and/or a public/private key pair. 547 

Birth credentials: 548 

• are permanent, and their value is independent of context; 549 

• enable the trusted network-layer onboarding process while keeping the device 550 
manufacturing process efficient; and 551 

• include a unique identity and a secret and can range from simple raw public and private 552 
keys to X.509 certificates that are signed by a trusted authority. 553 

▪ Network Credential: A network credential is the credential that is provisioned to an IoT device 554 
during network-layer onboarding. The network credential enables the device to connect to the 555 
local network securely. A device’s network credential may be changed repeatedly, as needed, by 556 
subsequent invocation of the trusted network-layer onboarding process. 557 

Additional types of credentials that may also be associated with an IoT device are: 558 

▪ Application-Layer Credential: An application-layer credential is a credential that is provisioned 559 
to an IoT device during application-layer onboarding. After an IoT device has performed 560 
network-layer onboarding and connected to a network, it may be provisioned with one or more 561 
application-layer credentials during the application-layer onboarding process. Each application-562 
layer credential is specific to a given application and is typically unique to the device, and it may 563 
be replaced repeatedly over the course of the device’s lifetime. 564 

▪ User Credential: An IoT device that permits authorized users to access it and restricts access 565 
only to authorized users will have one or more user credentials associated with it. These 566 
credentials are what the users present to the IoT device in order to gain access to it. The user 567 
credential is not relevant during network-layer onboarding and is generally not of interest within 568 
the scope of this project. We include it in this list only for completeness. Many IoT devices may 569 
not even have user credentials associated with them. 570 

In order to perform network- and application-layer onboarding, the device being onboarded must 571 

already have been provisioned with birth credentials. A pre-provisioned, unique, authoritative birth 572 

credential is essential for enabling the IoT device to be identified and authenticated as part of the 573 

trusted network-layer onboarding process, no matter what network the device is being onboarded to or 574 

how many times it is onboarded. The value of the birth credential is independent of context, whereas 575 

the network credential that is provisioned during network-layer onboarding is significant only with 576 

respect to the network to which the IoT device will connect. Each application-layer credential that is 577 

provisioned during application-layer onboarding is specific to a given application, and each user 578 

credential is specific to a given user. A given IoT device only ever has one birth credential over the 579 

course of its lifetime, and the value of this birth credential remains unchanged. However, that IoT device 580 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

may have any number of network, application-layer, and user credentials at any given point in time, and 581 

these credentials may be replaced repeatedly over the course of the device’s lifetime. 582 

3.3.2 Integrating Security Enhancements 583 

Integrating trusted network-layer IoT device onboarding with additional security mechanisms and 584 

technologies can help increase trust in both the IoT device and the network to which it connects. 585 

Examples of such security mechanism integrations demonstrated in this project include: 586 

▪ Trusted Application-Layer Onboarding: When supported, application-layer onboarding can be 587 
performed automatically after a device has connected to its local network. Trusted application-588 
layer onboarding enables a device to be securely provisioned with the application-layer 589 
credentials it needs to establish a secure association with a trusted application service. In many 590 
cases, a network’s IoT devices will be so numerous that manually onboarding devices at the 591 
application layer would not be practical; in addition, dependence on manual application-layer 592 
onboarding would leave the devices vulnerable to accidental or malicious misconfiguration. So, 593 
application-layer onboarding, like network-layer onboarding, is fundamental to ensuring the 594 
overall security posture of each IoT device. 595 

As part of the application-layer onboarding process, devices and the application services with 596 
which they interact perform mutual authentication and establish an encrypted channel over 597 
which the application service can download application-layer credentials and software to the 598 
device and the device can provide information to the application service, as appropriate. 599 
Application-layer onboarding is useful for ensuring that IoT devices are executing the most up-600 
to-date versions of their intended applications. It can also be used to establish a secure 601 
association between a device and a trusted lifecycle management service, which will ensure that 602 
the IoT device continues to be patched and updated with the latest firmware and software, 603 
thereby enabling the device to remain trusted throughout its lifecycle. 604 

Network-layer onboarding cannot be performed until after network-layer bootstrapping 605 
information has been introduced to the device and the network. This network-layer 606 
bootstrapping information enables the device and the network to mutually authenticate and 607 
establish a secure channel. Analogously, application-layer onboarding cannot be performed until 608 
after application-layer bootstrapping information has been introduced to the device and the 609 
application servers with which they will onboard. This application-layer bootstrapping 610 
information enables the device and the application server to mutually authenticate and 611 
establish a secure channel. 612 

• Streamlined Application-Layer Onboarding—One potential mechanism for introducing this 613 
application-layer bootstrapping information to the device and the application server is to 614 
use the network-layer onboarding process. The secure channel that is established during 615 
network-layer onboarding can serve as the mechanism for exchanging application-layer 616 
bootstrapping information between the device and the application server. By safeguarding 617 
the integrity and confidentiality of the application-layer bootstrapping information as it is 618 
conveyed between the device and the application server, the trusted network-layer 619 
onboarding mechanism helps to ensure that information that the device and the 620 
application server use to authenticate each other is truly secret and known only to them, 621 
thereby establishing a firm foundation for their secure association. In this way, trusted 622 
network-layer onboarding can provide a secure foundation for trusted application-layer 623 
onboarding. We call an application-layer onboarding process that uses network-layer 624 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

onboarding to exchange application-layer bootstrapping information streamlined 625 
application-layer onboarding. 626 

• Independent Application-Layer Onboarding—An alternative mechanism for introducing 627 
application-layer bootstrapping information to the device is to provide this information to 628 
the device during the manufacturing process. During manufacturing, the IoT device can be 629 
provisioned with software and associated bootstrapping information that enables the 630 
device to mutually authenticate with an application-layer service after it has connected to 631 
the network. This mechanism for performing application-layer onboarding does not rely on 632 
the network-layer onboarding process to provide application-layer bootstrapping 633 
information to the device. All that is required is that the device have connectivity to the 634 
application-layer onboarding service after it has connected to the network. We call an 635 
application-layer onboarding process that does not rely on network-layer onboarding to 636 
exchange application-layer bootstrapping information independent application-layer 637 
onboarding. 638 

▪ Segmentation: Upon connection to the network, a device may be assigned to a particular local 639 
network segment to prevent it from communicating with other network components, as 640 
determined by enterprise policy. The device can be protected from other local network 641 
components that meet or do not meet certain policy criteria. Similarly, other local network 642 
components may be protected from the device if it meets or fails to meet certain policy criteria. 643 
A trusted network-layer onboarding mechanism may be used to convey information about the 644 
device that can be used to determine to which network segment it should be assigned upon 645 
connection. By conveying this information in a manner that protects its integrity and 646 
confidentiality, the trusted network-layer onboarding mechanism helps to increase assurance 647 
that the device will be assigned to the appropriate network segment. Post-onboarding, if a 648 
device becomes untrustworthy, for example because it is found to have software that has a 649 
known vulnerability or misconfiguration, or because it is behaving in a suspicious manner, the 650 
device may be dynamically assigned to a different network segment as a means of quarantining 651 
it, or its network-layer credential can be revoked or deleted. 652 

▪ Ongoing Device Authorization: Once a device has been network-layer onboarded in a trusted 653 
manner and has possibly performed application-layer onboarding as well, it is important that as 654 
the device continues to operate on the network, it maintains a secure posture throughout its 655 
lifecycle. Ensuring the ongoing security of the device is important for keeping the device from 656 
being corrupted and for protecting the network from a potentially harmful device. Even though 657 
a device is authenticated and authorized prior to being onboarded, it is recommended that the 658 
device be subject to ongoing policy-based authentication and authorization as it continues to 659 
operate on the network. This may include monitoring device behavior and constraining 660 
communications to and from the device as needed in accordance with policy. In this manner, an 661 
ongoing device authorization service can ensure that the device and its operations continue to 662 
be authorized throughout the device’s tenure on the network. 663 

▪ Device Communications Intent Enforcement: Network-layer onboarding protocols can be used 664 
to securely transmit device communications intent information from the device to the network 665 
(i.e., to transmit this information in encrypted form with integrity protections). After the device 666 
has securely connected to the network, the network can use this device communications intent 667 
information to ensure that the device sends and receives traffic only from authorized locations. 668 
Secure conveyance of device communications intent information, combined with enforcement 669 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

of it, ensures that IoT devices are constrained to sending and receiving only those 670 
communications that are explicitly required for each device to fulfill its purpose. 671 

▪ Additional Security Mechanisms: Although not demonstrated in the implementations that have 672 
been built in this project so far, numerous additional security mechanisms can potentially be 673 
integrated with network-layer onboarding, beginning at device boot-up and extending through 674 
all phases of the device lifecycle. Examples of such mechanisms include integration with supply 675 
chain management tools, device attestation, automated lifecycle management, mutual 676 
attestation, and centralized asset management. Overall, application of these and other security 677 
protections can create a dependency chain of protections. This chain is based on a hardware 678 
root of trust as its foundation and extends up to support the security of the trusted network-679 
layer onboarding process. The trusted network-layer onboarding process in turn may enable 680 
additional capabilities and provide a foundation that makes them more secure, thereby helping 681 
to ensure the ongoing security of the device and, by extension, the network. 682 

3.3.3 Device Limitations 683 

The security capabilities that any onboarding solution will be able to support will depend in part on the 684 

hardware, processing power, cryptographic modules, secure storage capacity, battery life, human 685 

interface (if any), and other capabilities of the IoT devices themselves, such as whether they support 686 

verification of firmware at boot time, attestation, application-layer onboarding, and device 687 

communications intent enforcement; what onboarding and other protocols they support; and whether 688 

they are supported by supply-chain tools. The more capable the device, the more security capabilities it 689 

should be able to support and the more robustly it should be able to support them. Depending on both 690 

device and onboarding solution capabilities, different levels of assurance may be provided. 691 

3.3.4 Specifications Are Still Improving 692 

Ideally, trusted network-layer onboarding solutions selected for widespread implementation and use 693 

will be openly available and standards-based. Some potential solution specifications are still being 694 

improved. In the meantime, their instability may be a limiting factor in deploying operational 695 

implementations of the proposed capabilities. For example, the details of running BRSKI over Wi-Fi are 696 

not fully specified at this time. 697 

3.4 Collaborators and Their Contributions 698 

Organizations participating in this project submitted their capabilities in response to an open call in the 699 

Federal Register for all sources of relevant security capabilities from academia and industry (vendors 700 

and integrators). Listed below are the respondents with relevant capabilities or product components 701 

(identified as “Technology Partners/Collaborators” herein) who signed a CRADA to collaborate with NIST 702 

in a consortium to build example trusted IoT device network-layer onboarding solution. 703 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Technology Collaborators 704 

Aruba, a Hewlett Packard 705 

Enterprise company 706 

CableLabs 707 

Cisco 708 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Table 3-1 summarizes the capabilities and components provided, or planned to be provided, by each 709 

partner/collaborator. 710 

Table 3-1 Capabilities and Components Provided by Each Technology Partner/Collaborator  711 

Collaborator Security Capability or Component Provided 

Aruba Infrastructure for trusted network-layer onboarding using the Wi-Fi Easy 
Connect protocol and application-layer onboarding to the UXI cloud. IoT devices 
for use with both Wi-Fi Easy Connect network-layer onboarding and application-
layer onboarding. The UXI Dashboard provides for an “always-on” remote 
technician with near real-time data insights into network and application 
performance. 

CableLabs Infrastructure for trusted network-layer onboarding using the Wi-Fi Easy 
Connect protocol. IoT devices for use with both Wi-Fi Easy Connect network-
layer onboarding and application-layer onboarding to the OCF security domain. 

Cisco Networking components to support various builds. 

Foundries.io Factory software for providing birth credentials into secure storage on IoT 
devices and for transferring device bootstrapping information from device 
manufacturer to device purchaser. 

Kudelski IoT Infrastructure for trusted application-layer onboarding of a device to the AWS 
IoT core. The service comes with a cloud platform and a software agent that 
enables secure provisioning of AWS credentials into the secure storage of IoT 
devices. 

NquiringMinds Infrastructure for trusted network-layer onboarding using BRSKI over 802.11. 
Service that performs ongoing monitoring of connected devices to ensure their 
continued authorization (i.e., continuous authorization service), as well as 
device communications intent enforcement. 

NXP 
Semiconductors 

IoT devices with secure storage for use with both Wi-Fi Easy Connect and BRSKI 
network-layer onboarding. Service for provisioning credentials into secure 
storage of IoT devices. 

Open Connectivity 
Foundation (OCF) 

Infrastructure for trusted application-layer onboarding to the OCF security 
domain using IoTivity, an open-source software framework that implements the 
OCF specification. 

Sandelman 
Software Works 

Infrastructure for trusted network-layer onboarding using BRSKI. IoT devices for 
use with BRSKI network-layer onboarding. 

SEALSQ, a 
subsidiary of 
WISeKey 

Secure storage elements, code, and software that simulates factory provisioning 
of birth credentials to those secure elements on IoT devices in support of both 
Wi-Fi Easy Connect and BRSKI network-layer onboarding; certificate authority 
for signing device certificates. 

Silicon Labs Infrastructure for connection to a Thread network that has access to other 
networks for application-layer onboarding. IoT device with secure storage for 
use with Thread network connection and application-layer onboarding using 
Kudelski IoT. 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Each of these technology partners and collaborators has described the relevant products and 712 

capabilities it brings to this trusted onboarding effort in the following subsections. The NCCoE does not 713 

certify or validate products or services. We demonstrate the capabilities that can be achieved by using 714 

participants’ contributed technology. 715 

3.4.1 Aruba, a Hewlett Packard Enterprise Company 716 

Aruba, a Hewlett Packard Enterprise (HPE) company, provides secure, intelligent edge-to-cloud 717 

networking solutions that use artificial intelligence (AI) to automate the network, while harnessing data 718 

to drive powerful business outcomes. With Aruba ESP (Edge Services Platform) and as-a-service options 719 

as part of the HPE GreenLake family, Aruba takes a cloud-native approach to helping customers meet 720 

their connectivity, security, and financial requirements across campus, branch, data center, and remote 721 

worker environments, covering all aspects of wired, wireless local area networking (LAN), and wide area 722 

networking (WAN). Aruba ESP provides unified solutions for connectivity, visibility, and control 723 

throughout the IT-IoT workflow, with the objective of helping organizations accelerate IoT-driven digital 724 

transformation with greater ease, efficiency, and security. To learn more, visit Aruba at 725 

https://www.arubanetworks.com/. 726 

3.4.1.1 Device Provisioning Protocol 727 

Device Provisioning Protocol (DPP), certified under the Wi-Fi Alliance (WFA) as “Easy Connect,” is a 728 

standard developed by Aruba that allows IoT devices to be easily provisioned onto a secure network. 729 

DPP improves security by leveraging Wi-Fi Protected Access 3 (WPA3) to provide device-specific 730 

credentials, enhance certificate handling, and support robust, secure, and scalable provisioning of IoT 731 

devices in any commercial, industrial, government, or consumer application. Aruba implements DPP 732 

through a combination of on-premises hardware and cloud-based services as shown in Table 3-1. 733 

3.4.1.2 Aruba Access Point (AP) 734 

From their unique vantage as ceiling furniture, Aruba Wi-Fi 6 APs have an unobstructed overhead view 735 

of all nearby devices. Built-in Bluetooth Low Energy (BLE) and Zigbee 802.15.4 IoT radios, as well as a 736 

flexible USB port, provide IoT device connectivity that allows organizations to address a broad range of 737 

IoT applications with infrastructure already in place, eliminating the cost of gateways and IoT overlay 738 

networks while enhancing IoT security. 739 

Aruba’s APs enable a DPP network through an existing Service Set Identifier (SSID) enforcing DPP access 740 

control and advertising the Configurator Connectivity Information Element (IE) to attract unprovisioned 741 

clients (i.e., clients that have not yet been onboarded). Paired with Aruba’s cloud management service 742 

“Central”, the APs implement the DPP protocol. The AP performs the DPP network introduction protocol 743 

(Connector exchange) with provisioned clients and assigns network roles. 744 

3.4.1.3 Aruba Central 745 

Aruba Central is a cloud-based networking solution with AI-powered insights, workflow automation, and 746 

edge-to-cloud security that empowers IT teams to manage and optimize campus, branch, remote, data 747 

center, and IoT networks from a single point of visibility and control. Built on a cloud-native, 748 

microservices architecture, Aruba Central is designed to simplify IT and IoT operations, improve agility, 749 

and reduce costs by unifying management of all network infrastructure. 750 

https://www.arubanetworks.com/
https://www.arubanetworks.com/assets/so/SO_Device-Provisioning-Protocol.pdf
https://www.arubanetworks.com/products/wireless/access-points/
https://www.arubanetworks.com/products/network-management-operations/central/netconductor/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

Aruba’s “Central” Cloud DPP service exposes and controls many centralized functions to enable a 751 

seamless integrated end-to-end solution and act as a DPP service orchestrator. The cloud based DPP 752 

service selects an AP to authenticate unprovisioned enrollees (in the event that multiple APs receive the 753 

client chirps). The DPP cloud service holds the Configurator signing key and generates Connectors for 754 

enrollees authenticated through an AP. 755 

3.4.1.4 IoT Operations 756 

Available within Aruba Central, the IoT Operations service extends network administrators’ view into IoT 757 

devices and applications connected to the network. Organizations can gain critical visibility into 758 

previously invisible IoT devices, as well as reduce costs and complexity associated with deploying IoT 759 

applications. IoT Operations comprises three core elements: 760 

▪ IoT Dashboard, which provides a granular view of devices connected to Aruba APs, as well as IoT 761 
connectors and applications in use. 762 

▪ IoT App Store, a repository of click-and-go IoT applications that interface with IoT devices and 763 
their data. 764 

▪ IoT Connector, which provisions multiple applications to be computed at the edge for agile IoT 765 
application support. 766 

3.4.1.5 Client Insights 767 

Part of Aruba Central, AI-powered Client Insights automatically identifies each endpoint connecting to 768 

the network with up to 99% accuracy. Client Insights discovers and classifies all connected endpoints—769 

including IoT devices—using built-in machine learning and dynamic profiling techniques, helping 770 

organizations better understand what’s on their networks, automate access privileges, and monitor the 771 

behavior of each endpoint’s traffic flows to more rapidly spot attacks and act. 772 

3.4.1.6 Cloud Auth 773 

Cloud-native network access control (NAC) solution Cloud Auth delivers time-saving workflows to 774 

configure and manage onboarding, authorization, and authentication policies for wired and wireless 775 

networks. Cloud Auth integrates with an organization’s existing cloud identity store, such as Google 776 

Workspace or Azure Active Directory, to authenticate IoT device information and assign the right level of 777 

network access. 778 

Cloud Auth operates as the DPP Authorization server and is the repository for trusted DPP Uniform 779 

Resource Identifiers (URIs) of unprovisioned enrollees. It maintains role information for each 780 

unprovisioned DPP URI and provisioned devices based on unique per-device credential (public key 781 

extracted from Connector). Representational State Transfer (RESTful) application programming 782 

interfaces (APIs) provide extensible capabilities to support third parties, making an easy path for 783 

integration and collaborative deployments. 784 

3.4.1.7 UXI Sensor: DPP Enrollee 785 

User Experience Insight (UXI) sensors continuously monitor end-user experience on customer networks 786 

and provide a simple-to-use cloud-based dashboard to assess networks and applications. The UXI sensor 787 

is onboarded in a zero-touch experience using DPP. Once network-layer onboarding is complete, the UXI 788 

https://www.arubanetworks.com/resource/iot-operations-at-a-glance/
https://www.arubanetworks.com/products/security/visibility-and-profiling/
https://www.arubanetworks.com/resource/cloud-authentication-authorization/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

sensor performs application-layer onboarding to the Aruba cloud to download a customer-specific 789 

profile. This profile enables the UXI sensor to perform continuous network testing and monitoring, and 790 

to troubleshoot network issues that it finds. 791 

Figure 3-1 Aruba/HPE DPP Onboarding Components 792 

3.4.2 CableLabs 793 

CableLabs is an innovation lab for future-forward research and development (R&D)—a global meeting of 794 

minds dedicated to building and orchestrating emergent technologies. By convening peers and experts 795 

to share knowledge, CableLabs’ objective is to energize the industry ecosystem for speed and scale. Its 796 

research facilitates solutions with the goal of making connectivity faster, easier, and more secure, and 797 

its conferences and events offer neutral meeting points to gain consensus. 798 

As part of this project, CableLabs has provided the reference platform for its Custom Connectivity 799 

architecture for the purpose of demonstrating trusted network-layer onboarding of Wi-Fi devices using 800 

a variety of credentials. The following components are part of the reference platform. 801 

3.4.2.1 Platform Controller 802 

The controller provides interfaces and messaging for managing service deployment groups, access 803 

points with the deployment groups, registration and lifecycle of user services, and the secure 804 

onboarding and lifecycle management of users’ Wi-Fi devices. The controller also exposes APIs for 805 

integration with third-party systems for the purpose of integrating various business flows (e.g., 806 

integration with manufacturing process for device management). 807 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

3.4.2.2 Custom Connectivity Gateway Agent 808 

The Gateway Agent is a software component that resides on the Wi-Fi AP and gateway. It connects with 809 

the controller to coordinate the Wi-Fi and routing capabilities on the gateway. Specifically, it enforces 810 

the policies and configuration from the controller by managing the lifecycle of the Wi-Fi Extended 811 

Service Set/Basic Service Set (ESS/BSS) on the AP, authentication and credentials of the client devices 812 

that connect to the AP, and service management and routing rules for various devices. It also manages 813 

secure onboarding capabilities like Easy Connect, simple onboarding using a per-device pre-shared key 814 

(PSK), etc. The Gateway agent is provided in the form of an operational Raspberry Pi-based Gateway 815 

that also includes hostapd for Wi-Fi/DPP and open-vswitch for the creation of trust domains and 816 

routing. 817 

3.4.2.3 Reference Clients 818 

Three Raspberry Pi-based reference clients are provided. The reference clients have support for WFA 819 

Easy Connect-based onboarding as well as support for different Wi-Fi credentials, including per-device 820 

PSK and 802.1x certificates. One of the reference clients also has support for OCF-based streamlined 821 

application-layer onboarding. 822 

3.4.3 Cisco 823 

Cisco Systems, or Cisco, delivers collaboration, enterprise, and industrial networking and security 824 

solutions. The company’s cybersecurity team, Cisco Secure, is one of the largest cloud and network 825 

security providers in the world. Cisco’s Talos Intelligence Group, the largest commercial threat 826 

intelligence team in the world, is comprised of world-class threat researchers, analysts, and engineers, 827 

and supported by unrivaled telemetry and sophisticated systems. The group feeds rapid and actionable 828 

threat intelligence to Cisco customers, products, and services to help identify new threats quickly and 829 

defend against them. Cisco solutions are built to work together and integrate into your environment, 830 

using the “network as a sensor” and “network as an enforcer” approach to both make your team more 831 

efficient and keep your enterprise secure. Learn more about Cisco at https://www.cisco.com/go/secure. 832 

3.4.3.1 Cisco Catalyst Switch 833 

A Cisco Catalyst switch is provided to support network connectivity and network segmentation 834 

capabilities. 835 

3.4.4 Foundries.io 836 

Foundries.io helps organizations bring secure IoT and edge devices to market faster. The 837 

FoundriesFactory cloud platform offers DevOps teams a secure Linux-based firmware/operating system 838 

(OS) platform with device and fleet management services for connected devices, based on a fixed no-839 

royalty subscription model. Product development teams gain enhanced security from boot to cloud 840 

while reducing the cost of developing, deploying, and updating devices across their installed lifetime. 841 

The open-source platform interfaces to any cloud and offers Foundries.io customers maximum flexibility 842 

for hardware configuration, so organizations can focus on their intellectual property, applications, and 843 

value add. For more information, please visit https://foundries.io/. 844 

https://www.cisco.com/go/secure
https://nistgov.sharepoint.com/sites/nccoe/IOTOBLMP/Shared%20Documents/Practice%20Guide/Volume%20B
https://foundries.io/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

3.4.4.1 FoundriesFactory 845 

FoundriesFactory is a cloud-based software platform provided by Foundries.io that offers a complete 846 

development and deployment environment for creating secure IoT devices. It provides a set of tools and 847 

services that enable developers to create, test, and deploy custom firmware images, as well as manage 848 

the lifecycle of their IoT devices. 849 

Customizable components include open-source secure boot software, the open-source Linux 850 

microPlatform (LmP) distribution built with Yocto and designed for secure managed IoT and edge 851 

products, secure Over the Air (OTA) update facilities, and a Docker runtime for managing containerized 852 

applications and services. The platform is cross architecture (x86, Arm, and RISC-V) and enables secure 853 

connections to public and private cloud services. 854 

Leveraging open standards and open software, FoundriesFactory is designed to simplify and accelerate 855 

the process of developing, deploying, and managing IoT and edge devices at scale, while also ensuring 856 

that they are secure and up to date over the product lifetime. 857 

3.4.5 Kudelski IoT 858 

Kudelski IoT is the Internet of Things division of Kudelski Group and provides end-to-end IoT solutions, 859 

IoT product design, and full-lifecycle services to IoT semiconductor and device manufacturers, 860 

ecosystem creators, and end-user companies. These solutions and services leverage the group’s 30+ 861 

years of innovation in digital business model creation; hardware, software, and ecosystem design and 862 

testing; state-of-the-art security lifecycle management technologies and services; and managed 863 

operation of complex systems. 864 

3.4.5.1 Kudelski IoT keySTREAM™ 865 

Kudelski IoT keySTREAM is a device-to-cloud, end-to-end solution for securing all the key assets of an IoT 866 

ecosystem during its entire lifecycle. The system provides each device with a unique, immutable, 867 

unclonable identity that forms the foundation for critical IoT security functions like in-factory or in-field 868 

provisioning, data encryption, authentication, and secure firmware updates, as well as allowing 869 

companies to revoke network access for vulnerable devices if necessary. This ensures that the entire 870 

lifecycle of the device and its data can be managed. 871 

In this project, keySTREAM is used to enable trusted application-layer onboarding. It manages the 872 

attestation of devices, ownership, and provisioning of application credentials. 873 

3.4.6 NquiringMinds 874 

NquiringMinds provides intelligent trusted systems, combining AI-powered analytics with cyber security 875 

fundamentals. tdx Volt is the NquiringMinds general-purpose zero-trust services infrastructure platform, 876 

upon which it has built Cyber tdx, a cognitively enhanced cyber defense service designed for IoT. Both 877 

products are the latest iteration of the TDX product family. NquiringMinds is a UK company. Since 2010, 878 

it has been deploying its solutions into smart cities, health care, industrial, agricultural, financial 879 

technology, defense, and security sectors. 880 

NquiringMinds collaborates within the open-standards and open-source community. It focuses on the 881 

principle of continuous assurance: the ability to continually reassess security risk by intelligently 882 

https://www.kudelski-iot.com/services-and-systems/in-field-provisioning
https://www.kudelski-iot.com/services-and-systems/in-field-provisioning
https://www.kudelski-iot.com/services-and-systems/secure-firmware-update-fota
https://nquiringminds.com/cyber/volt/
https://nquiringminds.com/cyber/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

reasoning across the hard and soft information sources available. NquiringMinds’ primary contributions 883 

to this project, described in the subsections below, are being made available as open source. 884 

3.4.6.1 NquiringMinds’ BRSKI Protocol Implementation 885 

NquiringMinds has open sourced their software implementation of IETF’s Bootstrapping Remote Secure 886 

Key Infrastructure (BRSKI) protocol, which provides a solution for secure zero-touch (automated) 887 

bootstrap of new (unconfigured) devices. This implementation includes the necessary adaptations for 888 

BRKSI to work with Wi-Fi networks. 889 

The open source BRSKI implementation is available under an Apache 2.0 license at: 890 

https://github.com/nqminds/brski 891 

3.4.6.2 TrustNetZ 892 

NquiringMinds has open sourced the TrustNetZ (Zero Trust Networking) software stack which sits on top 893 

of their BRSKI implementation. TrustNetZ embodies the network onboarding and lifecycle management 894 

concepts into an easy to replicate demonstrator which includes the IoT device, the router, the router 895 

onboarding, the registrar, the manufacturer, the manufacturer provisioning, policy enforcement and 896 

continuous assurance servers. 897 

This software also encapsulates NquiringMinds’ continuous assurance capability, enhancing the security 898 

of the network by continually assessing whether connected IoT devices meet the policy requirements of 899 

the network. The software also includes a flexible, verifiable credential-based policy framework, which 900 

can rapidly be adapted to model different security and business model scenarios. The implementation 901 

models networking onboarding flows with EAP-TLS Wi-Fi certificates. 902 

The open source TrustNetZ implementation is available under an Apache 2.0 license at: 903 

https://github.com/nqminds/trustnetz 904 

3.4.6.3 edgeSEC 905 

edgeSEC is an open-source, OpenWrt-based implementation of an intelligent secure router. It 906 

implements, on an open stack, the key components needed to implement both trusted onboarding and 907 

continuous assurance of devices. It contains an implementation of the Internet Engineering Task Force 908 

(IETF) BRSKI protocols, with the necessary adaptations for wireless onboarding, fully integrated into an 909 

open operational router. It additionally implements device communications intent constraints (IETF 910 

Manufacturer Usage Description [MUD]) and behavior monitoring (IoTSF ManySecured) that support 911 

some of the more enhanced trusted onboarding use cases. EdgeSEC additionally provides the platform 912 

for an asynchronous control plane for the continuous management of multiple routers and a general-913 

purpose policy evaluation point, which can be used to demonstrate the breadth of onboarding and 914 

monitoring use cases that can be supported. 915 

EdgeSEC is not directly used in the build that was demonstrated for this project, but it contains critical 916 

pieces of code that have been adapted in a simplified manner for the TrustNetZ implementation. 917 

The open source edgeSEC implementation is available under an Apache 2.0 license at: 918 

https://github.com/nqminds/edgesec 919 

https://github.com/nqminds/brski
https://github.com/nqminds/trustnetz
https://edgesec.info/
https://github.com/nqminds/edgesec


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

3.4.6.4 tdx Volt 920 

tdx Volt is NquiringMinds’ zero-trust infrastructure platform. It encapsulates identity management, 921 

credential management, service discovery, and smart policy evaluation. This platform is designed to 922 

simplify the end-to-end demonstration of the trusted onboarding process and provides tools for use on 923 

the IoT device, the router, applications, and clouds. Tdx Volt is used by the TrustNetZ demonstrator as a 924 

verifiable credential issuer and verifier. 925 

Tdx Volt is an NquiringMinds’ product. Documented working implementation are available at: 926 

https://docs.tdxvolt.com/en/introduction 927 

3.4.6.5 Reference Hardware 928 

For demonstration purposes the NquiringMinds components can be deployed using the following 929 

hardware: 930 

Compute hosts: Raspberry Pi 4 931 

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/. The Raspberry Pis are used to host 932 

the IoT client device, the router, and all additional compute services. Other Raspberry Pi models are also 933 

likely to work but have not been tested. 934 

TPM/Secure Element 935 

The secure storage for the IoT device (used in network-layer onboarding and factory provisioning) is 936 

provided by an Infineon Optiga™ SLB 9670 TPM 2.0, integrated through a Geeek Pi TPM hat. 937 

https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-938 

EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb. 939 

A working version of the code is also available utilizing the SEALSQ Secure element 940 

https://www.sealsq.com/semiconductors/vaultic-secure-elements/vaultic-40x. 941 

3.4.7 NXP Semiconductors 942 

NXP Semiconductors focuses on secure connectivity solutions for embedded applications, NXP is 943 

impacting the automotive, industrial, and IoT, mobile, and communication infrastructure markets. Built 944 

on more than 60 years of combined experience and expertise, the company has approximately 31,000 945 

employees in more than 30 countries. Find out more at https://www.nxp.com/. 946 

3.4.7.1 EdgeLock SE050 secure element 947 

The EdgeLock SE050 secure element (SE) product family offers strong protection against the latest 948 

attack scenarios and an extended feature set for a broad range of IoT use cases. This ready-to-use 949 

secure element for IoT devices provides a root of trust at the silicon level and delivers real end-to-end 950 

security – from edge to cloud – with a comprehensive software package for integration into any type of 951 

device. 952 

https://docs.tdxvolt.com/en/introduction
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb
https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb
https://www.sealsq.com/semiconductors/vaultic-secure-elements/vaultic-40x
https://www.nxp.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

3.4.7.2 EdgeLock 2GO 953 

EdgeLock 2GO is the NXP service platform designed for easy and secure deployment and management 954 

of IoT devices. This flexible IoT service platform lets the device manufacturers and service providers 955 

choose the appropriate options to optimize costs while benefiting from an advanced level of device 956 

security. The EdgeLock 2GO service provisions the cryptographic keys and certificates into the hardware 957 

root of trust of the IoT devices and simplifies the onboarding of the devices to the cloud. 958 

3.4.7.3 i.MX 8M family 959 

The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide 960 

advanced audio, voice, and video processing for applications that scale from consumer home audio to 961 

industrial building automation and mobile computers. It includes support for secure boot, secure debug, 962 

and lifecycle management, as well as integrated cryptographic accelerators. The development boards 963 

and Linux Board Support Package enablement provide out-of-the-box integration with an external SE050 964 

secure element. 965 

3.4.8 Open Connectivity Foundation (OCF) 966 

OCF is a standards-developing organization that has had contributions and participation from over 450+ 967 

member organizations representing the full spectrum of the IoT ecosystem, from chip makers to 968 

consumer electronics manufacturers, silicon enablement software platform and service providers, and 969 

network operators. The OCF specification is an International Organization for 970 

Standardization/International Electrotechnical Commission (ISO/IEC) internationally recognized standard 971 

that was built in tandem with an open-source reference implementation called IoTivity. Additionally, 972 

OCF provides an in-depth testing and certification program. 973 

3.4.8.1 IoTivity 974 

OCF has contributed open-source code from IoTivity that demonstrates the advantage of secure 975 

network-layer onboarding and implements the WFA’s Easy Connect to power a seamless bootstrapping 976 

of secure and trusted application-layer onboarding of IoT devices with minimal user interaction. 977 

This code includes the interaction layer, called the OCF Diplomat, which handles secure communication 978 

between the DPP-enabled access point and the OCF application layer. The OCF onboarding tool (OBT) is 979 

used to configure and provision devices with operational credentials. The OCF reference 980 

implementation of a basic lamp is used to demonstrate both network- and application-layer onboarding 981 

and to show that once onboarded and provisioned, the OBT can securely interact with the lamp. 982 

3.4.9 Sandelman Software Works 983 

Sandelman Software Works (SSW) provides consulting and software design services in the areas of 984 

systems and network security. A complete stack company, SSW provides consulting and design services 985 

from the hardware driver level up to Internet Protocol Security (IPsec), Transport Layer Security (TLS), 986 

and cloud database optimization. SSW has been involved with the IETF since the 1990s, now dealing 987 

with the difficult problem of providing security for IoT systems. SSW leads standardization efforts 988 

through a combination of running code and rough consensus. 989 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

3.4.9.1 Minerva Highway IoT Network-Layer Onboarding and Lifecycle Management 990 

System 991 

The Highway component is a cloud-native component operated by the device manufacturer (or its 992 

authorized designate). It provides the Request for Comments (RFC) 8995 [7] specified Manufacturer 993 

Authorized Signing Authority (MASA) for the BRSKI onboarding mechanism. 994 

Highway is an asset manager for IoT devices. In its asset database it maintains an inventory of devices 995 

that have been manufactured, what type they are, and who the current owner of the device is (if it has 996 

been sold). Highway does this by taking control of the complete identity lifecycle of the device. It can aid 997 

in provisioning new device identity certificates (IDevIDs) by collecting Certificate Signing Requests and 998 

returning certificates, or by generating the new identities itself. This is consistent with Section 4.1.2.1 999 

(On-device private key generation) and Section 4.1.2.2 (Off-device private key generation) of 1000 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-00.html. 1001 

Highway can act as a standalone three-level private-public key infrastructure (PKI). Integrations with 1002 

Automatic Certificate Management Environment (RFC 8555) allow it to provision certificates from an 1003 

external PKI using the DNS-01 challenge in Section 8.4 of https://www.rfc-1004 

editor.org/rfc/rfc8555.html#section-8.4. Hardware integrations allow for the private key operations to 1005 

be moved out of the main CPU. However, the needs of a busy production line in a factory would require 1006 

continuous access to the hardware offload. 1007 

In practice, customers put the subordinate CA into Highway, which it needs to sign new IDevIDs, and put 1008 

the trust anchor private CA into a hardware security module (HSM). 1009 

Highway provides a BRSKI-MASA interface running on a public TCP/HTTPS port (usually 443 or 9443). 1010 

This service requires access to the private key associated to the anchor that has been “baked into” the 1011 

Pledge device during manufacturing. The Highway instance that speaks to the world in this way does not 1012 

have to be the same instance that signs IDevID certificates, and there are significant security advantages 1013 

to separating them. Both instances do need access to the same database servers, and there are a variety 1014 

of database replication techniques that can be used to improve resilience and security. 1015 

As IDevIDs do not expire, Highway does not presently include any mechanism to revoke IDevIDs, nor 1016 

does it provide Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP). It is 1017 

unclear how those mechanisms can work in practice. 1018 

Highway supports two models. In the Sales Integration model, the intended owner is known in advance. 1019 

This model requires customer-specific integrations, which often occur at the database level through 1020 

views or other SQL tools. In the trust on first use (TOFU) model, the first customer to claim a product 1021 

becomes its owner. 1022 

3.4.10 SEALSQ, a subsidiary of WISeKey 1023 

WISeKey International Holding Ltd. (WISeKey) is a cybersecurity company that deploys digital identity 1024 

ecosystems and secures IoT solution platforms. It operates as a Swiss-based holding company through 1025 

several operational subsidiaries, each dedicated to specific aspects of its technology portfolio. 1026 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-00.html
https://www.rfc-editor.org/rfc/rfc8555.html#section-8.4
https://www.rfc-editor.org/rfc/rfc8555.html#section-8.4


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

SEALSQ is the subsidiary of the group that focuses on designing and selling secure microcontrollers, PKI, 1027 

and identity provisioning services while developing post-quantum technology hardware and software 1028 

products. SEALSQ products and solutions are used across a variety of applications today, from multi-1029 

factor authentication devices, home automation systems, and network infrastructure, to automotive, 1030 

industrial automation, and control systems. 1031 

3.4.11 VaultIC408 1032 

The VaultIC408 secure element combines hardware-based key storage with cryptographic accelerators 1033 

to provide a wide array of cryptographic features including identity, authentication, encryption, key 1034 

agreement, and data integrity. It protects against hardware attacks such as micro-probing and side 1035 

channels. 1036 

The fundamental cryptography of the VaultIC family includes NIST-recommended algorithms and key 1037 

lengths. Each of these algorithms, Elliptic Curve Cryptography (ECC), Rivest-Shamir-Adleman (RSA), and 1038 

Advanced Encryption Standard (AES), is implemented on-chip and uses on-chip storage of the secret key 1039 

material so the secrets are always protected in the secure hardware. 1040 

The secure storage and cryptographic acceleration support use cases like network and IoT end node 1041 

security, platform security, secure boot, secure firmware download, secure communication or TLS, data 1042 

confidentiality, encryption key storage, and data integrity. 1043 

3.4.11.1 INeS Certificate Management System (CMS) 1044 

SEALSQ’s portfolio includes INeS, a managed PKI-as-a-service solution. INeS leverages the WISeKey 1045 

Webtrust-accredited trust services platform, a Matter approved Product Attestation Authority (PAA), 1046 

and custom CAs. These PKI technologies support large-scale IoT deployments, where IoT endpoints will 1047 

require certificates to establish their identities. The INeS CMS platform provides a secure, scalable, and 1048 

manageable trust model. 1049 

INeS CMS provides certificate management, CA management, public cloud integration and automation, 1050 

role-based access control (RBAC), and APIs for custom implementations. 1051 

3.4.12 Silicon Labs 1052 

Silicon Labs provides products in the area of secure, intelligent wireless technology for a more 1053 

connected world. Securing IoT is challenging. It’s also mission critical. The challenge of protecting 1054 

connected devices against frequently surfacing IoT security vulnerabilities follows device makers 1055 

throughout the entire product lifecycle. Protecting products in a connected world is a necessity as 1056 

customer data and modern online business models are increasingly targets for costly hacks and 1057 

corporate brand damage. To stay secure, device makers need an underlying security platform in the 1058 

hardware, software, network, and cloud. Silicon Labs offers security products with features that address 1059 

escalating IoT threats, with the goal of reducing the risk of IoT ecosystem security breaches and the 1060 

compromise of intellectual property and revenue loss from counterfeiting. 1061 

For this project, Silicon Labs has provided a host platform for the OpenThread border router (OTBR), a 1062 

Thread radio transceiver, and an IoT device to be onboarded to the AWS cloud service and that 1063 

communicates using the Thread wireless protocol. 1064 

https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

3.4.12.1 OpenThread Border Router Platform 1065 

A Raspberry Pi serves as host platform for the OTBR. The OTBR forms a Thread network and acts as a 1066 

bridge between the Thread network and the public internet, allowing the IoT device that communicates 1067 

using the Thread wireless protocol and that is to be onboarded communicate with cloud services. The 1068 

OTBR’s connection to the internet can be made through either Wi-Fi or ethernet. Connection to the 1069 

SLWSTK6023A (see Section 3.4.12.2) is made through a USB serial port. 1070 

3.4.12.2 SLWSTK6023A Thread Radio Transceiver 1071 

The SLWSTK6023A (Wireless starter kit) acts as a Thread radio transceiver or radio coprocessor (RCP). 1072 

This allows the OTBR host platform to form and communicate with a Thread network. 1073 

3.4.12.3 xG24-DK2601B Thread “End” Device 1074 

The xG24-DK2601B is the IoT device that is to be onboarded to the cloud service (AWS). It 1075 

communicates using the Thread wireless protocol. Communication is bridged between the Thread 1076 

network and the internet by the OTBR. 1077 

3.4.12.4 Kudelski IoT keySTREAM™ 1078 

The Kudelski IoT keySTREAM solution is described more fully in Section 3.4.5.1. It is a cloud service 1079 

capable of verifying the hardware-based secure identity certificate chain associated with the xG24-1080 

DK2601B component described in Section 3.4.12.3 and delivering a new certificate chain that can be 1081 

refreshed or revoked as needed to assist with lifecycle management. The certificate chain is used to 1082 

authenticate the xG24-DK2601B device to the cloud service (AWS). 1083 

Figure 3-2 shows the relationships among the components provided by Silicon Labs and Kudelski that 1084 

support the trusted application-layer onboarding of an IoT device that communicates via the Thread 1085 

protocol to AWS IoT. 1086 

Figure 3-2 Components for Onboarding an IoT Device that Communicates Using Thread to AWS IoT 1087 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

4 Reference Architecture 1088 

Figure 4-1 depicts the reference architecture to demonstrate trusted IoT device network-layer 1089 

onboarding and lifecycle management used throughout this Practice Guide. This architecture shows a 1090 

high-level, protocol-agnostic, and generic approach to trusted network-layer onboarding. It represents 1091 

the basic components and processes, regardless of the network-layer onboarding protocol used and the 1092 

particular device lifecycle management activities supported. 1093 

When implementing this architecture, an organization can follow different steps and use different 1094 

components. The exact steps that are performed may not be in the same order as the steps in the 1095 

logical reference architecture, and they may use components that do not have a one-to-one 1096 

correspondence with the logical components in the logical reference architecture. In Appendices C, D, E, 1097 

F and G we present the architectures for builds 1, 2, 3, 4 and 5, each of which is an instantiation of this 1098 

logical reference architecture. Those build-specific architectures are more detailed and are described in 1099 

terms of specific collaborator components and trusted network-layer onboarding protocols. 1100 

Figure 4-1 Trusted IoT Device Network-Layer Onboarding and Lifecycle Management Logical Reference 1101 
Architecture 1102 

 

 

There are five high-level processes to carry out this architecture, as labeled in Figure 4-1. These five 1103 

processes are as follows: 1104 

1. Device manufacture and factory provisioning – the activities that the IoT device manufacturer 1105 

performs to prepare the IoT device so that it is capable of network- and application-layer 1106 

onboarding (Figure 4-2, Section 4.1). 1107 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

2. Device ownership and bootstrapping information transfer – the transfer of IoT device 1108 

ownership and bootstrapping information from the manufacturer to the device and/or the 1109 

device’s owner that enables the owner or an entity authorized by the owner to onboard the 1110 

device securely. The component in Figure 4-1 labeled “Supply Chain Integration Service” 1111 

represents the mechanism used to accomplish this information transfer (Figure 4-3, Section 4.2). 1112 

3. Trusted network-layer onboarding – the interactions that occur between the network-layer 1113 

onboarding component and the IoT device to mutually authenticate, confirm authorization, 1114 

establish a secure channel, and provision the device with its network credentials (Figure 4-4, 1115 

Section 4.3). 1116 

4. Trusted application-layer onboarding – the interactions that occur between a trusted 1117 

application server and the IoT device to mutually authenticate, establish a secure channel, and 1118 

provision the device with application-layer credentials (Figure 4-5, Section 4.4). 1119 

5. Continuous verification – ongoing, policy-based verification and authorization checks on the IoT 1120 

device to support device lifecycle monitoring and control (Figure 4-6, Section 4.5). 1121 

Figure 4-1 uses two colors. The dark-blue components are central to supporting trusted network-layer 1122 

onboarding itself. The light-blue components support the other aspects of the architecture. Each of the 1123 

five processes is explained in more detail in the subsections below. 1124 

4.1 Device Manufacture and Factory Provisioning Process 1125 

Figure 4-2 depicts the device manufacture and factory provisioning process in more detail. As shown in 1126 

Figure 4-2, the manufacturer is responsible for creating the IoT device and provisioning it with the 1127 

necessary hardware, software, and birth credentials so that it is capable of network-layer onboarding. 1128 

The IoT device should be manufactured with a secure root of trust as a best practice, possibly as part of 1129 

a secure manufacturing process, particularly when outsourced. Visibility and control over the 1130 

provisioning process and manufacturing supply chain, particularly for outsourced manufacturing, is 1131 

critical in order to mitigate the risk of compromise in the supply chain, which could lead to the 1132 

introduction of compromised devices. The CA component is shown in light blue in Figure 4-2 because its 1133 

use is optional and depends on the type of credential that is being provisioned to the device (i.e., 1134 

whether it is an 802.1AR certificate). 1135 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

Figure 4-2 IoT Device Manufacture and Factory Provisioning Process 1136 

 

At a high level, the steps that the manufacturer or an integrator performs as part of this preparation 1137 

process, as shown in Figure 4-2, are as follows: 1138 

1. Create the IoT device and assign it a unique identifier (e.g., a serial number). Equip the device 1139 

with secure storage. 1140 

2. Equip the device to run a specific network-layer onboarding protocol (e.g., Wi-Fi Easy Connect, 1141 

BRSKI, Thread Mesh Commissioning Protocol (MeshCoP) [8]). This step includes ensuring that 1142 

the device has the software/firmware needed to run the onboarding protocol as well as any 1143 

additional information that may be required. 1144 

3. Generate or install the device’s unique birth credential into the device’s secure storage. [Note: 1145 

using a secure element that has the ability to autonomously generate private/public root key 1146 

pairs is inherently more secure than performing credential injection, which has the potential to 1147 

expose the private key.] The birth credential includes information that must be kept secret (i.e., 1148 

the device’s private key) because it is what enables the device’s identity to be authenticated. 1149 

The contents of the birth credential will depend on what network-layer onboarding protocol the 1150 

device supports. For example: 1151 

a. If the device runs the Wi-Fi Easy Connect protocol, its birth credential will take the form 1152 

of a unique private key, which has an associated DPP URI that includes the 1153 

corresponding public key and possibly additional information such as Wi-Fi channel and 1154 

serial number. 1155 

b. If the device runs the BRSKI protocol, its birth credential takes the form of an 802.1AR 1156 

certificate that gets installed as the device’s IDevID and corresponding private key. The 1157 

IDevID includes the device’s public key, the location of the MASA, and trust anchors that 1158 

can be used to verify vouchers signed by the MASA. The 802.1AR certificate needs to be 1159 

signed by a trusted signing authority prior to installation, as shown in Figure 4-2. 1160 

4. Install any additional information that may be required to support related capabilities that are 1161 

enabled by network-layer onboarding. The specific contents of the information that gets 1162 

Device manufacture and factory provisioning: 

(1) Create the IoT device and give it a unique identifier 

(2) Equip the device to run the onboarding protocol

(3) Install a unique birth credential (public/private key pair) into the device’s 

secure storage. (If the credential is a certificate, it will need to be signed.)

(4) Install any additional information that may be required to support related

operations, such as application-layer onboarding or device intent enforcement 

(5) Maintain a record of the device’s serial number and bootstrapping information

IoT Device
Secure 

storage

CA

Provide device’s public key to the CA and receive back a signed certificate for the device, if necessary

Record the 

device ID and 

bootstrapping 

information



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

installed on the device will vary according to what capabilities it is intended to support. For 1163 

example, if the device supports: 1164 

a. streamlined application-layer onboarding (see Section 3.3.2), then the bootstrapping 1165 

information that is required to enable the device and a trusted application server to find 1166 

and mutually authenticate each other and establish a secure association will be stored 1167 

on the device. This is so it can be sent to the network during network-layer onboarding 1168 

and used to automatically perform application-layer onboarding after the device has 1169 

securely connected to the network. The Wi-Fi Easy Connect protocol, for example, can 1170 

include such application-layer bootstrapping information as third-party information in 1171 

its protocol exchange with the network, and Build 2 (i.e., the Wi-Fi Easy Connect, 1172 

CableLabs, OCF build) demonstrates use of this mechanism to support streamlined 1173 

application-layer onboarding. 1174 

Note, however, that a device may still be capable of performing independent [see 1175 

Section 3.3.2] application-layer onboarding even if the application-layer onboarding 1176 

information is not exchanged as part of the network-layer onboarding protocol. The 1177 

application that is installed on the device, i.e., the application that the device executes 1178 

to fulfill its purpose, may include application-layer bootstrapping information that 1179 

enables it to perform application-layer onboarding when it begins executing. Build 1 1180 

(i.e., the Wi-Fi Easy Connect, Aruba/HPE build) demonstrates independent application-1181 

layer onboarding. 1182 

b. device communications intent, then the URI required to enable the network to locate 1183 

the device’s intent information may be stored on the device so that it can be sent to the 1184 

network during network-layer onboarding. After the device has securely connected to 1185 

the network, the network can use this device communications intent information to 1186 

ensure that the device sends and receives traffic only from authorized locations. 1187 

5. Maintain a record of the device’s serial number (or other uniquely identifying information) and 1188 

the device’s bootstrapping information. The manufacturer will take note of the device’s ID and 1189 

its bootstrapping information and store these. Eventually, when the device is sold, the 1190 

manufacturer will need to provide the device’s owner with its bootstrapping information. The 1191 

contents of the device’s bootstrapping information will depend on what network-layer 1192 

onboarding protocol the device supports. For example: 1193 

a. If the device runs the Wi-Fi Easy Connect protocol, its bootstrapping information is the 1194 

DPP URI that is associated with its private key. 1195 

b. If the device runs the BRSKI protocol, its bootstrapping information is its 802.1AR 1196 

certificate. 1197 

4.2 Device Ownership and Bootstrapping Information Transfer Process  1198 

Figure 4-3 depicts the activities that are performed to transfer device bootstrapping information from 1199 

the device manufacturer to the device owner, as well as to transfer device ownership information to the 1200 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

device itself, if appropriate. A high-level summary of these activities is described in the steps labeled A, 1201 

B, and C. 1202 

The figure uses two colors. The dark-blue components are those used in the network-layer onboarding 1203 

process. They are the same components as those depicted in the trusted network-layer onboarding 1204 

process diagram provided in Figure 4-4. The light-blue components and their accompanying steps depict 1205 

the portion of the diagram that is specific to device ownership and bootstrapping information transfer 1206 

activities. 1207 

Figure 4-3 Device Ownership and Bootstrapping Information Transfer Process 1208 

 

These steps are as follows: 1209 

1. The device manufacturer makes the device serial number, bootstrapping information, and 1210 

ownership information available so that the organization or individual who has purchased the 1211 

device will have the device’s serial number and bootstrapping information, and the device itself 1212 

can be informed of who its owner is. In Figure 4-3, the manufacturer is shown sending this 1213 

information to the supply chain integration service, which ensures that the necessary 1214 

information ultimately reaches the device owner’s authorization service as well as the device 1215 

itself, if appropriate. (This description of the process is deliberately simple in order to enable it 1216 

to be general enough that it applies to a variety of network-layer onboarding protocols.) In 1217 

reality, the supply chain integration service mechanism for forwarding this bootstrapping 1218 

information from the manufacturer to the owner may take many forms. For example, when 1219 

BRSKI is used, the manufacturer sends the device serial number and bootstrapping information 1220 

to a MASA that both the device and its owner trust. When other network-layer onboarding 1221 

protocols are used, the device manufacturer may provide the device owner with this 1222 

bootstrapping information directly by uploading this information to the owner’s portion of a 1223 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

Supply Chain 

Integration 

Service

(2) Make the 

serial number 

and 

bootstrapping 

information of  

the purchased 

device available 

to the 

authorization 

service used by 

the device owner. 

(3) Provide  

the device 

with  

information 

about its 

owner

Device 

Manufacturer 

(1) Provide the serial number and bootstrapping information 

of the device that the organization has purchased

Network-

Layer 

Onboarding 

Authorization 

Service

CA

Secure 

storage

Device Manufacturer Premises 

Device Owner’s Network 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

trusted cloud. Such a mechanism is useful for the case in which the owner is a large enterprise 1224 

that has made a bulk purchase of many IoT devices. In this case, the manufacturer can upload 1225 

the information for hundreds or thousands of IoT devices to the supply chain integration service 1226 

at once. We call this the enterprise use case. Alternatively, the device manufacturer may 1227 

provide this information to the device owner indirectly by including it on or in the packaging of 1228 

an IoT device that is sold at retail. We call this the consumer use case. 1229 

The contents of the device bootstrapping information will also vary according to the network-1230 

layer onboarding protocol that the device supports. For example, if the device supports the Wi-1231 

Fi Easy Connect network-layer onboarding protocol, the bootstrapping information will consist 1232 

of the device’s DPP URI. If the device supports the BRSKI network-layer onboarding protocol, 1233 

bootstrapping information will consist of the device’s IDevID (i.e., its 802.1AR certificate). 1234 

2. The supply chain integration service forwards the device serial number and bootstrapping 1235 

information to an authorization service that has connectivity to the network-layer onboarding 1236 

component that will onboard the device (i.e., to a network-layer onboarding component that 1237 

belongs either to the device owner or to an entity that the device owner has authorized to 1238 

onboard the device). The network-layer onboarding component will use the device’s 1239 

bootstrapping information to authenticate the device and verify that it is expected and 1240 

authorized to be onboarded to the network. Again, this forwarding may take many forms, e.g., 1241 

enterprise use case or consumer use case, and use a variety of different mechanisms within 1242 

each use case type, e.g., information moved from one location to another in the device owner’s 1243 

portion of a trusted cloud, information transferred via a standardized protocol operating 1244 

between the MASA and the onboarding network’s domain registrar, or information scanned 1245 

from a QR code on device packaging using a mobile app. In the case in which BRSKI is used, a 1246 

certificate authority is consulted to help validate the signature of the 802.1AR certificate that 1247 

comprises the device bootstrapping information. 1248 

3. The supply chain integration service may also provide the device with information about who its 1249 

owner is. Knowing who its owner is enables the device to ensure that the network that is trying 1250 

to onboard it is authorized to do so, because it is assumed that if a network owns a device, it is 1251 

authorized to onboard it. The mechanisms for providing the device with assurance that the 1252 

network that is trying to onboard it is authorized to do so can take a variety of forms, depending 1253 

on the network-layer onboarding protocol being used. For example, if the Wi-Fi Easy Connect 1254 

protocol is being used, then if an entity is in possession of the device’s public key, that entity is 1255 

assumed to be authorized to onboard the device. If BRSKI is being used, the device will be 1256 

provided with a signed voucher verifying that the network that is trying to onboard the device is 1257 

authorized to do so. The voucher is signed by the MASA. Because the device manufacturer has 1258 

installed trust anchors for the MASA onto the device, the device trusts the MASA. It is also able 1259 

to verify the MASA’s signature. 1260 

(Note: In this document, for the sake of simplicity, we often refer to the network that is 1261 

authorized to onboard a device as the device owner’s network. In reality, it may not always be 1262 

the case that the device’s owner also owns the network to which the device is being onboarded. 1263 

While it is assumed that a network that owns a device is authorized to onboard it, and the 1264 

device and the onboarding network are often owned by the same entity, common ownership is 1265 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

not a requirement. The network that is onboarding a device does not have to be the owner of 1266 

that device. The network owner may permit devices that it does not own to be onboarded to 1267 

the network. In order for such a device to be onboarded, the network owner must be in 1268 

possession of the device’s bootstrapping information. By accepting the bootstrapping 1269 

information, the network owner is implicitly authorizing the device to be onboarded to its 1270 

network. Conversely, a device may permit itself to be onboarded to a network that is not owned 1271 

by the device’s owner. A device owner that wants to authorize a network to onboard the device 1272 

needs to ensure that the device trusts the onboarding network. The specific mechanism for 1273 

accomplishing this will vary according to the network-layer onboarding protocol being used. 1274 

When the Wi-Fi Easy Connect protocol is being used, simply providing the network with the 1275 

device’s public key is sufficient to authorize the network to onboard the device. When BRSKI is 1276 

being used, the voucher that the MASA provides to the device must authorize the network to 1277 

onboard it.) 1278 

Authentication of the network by the device may also take a variety of forms. These may range 1279 

from simply trusting the person who is onboarding the device to onboard it to the correct 1280 

network, to providing the IoT device with the network’s public key. 1281 

4.3 Trusted Network-Layer Onboarding Process 1282 

Figure 4-4 depicts the trusted network-layer onboarding process in more detail. It shows the 1283 

interactions that occur between the network-layer onboarding component and the IoT device to 1284 

mutually authenticate, confirm that the device is authorized to be onboarded to the network, confirm 1285 

that the network is authorized to onboard the device, establish a secure channel, and provision the 1286 

device with its network credentials. 1287 

Figure 4-4 Trusted Network-Layer Onboarding Process 1288 

 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(7) Provision network credentials to the device

(8) Use network credentials to 

connect to the network securely

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that the network is 

authorized to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(5) Verify that device is authorized 

to be onboarded to the network

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

The numbered arrows in the diagram are intended to provide a high-level summary of the network-layer 1289 

onboarding steps. These steps are assumed to occur after any device bootstrapping information and 1290 

ownership transfer activities (as described in the previous section) that may need to be performed. The 1291 

steps of the trusted network-layer onboarding process are as follows: 1292 

1. The IoT device to be onboarded is placed in onboarding mode, i.e., it is put into a state such that 1293 

it is actively listening for and/or sending initial onboarding protocol messages. 1294 

2. Any required device bootstrapping information that has not already been provided to the 1295 

network and any required network bootstrapping information that has not already been 1296 

provided to the device are introduced in a trusted manner. 1297 

3. Using the device and network bootstrapping information that has been provided, the network 1298 

authenticates the identity of the IoT device (e.g., by ensuring that the IoT device is in possession 1299 

of the private key that corresponds with the public key for the device that was provided as part 1300 

of the device’s bootstrapping information), and the IoT device authenticates the identity of the 1301 

network (e.g., by ensuring that the network is in possession of the private key that corresponds 1302 

with the public key for the network that was provided as part of the network’s bootstrapping 1303 

information). 1304 

4. The device verifies that the network is authorized to onboard it. For example, the device may 1305 

verify that it and the network are owned by the same entity, and therefore, assume that the 1306 

network is authorized to onboard it. 1307 

5. The network onboarding component consults the network-layer onboarding authorization 1308 

service to verify that the device is authorized to be onboarded to the network. For example, the 1309 

network-layer authorization service can confirm that the device is owned by the network and is 1310 

on the list of devices authorized to be onboarded. 1311 

6. A secure (i.e., encrypted) channel is established between the network onboarding component 1312 

and the device. 1313 

7. The network onboarding component uses the secure channel that it has established with the 1314 

device to confidentially send the device its unique network credentials. 1315 

8. The device uses its newly provisioned network credentials to establish secure connectivity to the 1316 

network. The access point, router, or switch validates the device’s credentials in this step. The 1317 

mechanism it uses to do so varies depending on the implementation and is not depicted in 1318 

Figure 4-4. 1319 

4.4 Trusted Application-Layer Onboarding Process 1320 

Figure 4-5 depicts the trusted application-layer onboarding process as enabled by the streamlined 1321 

application-layer onboarding mechanism. As defined in Section 3.3.2, streamlined application-layer 1322 

onboarding occurs after network-layer onboarding and depends upon and is enabled by it. The figure 1323 

uses two colors. The dark-blue components are those used in the network-layer onboarding process. 1324 

They and their accompanying steps (written in black font) are identical to those found in the trusted 1325 

network-layer onboarding process diagram provided in Figure 4-4. The light-blue component and its 1326 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

accompanying steps (written in light-blue font) depict the portion of the diagram that is specific to 1327 

streamlined application-layer onboarding. 1328 

Figure 4-5 Trusted Streamlined Application-Layer Onboarding Process 1329 

 

As is the case with Figure 4-4, the steps in this diagram are assumed to occur after any device ownership 1330 

and bootstrapping information transfer activities that may need to be performed. Steps 1-6 in this figure 1331 

are identical to Steps 1-6 in the trusted network-layer onboarding diagram of Figure 4-4, but steps 7 and 1332 

8 are different. With the completion of steps 1-6 in Figure 4-5, a secure channel has been established 1333 

between the IoT device and the network-layer onboarding component. However, the device does not 1334 

get provisioned with its network-layer credentials until step 9. To support streamlined application-layer 1335 

onboarding, additional steps are required. Steps 1-12 are as follows: 1336 

1. The IoT device to be onboarded is placed in onboarding mode, i.e., it is put into a state such that 1337 

it is actively listening for and/or sending initial onboarding protocol messages. 1338 

2. Any required device bootstrapping information that has not already been provided to the 1339 

network and any required network bootstrapping information that has not already been 1340 

provided to the device are introduced in a trusted manner. 1341 

3. Using the device and network bootstrapping information that has been provided, the network 1342 

authenticates the identity of the IoT device (e.g., by ensuring that the IoT device is in possession 1343 

of the private key that corresponds with the public key for the device that was provided as part 1344 

of the device’s bootstrapping information), and the IoT device authenticates the identity of the 1345 

network (e.g., by ensuring that the network is in possession of the private key that corresponds 1346 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(9) Provision network credentials to the 

device, including the application server’s 

application-layer bootstrapping 

information

(10) Use network credentials to 

connect to the network securely

(5) Verify that device is authorized 

to be onboarded to the network

(8) Exchange device’s and 

application server’s application-

layer bootstrapping information

Application 

Server

(11) Device and application 

server mutually authenticate 

and establish a secure channel

(12) Application server may, 

for example, perform updates 

and ongoing lifecycle 

management of device 

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that network is authorized 

to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(7) Device sends its application-

layer bootstrapping information

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

with the public key for the network that was provided as part of the network’s bootstrapping 1347 

information). 1348 

4. The device verifies that the network is authorized to onboard it. For example, the device may 1349 

verify that it and the network are owned by the same entity, and therefore, assume that the 1350 

network is authorized to onboard it. 1351 

5. The network onboarding component consults the network-layer onboarding authorization 1352 

service to verify that the device is authorized to be onboarded to the network. For example, the 1353 

network-layer authorization service can confirm that the device is owned by the network and is 1354 

on the list of devices authorized to be onboarded. 1355 

6. A secure (i.e., encrypted) channel is established between the network onboarding component 1356 

and the device. 1357 

7. The device sends its application-layer bootstrapping information to the network onboarding 1358 

component. Just as the network required the trusted introduction of device network-layer 1359 

bootstrapping information in order to enable the network to authenticate the device and ensure 1360 

that the device was authorized to be network-layer onboarded, the application server requires 1361 

the trusted introduction of device application-layer bootstrapping information to enable the 1362 

application server to authenticate the device at the application layer and ensure that the device 1363 

is authorized to be application-layer onboarded. Because this application-layer bootstrapping 1364 

information is being sent over a secure channel, its integrity and confidentiality are ensured. 1365 

8. The network onboarding component forwards the device’s application-layer bootstrapping 1366 

information to the application server. In response, the application server provides its 1367 

application-layer bootstrapping information to the network-layer onboarding component for 1368 

eventual forwarding to the IoT device. The IoT device needs the application server’s 1369 

bootstrapping information to enable the device to authenticate the application server and 1370 

ensure that it is authorized to application-layer onboard the device. 1371 

9. The network onboarding component uses the secure channel that it has established with the IoT 1372 

device to confidentially send the device its unique network credentials. Along with these 1373 

network credentials, the network onboarding component also sends the IoT device the 1374 

application server’s bootstrapping information. Because the application server’s bootstrapping 1375 

information is being sent over a secure channel, its integrity and confidentiality are ensured.z 1376 

10. The device uses its newly provisioned network credentials to establish secure connectivity to the 1377 

network. 1378 

11. Using the device and application server application-layer bootstrapping information that has 1379 

already been exchanged in a trusted manner, the application server authenticates the identity 1380 

of the IoT device and the IoT device authenticates the identity of the application server. Then 1381 

they establish a secure (i.e., encrypted) channel. 1382 

12. The application server application layer onboards the IoT device. This application-layer 1383 

onboarding process may take a variety of forms. For example, the application server may 1384 

download an application to the device for the device to execute. It may associate the device 1385 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

with a trusted lifecycle management service that performs ongoing updates of the IoT device to 1386 

patch it as needed to ensure that the device remains compliant with policy. 1387 

4.5 Continuous Verification 1388 

Figure 4-6 depicts the steps that are performed to support continuous verification. The figure uses two 1389 

colors. The light-blue component and its accompanying steps (written in light-blue font) depict the 1390 

portion of the diagram that is specific to continuous authorization. The dark-blue components are those 1391 

used in the network-layer onboarding process. They and their accompanying steps (written in black 1392 

font) are identical to those found in the trusted network-layer onboarding process diagram provided in 1393 

Figure 4-4, except for step 5, Verify that device is authorized to be onboarded to the network. 1394 

Figure 4-6 Continuous Verification 1395 

 

When continuous verification is being supported, step 5 is broken into two separate steps, as shown in 1396 

Figure 4-6. Instead of the network onboarding component directly contacting the network-layer 1397 

onboarding authorization service to see if the device is owned by the network and on the list of devices 1398 

authorized to be onboarded (as shown in the trusted network-layer onboarding architecture depicted in 1399 

Figure 4-4), a set of other enterprise policies may also be applied to determine if the device is authorized 1400 

to be onboarded. The application of these policies is represented by the insertion of the Continuous 1401 

Authorization Service (CAS) component in the middle of the exchange between the network onboarding 1402 

component and the network-layer onboarding authorization service. 1403 

For example, the CAS may have received external threat information indicating that certain device types 1404 

have a vulnerability. If so, when the CAS receives a request from the network-layer onboarding 1405 

component to verify that a device of this type is authorized to be onboarded to the network (Step 5a), it 1406 

would immediately respond to the network-layer onboarding component that the device is not 1407 

authorized to be onboarded to the network. If the CAS has not received any such threat information 1408 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(7) Provision network 

credentials to the 

device

(8) Use network credentials to 

connect to the network securely

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that network is authorized 

to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(5a) Verify that 

device is authorized 

to be onboarded to 

the network

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage

Continuous 

Authorization 

Service

(9) Monitor and control the router 

according to policy on an ongoing basis 

to verify that the device and its 

operations continue to be authorized

(5b) Verify that 

device is authorized 

to be onboarded to 

the network



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

about the device and it checks all its policies and determines that the device should be permitted to be 1409 

onboarded, it will forward the request to the network-layer onboarding authorization service (Step 5b) 1410 

and receive a response (Step 5b) that it will forward to the network onboarding component (Step 5a). 1411 

As depicted by Step 9, the CAS also continues to operate after the device connects to the network and 1412 

executes its application. The CAS performs asynchronous calls to the network router to monitor the 1413 

device on an ongoing basis, providing policy-based verification and authorization checks on the device 1414 

throughout its lifecycle. 1415 

   



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

5 Laboratory Physical Architecture 1416 

Figure 5-1 depicts the high-level physical architecture of the NCCoE IoT Onboarding laboratory 1417 

environment in which the five trusted IoT device network-layer onboarding project builds, and the 1418 

factory provisioning builds are being implemented. The NCCoE provides virtual machine (VM) resources 1419 

and physical infrastructure for the IoT Onboarding lab. As depicted, the NCCoE IoT Onboarding 1420 

laboratory hosts collaborator hardware and software for the builds. The NCCoE also provides 1421 

connectivity from the IoT Onboarding lab to the NIST Data Center, which provides connectivity to the 1422 

internet and public IP spaces (both IPv4 and IPv6). Access to and from the NCCoE network is protected 1423 

by a firewall. 1424 

Access to and from the IoT Onboarding lab is protected by a pfSense firewall, represented by the brick 1425 

box icon in Figure 5-1. This firewall has both IPv4 and IPv6 (dual stack) configured. The IoT Onboarding 1426 

lab network infrastructure includes a shared virtual environment that houses a domain controller and a 1427 

vendor jumpbox. These components are used across builds where applicable. It also contains five 1428 

independent virtual LANs, each of which houses a different trusted network-layer onboarding build. 1429 

The IoT Onboarding laboratory network has access to cloud components and services provided by the 1430 

collaborators, all of which are available via the internet. These components and services include Aruba 1431 

Central and the UXI Cloud (Build 1), SEALSQ INeS (Build 1), Platform Controller (Build 2), a MASA server 1432 

(Build 3), Kudelski IoT keySTREAM application-layer onboarding service and AWS IoT (Build 4), and a 1433 

Manufacturer Provisioning Root (Build 5). 1434 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

Figure 5-1 NCCoE IoT Onboarding Laboratory Physical Architecture 1435 

 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

All five network-layer onboarding laboratory environments, as depicted in the diagram, have been 1436 

installed: 1437 

▪ The Build 1 (i.e., the Wi-Fi Easy Connect, Aruba/HPE build) network infrastructure within the 1438 
NCCoE lab consists of two components: the Aruba Access Point and the Cisco Switch. Build 1 1439 
also requires support from Aruba Central for network-layer onboarding and the UXI Cloud for 1440 
application-layer onboarding. These components are in the cloud and accessed via the internet. 1441 
The IoT devices that are onboarded using Build 1 include the UXI Sensor and the Raspberry Pi. 1442 

▪ The Build 2 (i.e., the Wi-Fi Easy Connect, CableLabs, OCF build) network infrastructure within the 1443 
NCCoE lab consists of a single component: the Gateway Access Point. Build 2 requires support 1444 
from the Platform Controller, which also hosts the IoTivity Cloud Service. The IoT devices that 1445 
are onboarded using Build 2 include three Raspberry Pis. 1446 

▪ The Build 3 (i.e., the BRSKI, Sandelman Software Works build) network infrastructure 1447 
components within the NCCoE lab include a Wi-Fi capable home router (including Join Proxy), a 1448 
DMZ switch (for management), and an ESP32A Xtensa board acting as a Wi-Fi IoT device, as well 1449 
as an nRF52840 board acting as an IEEE 802.15.4 device. A management system on a 1450 
BeagleBone Green serves as a serial console. A registrar server has been deployed as a virtual 1451 
appliance on the NCCoE private cloud system. Build 3 also requires support from a MASA server 1452 
which is accessed via the internet. In addition, a Raspberry Pi 3 provides an ethernet/802.15.4 1453 
gateway, as well as a test platform. 1454 

▪ The Build 4 (i.e., the Thread, Silicon Labs, Kudelski IoT build) network infrastructure components 1455 
within the NCCoE lab include an Open Thread Border Router, which is implemented using a 1456 
Raspberry Pi, and a Silicon Labs Gecko Wireless Starter Kit, which acts as an 802.15.4 antenna. 1457 
Build 4 also requires support from the Kudelski IoT keySTREAM service, which is in the cloud and 1458 
accessed via the internet. The IoT device that is onboarded in Build 4 is the Silicon Labs Dev Kit 1459 
(BRD2601A) with an EFR32MG24 System-on-Chip (SoC). The application service to which it 1460 
onboards is AWS IoT. 1461 

▪ The Build 5 (i.e., the BRSKI over Wi-Fi, NquiringMinds build) includes 2 Raspberry Pi 4Bs running 1462 
a Linux operating system. One Raspberry Pi acts as the pledge (or IoT Device) with an Infineon 1463 
TPM connected. The other acts as the router, registrar and MASA all in one device. This build 1464 
uses the open source TrustNetZ distribution, from which the entire build can be replicated 1465 
easily. The TrustNetZ distribution includes source code for the IoT device, the router, the access 1466 
point, the network onboarding component, the policy engine, the manufacturer services, the 1467 
registrar and a demo application server. TrustNetZ makes use of NquiringMinds tdx Volt to issue 1468 
and validate verifiable credentials. 1469 

▪ The BRSKI factory provisioning build is deployed in the Build 5 environment. The IoT device in 1470 
this build is a Raspberry Pi equipped with an Infineon Optiga SLB 9670 TPM 2.0, which gets 1471 
provisioned with birth credentials (i.e., a public/private key pair and an IDevID). The BRSKI 1472 
factory provisioning build also uses an external certificate authority hosted on the premises of 1473 
NquiringMinds to provide the device certificate signing service. 1474 

▪ The Wi-Fi Easy Connect factory provisioning build is deployed in the Build 1 environment. Its IoT 1475 
devices are Raspberry Pis equipped with a SEALSQ VaultIC Secure Element, which gets 1476 
provisioned with a DPP URI. The Secure Element can also be provisioned with an IDevID 1477 
certificate signed by the SEALSQ INeS certification authority, which is independent of the DPP 1478 
URI. Code for performing the factory provisioning is stored on an SD card. 1479 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

Information regarding the physical architecture of all builds, their related collaborators’ cloud 1480 

components, and the shared environment, as well as the baseline software running on these physical 1481 

architectures, are described in the subsections below. Table 5-1 summarizes the builds that were 1482 

implemented and provides links to the appendices where each is described in detail. 1483 

Table 5-1 Build 1 Products and Technologies 1484 

Build Network-Layer 
Protocols 

Build Champions Link to Details 

Onboarding Builds 

Build 1 Wi-Fi Easy 
Connect 

Aruba/HPE Appendix C 

Build 2 Wi-Fi Easy 
Connect 

CableLabs and OCF Appendix D 

Build 3 BRSKI Sandelman 
Software Works 

Appendix E 

Build 4 Thread Silicon Labs and 
Kudelski IoT 

Appendix F 

Build 5 BRSKI over Wi-Fi NquiringMinds Appendix G 

Factory Provisioning Builds 

BRSKI with Build 5 BRSKI over WIFI SEALSQ and 
NquiringMinds 

Appendix H.3 

Wi-Fi Easy Connect 
with Build 1 

Wi-Fi Easy 
Connect 

SEALSQ and 
Aruba/HPE 

Appendix H.4 

 

5.1 Shared Environment 1485 

The NCCoE IoT Onboarding laboratory contains a shared environment to host several baseline services 1486 

in support of the builds. These baseline services supported configuration and integration work in each of 1487 

the builds and allowed collaborators to work together throughout the build process. This shared 1488 

environment is contained in its own network segment, with access to/from the rest of the lab 1489 

environment closely controlled. In addition, each of the systems in the shared environment is hardened 1490 

with baseline configurations. 1491 

5.1.1 Domain Controller 1492 

The Domain Controller provides Active Directory and Domain Name System (DNS) services supporting 1493 

network access and access control in the lab. It runs on Windows Server 2019. 1494 

5.1.2 Jumpbox 1495 

The jumpbox provides secure remote access and management to authorized collaborators on each of 1496 

the builds. It runs on Windows Server 2019. 1497 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture 1498 

Figure 5-2 is a view of the high-level physical architecture of Build 1 in the NCCoE IoT Onboarding 1499 

laboratory. The build components include an Aruba Wireless Access Point, Aruba Central, UXI Cloud, a 1500 

Cisco Catalyst switch, a SEALSQ INeS CMS CA, and the IoT devices to be onboarded, which include both a 1501 

Raspberry Pi and a UXI sensor. Most of these components are described in Section 3.4.1 and Section 1502 

3.4.3. 1503 

▪ The Aruba Access Point acts as the DPP Configurator and relies on the Aruba Central cloud 1504 
service for authentication and management purposes. 1505 

▪ Aruba Central ties together the IoT Operations, Client Insights, and Cloud Auth services to 1506 
support the network-layer onboarding operations of the build. It also provides an API to support 1507 
the device ownership and bootstrapping information transfer process. 1508 

▪ The Cisco Catalyst Switch provides Power-over-Ethernet and network connectivity to the Aruba 1509 
Access Point. 1510 

▪ The UXI Sensor acts as an IoT device and onboards to the network via Wi-Fi Easy Connect. After 1511 
network-layer onboarding, it performs independent (see Section 3.3.2) application-layer 1512 
onboarding. Once it has application-layer onboarded and is operational on the network, it does 1513 
passive and active monitoring of applications and services and will report outages, disruptions, 1514 
and quality of service issues. 1515 

▪ UXI Cloud is an HPE cloud service that the UXI sensor contacts as part of the application-layer 1516 
onboarding process. The UXI sensor downloads a customer-specific configuration from the UXI 1517 
Cloud so that the UXI sensor can learn about the customer networks and services it needs to 1518 
monitor. 1519 

▪ The Raspberry Pi acts as an IoT device and onboards to the network via Wi-Fi Easy Connect. 1520 

▪ SEALSQ Certificate Authority has been integrated with Build 1 to sign network credentials that 1521 
are issued to IoT devices. 1522 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

Figure 5-2 Physical Architecture of Build 1 1523 

 

5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture 1524 

Figure 5-3 is a view of the high-level physical architecture of the Wi-Fi Easy Connect Factory Provisioning 1525 

Build in the NCCoE IoT Onboarding laboratory. The build components include the IoT device, an SD card 1526 

with factory provisioning code on it, and a Secure Element. See Appendix H.4 for additional details on 1527 

the Wi-Fi Easy Connect Factory Provisioning Build. 1528 

▪ A UXI sensor. 1529 

▪ The IoT Device is a Raspberry Pi. 1530 

▪ The Secure Element is a SEALSQ VaultIC Secure Element and is interfaced with the Raspberry Pi. 1531 
The Secure Element both generates and stores the key material necessary to support the DPP 1532 
URI during the Factory Provisioning Process. 1533 

▪ An SD card with factory provisioning code. 1534 

▪ Aruba Central provides an API to ingest the DPP URI in support of the device ownership and 1535 
bootstrapping information transfer process. 1536 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 43 

Figure 5-3 Physical Architecture of Wi-Fi Easy Connect Factory Provisioning Build 1537 

 

5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture 1538 

Figure 5-3 is a view of the high-level physical architecture of Build 2 in the NCCoE IoT Onboarding 1539 

laboratory. The Build 2 components include the Gateway Access Point, three IoT devices, and the 1540 

Platform Controller, which hosts the application-layer IoTivity service. 1541 

▪ The Gateway Access Point acts as the Custom Connectivity Gateway Agent described in Section 1542 
3.4.2.2 and controls all network-layer onboarding activity within the network. It also hosts OCF 1543 
IoTivity functions, such as the OCF OBT and the OCF Diplomat. 1544 

▪ The Platform Controller described in Section 3.4.2.1 provides management capabilities for the 1545 
Custom Connectivity Gateway Agent. It also hosts the application-layer IoTivity service for the 1546 
IoT devices as described in Section 3.4.8.1. 1547 

▪ The IoT devices serve as reference clients, as described in Section 3.4.2.3. They run OCF 1548 
reference implementations. The IoT devices are onboarded to the network and complete both 1549 
application-layer and network-layer onboarding. 1550 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 44 

Figure 5-4 Physical Architecture of Build 2 1551 

 

5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture 1552 

Figure 5-4 is a view of the high-level physical architecture of Build 3 in the NCCoE IoT Onboarding 1553 

laboratory. The Build 3 components include the onboarding router, a Registrar Server, a MASA server, a 1554 

DMZ switch, IoT devices, a serial console, and an 802.15.4 gateway. 1555 

▪ The onboarding router is a Turris MOX router running OpenWRT. The onboarding router 1556 
quarantines the IoT devices until they complete the BRSKI onboarding process. 1557 

▪ The owner’s Registrar Server hosts the Minerva Fountain Join Registrar Coordinator application 1558 
running in a virtual machine. The Registrar Server determines whether or not a device meets the 1559 
criteria to join the network. 1560 

▪ The MASA server for this build is a Minerva Highway MASA server as outlined in Section 3.4.9.1. 1561 
The role of the MASA server is to receive the voucher-request from the Registrar Server and 1562 
confirm that the Registrar Server has the right to own the device. 1563 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 45 

▪ The DMZ switch is a basic Netgear switch that segments the build from the rest of the lab. 1564 

▪ The IoT devices include an ESP32 Xtensa device with Wi-Fi that will be tested with FreeRTOS and 1565 
RIOT-OS, a Raspberry Pi 3 running Raspbian 11, and an nRF52840 with an 802.15.4 radio that is 1566 
running RIOT-OS. The IoT devices are currently not used in the build but will serve as clients to 1567 
be onboarded onto the network in a future implementation of the build. 1568 

▪ The Sandelman Software Works Reach Pledge Simulator is the device that is onboarded to the 1569 
network in the current build. 1570 

▪ The serial console is a BeagleBone Green with an attached USB hub. The serial console is used to 1571 
access the IoT devices for diagnostic purposes. It also provides power and power control for 1572 
USB-powered devices. 1573 

▪ The 802.15.4 gateway is integrated into the Raspberry Pi 3 via an OpenMote daughter card. This 1574 
gateway will serve to onboard one of the IoT devices in a future implementation of this build. 1575 

Figure 5-5 Physical Architecture of Build 3 1576 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 46 

5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture 1577 

Figure 5-6 is a view of the high-level physical architecture of Build 4 in the NCCoE IoT Onboarding 1578 

laboratory. The Build 4 components include a keySTREAM server, an AWS IoT server, an OpenThread 1579 

Border Router, and a Thread IoT device. 1580 

▪ The keySTREAM server described in Section 3.4.5.1 is the application layer onboarding service 1581 
provided by Kudelski IoT. The IoT device will authenticate to keySTREAM using a Silicon Labs 1582 
chip birth certificate and private key and leveraging Silicon Labs’ Secure Engine in the 1583 
EFR32MG24 chipset (“Secure Vault(TM) High” which is security certified Platform Security 1584 
Architecture (PSA)/Security Evaluation Standard for IoT Platforms (SESIP) Level 3 to protect that 1585 
birth identity with Secure Boot, Secure Debug, and physically unclonable function (PUF) 1586 
wrapped key storage and hardware tamper protection). 1587 

▪ The AWS IoT server provides the MQTT test client for the trusted application-layer onboarding. 1588 
The Proof of Possession Certificate is provisioned for the device using a registration code from 1589 
the AWS server. 1590 

▪ The OpenThread Border Router is run on a Raspberry Pi 3B and serves as the Thread 1591 
Commissioner and Leader. It communicates with the IoT device by means of a Silicon Labs 1592 
Gecko Wireless Devkit which serves as the 802.15.4 antenna for the build. 1593 

▪ The IoT Device in this build is a Silicon Labs Thunderboard (BRD2601A) containing the 1594 
EFR32MG24Bx 15.4 SoC with Secure Vault (TM) High running the Thread protocol. It serves as 1595 
the child node on the Thread network and is onboarded onto AWS IoT Core using credentials 1596 
provisioned from the Kudelski keySTREAM service. 1597 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 47 

Figure 5-6 Physical Architecture of Build 4 1598 

 

5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture 1599 

Figure 5-6 is a view of the high-level physical architecture of Build 5 in the NCCoE IoT Onboarding 1600 

laboratory. The Build 5 components include a MASA, Registrar, Router Access Point, an IoT Device, and a 1601 

Secure Element: 1602 

▪ A Raspberry Pi 4B serves as the MASA, Registrar and Router Access Point for the local network. 1603 
The role of the MASA is to receive the voucher-request from the Registrar and confirm that the 1604 
Registrar has the right to own the device. The registrar self-signs credentials, namely the Local 1605 
Device Identifier (LDevID), issued to the IoT devices. The pledge (IoT device) gets its IDevID 1606 
certificate for device identity from the Manufacturer Provisioning Root (MPR) server during the 1607 
factory provisioning process, it can be assumed to be present on the device at the point of 1608 
onboarding. The Registrar determines whether or not a device meets the criteria to join the 1609 
network. The router access point runs an open and closed BRSKI network, the closed BRSKI 1610 
network may only be accessed through secure onboarding, which is performed via the open 1611 
network. The registrar leverages a local tdx Volt instance to sign and verify verifiable credentials. 1612 

▪ Raspberry Pi 4Bs act as IoT Devices (pledges) for this build. 1613 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 48 

▪ The Secure Element is an Infineon Optiga SLB 9670 TPM 2.0 Secure Element, and both generates 1614 
and stores the key material necessary to support the IDevID certificate during the Factory 1615 
Provisioning Process, as well as the onboarding process to request the voucher from the MASA 1616 
via the registrar and the request to the registrar to sign the LDevID. The system can also be 1617 
configured to use a SEALSQ VaultIC408 secure element. See Appendix H.3 for additional details 1618 
on the BRSKI factory provisioning builds. 1619 

Figure 5-7 Physical Architecture of Build 5 1620 

 

5.6.1 BRSKI Factory Provisioning Build Physical Architecture 1621 

Figure 5-8 is a view of the high-level physical architecture of the BRSKI Factory Provisioning Build in the 1622 

NCCoE IoT Onboarding laboratory. This build uses the same IoT device as Build 5: a Raspberry Pi 1623 

integrated with an Infineon Optiga SLB 9670 TPM 2.0 Secure Element. The factory provisioning code is 1624 

hosted on an SD card. When a provisioning event is triggered the IoT device will attempt a connection to 1625 

a Manufacturer Provisioning Root (MPR) server that sits in the cloud and acts as the certification 1626 

authority. It signs the IDevID (X.509) certificate, which is then passed back to the IoT device for 1627 

installation. As in Build 5, the Router + Services hosts a MASA, which is given device identity information 1628 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 49 

in order to verify voucher requests during the BRKSI process. See Appendix H.3 for additional details on 1629 

the BRSKI factory provisioning builds. 1630 

Figure 5-8 Physical Architecture of BRSKI Factory Provisioning Build 1631 

 

6 General Findings 1632 

6.1 Wi-Fi Easy Connect 1633 

The Wi-Fi Easy Connect solution that was demonstrated in Build 1 and Build 2 supports trusted network-1634 

layer onboarding in a manner that is secure, efficient, and flexible enough to meet the needs of various 1635 

use cases. It is simple enough to be used by consumers, who typically do not have specialized technical 1636 

knowledge. In addition, to meet the needs of enterprises, it may be used to onboard a large number of 1637 

devices quickly. Builds 1 and 2 are implementations of this protocol, and they are interoperable: IoT 1638 

devices that were provisioned for use with Build 1 were able to be onboarded onto the network using 1639 

Build 2, and IoT devices that were provisioned for use with Build 2 were able to be onboarded onto the 1640 

network using Build 1. 1641 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 50 

6.1.1 Mutual Authentication 1642 

Although DPP is designed to support authentication of the network by the IoT device as well as 1643 

authentication of the device by the network, the Wi-Fi Easy Connect solutions that were demonstrated 1644 

in builds 1 and 2 do not demonstrate mutual authentication at the network layer. They only support 1645 

authentication of the device. In order to authenticate the network, the device needs to be provided with 1646 

the DPP URI for the network configurator, which means that the device has to have a functional user 1647 

interface so that the DPP URI can be input into it. The devices being used in builds 1 and 2 do not have 1648 

user interfaces. 1649 

6.1.2 Mutual Authorization 1650 

When using DPP, device authorization is based on possession of the device’s DPP URI. When the device 1651 

is acquired, its DPP URI is provided to the device owner. A trusted administrator of the owner’s network 1652 

is assumed to approve addition of the device’s DPP URI to the database or cloud service where the DPP 1653 

URIs of authorized devices are stored. During the onboarding process, the fact that the owning network 1654 

is in possession of the device’s DPP URI indicates to the network that the device is authorized to join it. 1655 

DPP supports network authorization using the Resurrecting Duckling security model [13]. Although the 1656 

device cannot cryptographically verify that the network is authorized to onboard it, the fact that the 1657 

network possesses the device’s public key is understood by the device to implicitly authorize the 1658 

network to onboard the device. The assumption is that an unauthorized network would not have 1659 

possession of the device and so would not be able to obtain the device’s public key. While this assurance 1660 

of authorization is not cryptographic, it does provide some level of assurance that the “wrong” network 1661 

won’t onboard it. 1662 

6.1.3 Secure Storage 1663 

The UXI sensor used in Build 1 has a TPM where the device’s birth credential and private key are stored, 1664 

providing a secure root of trust. However, the lack of secure storage on some of the other IoT devices 1665 

(e.g., the Raspberry Pis) used to demonstrate onboarding in Build 2 is a current weakness. Ensuring that 1666 

the confidentiality of a device’s birth, network, and other credentials is protected while stored on the 1667 

device is an essential aspect of ensuring the security of the network-layer onboarding process, the 1668 

device, and the network itself. To fully demonstrate trusted network-layer onboarding, devices with 1669 

secure storage should be used in the future whenever possible. 1670 

6.2 BRSKI 1671 

The BRSKI solution that is demonstrated in Build 3 supports trusted network-layer onboarding in a 1672 

manner that is secure, efficient, and able to meet the needs of enterprises. It may be used to onboard a 1673 

large number of devices quickly onto a wired network. This BRSKI build is based on IETF RFC 8995 [7]. 1674 

The build has a reliance on the manufacturer to provision keys for the onboarding device and has a 1675 

reliance on a cloud-based service for the MASA server. The BRSKI solution that is demonstrated in Build 1676 

5 provides similar trusted functionality for onboarding devices onto a Wi-Fi network. This BRSKI build is 1677 

based on an IETF individual draft describing how to run BRSKI over IEEE 802.11 [10]. 1678 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 51 

6.2.1 Reliance on the Device Manufacturer 1679 

Organizations implementing BRSKI (whether wired or over Wi-Fi) should be aware of the reliance that 1680 

they will have on the IoT device manufacturer in properly and securely provisioning their devices. If keys 1681 

become compromised, attackers may be able to onboard their own devices to the network, revoke 1682 

certificates to prevent legitimate devices from being onboarded, or onboard devices belonging to others 1683 

onto the attacker’s network using the attacker’s MASA. These concerns are addressed in depth in RFC 1684 

8995 section 11.6. If a device manufacturer goes out of business or otherwise shuts down their MASA 1685 

servers, the onboarding services for their devices will no longer function. 1686 

During operation, onboarding services may become temporarily unavailable for a number of reasons. In 1687 

the case of a DoS attack on the MASA, server maintenance, or other outage on the part of the 1688 

manufacturer, an organization will not be able to access the MASA. These concerns are addressed in 1689 

depth in RFC 8995 section 11.1. 1690 

6.2.2 Mutual Authentication 1691 

BRSKI supports authentication of the IoT device by the network as well as authentication of the network 1692 

by the IoT device. The Registrar authenticates the device when it receives the IDevID from the device. 1693 

The MASA confirms that the Registrar is the legitimate owner or authorized onboarder of the device and 1694 

issues a voucher. The device is able to authenticate the network using the voucher that it receives back 1695 

from the MASA. This process is explained in depth in RFC 8995 section 11.5. 1696 

6.2.3 Mutual Authorization 1697 

BRSKI authorization for the IoT device is done via the voucher that is returned to the Registrar from the 1698 

MASA. The voucher states which network the IoT device is authorized to join. The Registrar determines 1699 

the level of access the IoT device has to the network. 1700 

6.2.4 Secure Storage 1701 

Build 5 uses a Secure Element attached to the IoT devices (e.g., Raspberry Pi devices) to store the IDevID 1702 

after it is generated during the factory provisioning process (see Appendix H.3 for more details), 1703 

however the LDevID is not stored on the Secure Element after network-layer onboarding is completed. 1704 

The lack of secure storage on the IoT devices (e.g., the Raspberry Pi devices) used to demonstrate 1705 

onboarding in Build 3 is a current weakness. Ensuring that the confidentiality of a device’s birth, 1706 

network, and other credentials is protected while stored on the device is an essential aspect of ensuring 1707 

the security of the network-layer onboarding process, the device, and the network itself. To fully 1708 

demonstrate trusted network-layer onboarding, devices with secure storage should be used in the 1709 

future whenever possible. 1710 

6.3 Thread 1711 

We do not have any findings with respect to trusted network-layer onboarding using the Thread 1712 

commissioning protocol. Build 4 demonstrated the connection of an IoT device to a Thread network, but 1713 

not trusted onboarding of the Thread network credentials to the device. In Build 4, a passphrase is 1714 

generated on the IoT device and then a person is required to enter this passphrase into the OpenThread 1715 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 52 

Border Router’s (OTBR) web interface. This passphrase serves as a pre-shared key that the device uses 1716 

to join the Thread network. Due to the fact that a person must be privy to this passphrase in order to 1717 

provide it to the OTBR, this network-layer onboarding process is not considered to be trusted, according 1718 

to the definition of trusted network-layer onboarding that we provided in Section 1.2. 1719 

After connecting to the Thread network using the passphrase, the Build 4 device was successfully able to 1720 

gain access to the public IP network via a border router. This enabled the IoT device that was 1721 

communicating using the Thread wireless protocol to communicate with cloud services and use them to 1722 

successfully perform trusted application-layer onboarding to the AWS IoT Core. 1723 

6.4 Application-Layer Onboarding 1724 

We successfully demonstrated both: 1725 

▪ streamlined application-layer onboarding (to the OCF security domain in Build 2) and 1726 

▪ independent application-layer onboarding (to the UXI cloud in Build 1 and to the AWS IoT Core 1727 
using the Kudelski keySTREAM service in Build 4). 1728 

6.4.1 Independent Application-Layer Onboarding 1729 

Support for independent application-layer onboarding requires the device manufacturer to pre-1730 

provision the device with software to support application-layer onboarding to the specific application 1731 

service (e.g., the UXI cloud or the AWS IoT Core) desired. The Kudelski keySTREAM service supports the 1732 

application-layer onboarding provided in Build 4. KeySTREAM is a device security management service 1733 

that runs as a SaaS platform on the Amazon cloud. Build 4 relies on an integration that has been 1734 

performed between Silicon Labs and Kudelski keySTREAM. KeySTREAM has integrated software libraries 1735 

with the Silicon Lab EFR32MG24 (MG24) IoT device’s secure vault to enable the private signing key that 1736 

is associated with an application-layer certificate to be stored into the secure vault using security 1737 

controls that are available on the MG24. This integration ensures that application-layer credentials can 1738 

be provisioned into the vault securely such that no key material is misused or exposed. 1739 

Because the device is prepared for application-layer onboarding on behalf of a specific, pre-defined 1740 

customer in Build 4 and this ownership information is sealed into device firmware, the device is 1741 

permanently identified as being owned by that customer. 1742 

6.4.2 Streamline Application-Layer Onboarding 1743 

Support for streamlined application-layer onboarding does not necessarily present such a burden on the 1744 

device manufacturer to provision application-layer onboarding software and/or credentials to the device 1745 

at manufacturing time. If desired, the manufacturer could pre-install application-layer bootstrapping 1746 

information onto the device at manufacturing time, as must be done in the independent application-1747 

layer onboarding case. Alternatively, the device manufacturer may simply ensure that the device has the 1748 

capability to generate one-time application-layer bootstrapping information at runtime and use the 1749 

secure exchanges inherent in trusted network-layer onboarding to support application-layer 1750 

onboarding. 1751 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 53 

7 Additional Build Considerations 1752 

The Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management 1753 

project is now complete, so no additions or changes to the existing builds are planned as part of this 1754 

project effort. As trusted network-layer onboarding is increasingly adopted, however, others may wish 1755 

to continue implementation efforts to develop new build capabilities or enhance existing ones, so it is 1756 

worth noting potential areas of further work. Various ways in which individual builds could be enhanced 1757 

are noted in the appendices that detail each build’s technologies and architectures. For example, some 1758 

builds could be enhanced by the addition of architectural components that they have not yet 1759 

implemented, such as secure device storage; the use of an independent, third-party certificate signing 1760 

authority; support for network-layer onboarding using Thread MeshCoP; support for application-layer 1761 

onboarding; and support (or enhanced support) for ongoing device authorization. In addition to adding 1762 

components to support these capabilities, future work could potentially involve demonstration of 1763 

application-layer onboarding using the FIDO Alliance’s FIDO Device Onboard (FDO) specification and/or 1764 

the Connectivity Standards Alliance (CSA) MATTER specification. Other future work could involve 1765 

integrating additional security mechanisms with network-layer onboarding, beginning at device boot-up 1766 

and extending through all phases of the device lifecycle, to further protect the device and, by extension, 1767 

the network. For example, future builds could include the capability to demonstrate the integration of 1768 

trusted network-layer onboarding with zero trust-inspired capabilities such as those described in the 1769 

following subsections. In addition, the scope of implementation efforts could potentially be expanded 1770 

beyond the current focus on IP-based networks. While this project’s goal has been to tackle what is 1771 

currently implementable, the subsections that follow briefly discuss areas that could potentially be 1772 

addressed by others in the future. 1773 

7.1 Network Authentication 1774 

Future builds could be designed to demonstrate network authentication in addition to device 1775 

authentication as part of the network-layer onboarding process. Network authentication enables the 1776 

device to verify the identity of the network that will be taking control of it prior to permitting itself to be 1777 

onboarded. 1778 

7.2 Device Communications Intent 1779 

Future builds could be designed to demonstrate the use of network-layer onboarding protocols to 1780 

securely transmit device communications intent information from the device to the network (i.e., to 1781 

transmit this information in encrypted form with integrity protections). Secure conveyance of device 1782 

communications intent information, combined with enforcement of it, would enable the build to ensure 1783 

that IoT devices are constrained to sending and receiving only those communications that are explicitly 1784 

required for each device to fulfill its purpose. Build 5 currently enforces device communications intent as 1785 

part of its continuous assurance process. Build 5 determines device communications intent information 1786 

(e.g., the device’s MUD file URL) based on device type rather than conveying this information from the 1787 

device to the network during onboarding. 1788 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 54 

7.3 Network Segmentation 1789 

Future builds could demonstrate the ability of the onboarding network to dynamically assign each new 1790 

device that is permitted to join the network to a specific subnetwork. The router may have multiple 1791 

network segments configured to which an onboarded device may be dynamically assigned. The decision 1792 

regarding which segment (subnetwork) to which to assign the device could potentially be based on the 1793 

device’s DHCP fingerprint, other markers of the device’s type, or some indication of the device’s 1794 

trustworthiness, subject to organizational policy. 1795 

7.4 Integration with a Lifecycle Management Service 1796 

Future builds could demonstrate trusted network-layer onboarding of a device, followed by streamlined 1797 

trusted application-layer onboarding of that device to a lifecycle management application service. Such 1798 

a capability would ensure that, once connected to the local network, the IoT device would automatically 1799 

and securely establish an association with a trusted lifecycle management service that is designed to 1800 

keep the device updated and patched on an ongoing basis. 1801 

7.5 Network Credential Renewal 1802 

Some devices may be provisioned with network credentials that are X.509 certificates and that will, 1803 

therefore, eventually expire. Future build efforts could explore and demonstrate potential ways of 1804 

renewing such credentials without having to reprovision the credentials to the devices. 1805 

7.6 Integration with Supply Chain Management Tools 1806 

Future work could include definition of an open, scalable supply chain integration service that can 1807 

provide additional assurance of device provenance and trustworthiness automatically as part of the 1808 

onboarding process. The supply chain integration service could be integrated with the authorization 1809 

service to ensure that only devices whose provenance meets specific criteria and that reach a threshold 1810 

level of trustworthiness will be onboarded or authorized. 1811 

7.7 Attestation 1812 

Future builds could integrate device attestation capabilities with network-layer onboarding to ensure 1813 

that only IoT devices that meet specific attestation criteria are permitted to be onboarded. In addition 1814 

to considering the attestation of each device as a whole, future attestation work could also focus on 1815 

attestation of individual device components, so that detailed attestation could be performed for each 1816 

board, integrated circuit, and software program that comprises a device. 1817 

7.8 Mutual Attestation 1818 

Future builds could implement mutual attestation of the device and its application services. In one 1819 

direction, device attestation could be used to enable a high-value application service to determine 1820 

whether a device should be given permission to access it. In the other direction, attestation of the 1821 

application service could be used to enable the device to determine whether it should give the 1822 

application service permission to access and update the device. 1823 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 55 

7.9 Behavioral Analysis 1824 

Future builds could integrate artificial intelligence (AI) and machine learning (ML)-based tools that are 1825 

designed to analyze device behavior to spot anomalies or other potential signs of compromise. Any 1826 

device that is flagged as a potential threat by these tools could have its network credentials invalidated 1827 

to effectively evict it from the network, be quarantined, or have its interaction with other devices 1828 

restricted in some way. 1829 

7.10 Device Trustworthiness Scale 1830 

Future efforts could incorporate the concept of a device trustworthiness scale in which information 1831 

regarding device capabilities, secure firmware updates, the existence (or not) of a secure element for 1832 

private key protection, type and version of each of the software components that comprise the device, 1833 

etc., would be used as input parameters to calculate each device’s trustworthiness value. Calculating 1834 

such a value would essentially provide the equivalent of a background check. A history for the device 1835 

could be maintained, including information about whether it has ever been compromised, if it has a 1836 

known vulnerability, etc. Such a trustworthiness value could be provided as an onboarding token or 1837 

integrated into the authorization service so permission to onboard to the network, or to access certain 1838 

resources once joined, could be granted or denied based on historical data and trustworthiness 1839 

measures. 1840 

7.11 Resource Constrained Systems 1841 

At present, onboarding solutions for technologies such as Zigbee, Z-Wave, and BLE use their own 1842 

proprietary mechanisms or depend on gateways. In the future, efforts could be expanded to include 1843 

onboarding in highly resource-constrained systems and non-IP systems without using gateways. Future 1844 

work could include trying to perform trusted onboarding in these smaller microcontroller-constrained 1845 

spaces in a standardized way with the goal of bringing more commonality across various solutions 1846 

without having to rely on IP gateways. 1847 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 56 

1848 Appendix A List of Acronyms 
AAA Authentication, Authorization, and Accounting 

ACL Access Control List 

AES Advanced Encryption Standard 

AI Artificial Intelligence 

AP Access Point 

API Application Programming Interface 

AWS Amazon Web Services 

BLE Bluetooth Low Energy 

BRSKI Bootstrapping Remote Secure Key Infrastructure 

BSS Basic Service Set 

CA Certificate Authority 

CAS Continuous Authorization Service 

CMS Certificate Management System 

CPU Central Processing Unit 

CRADA Cooperative Research and Development Agreement 

CRL Certificate Revocation List 

DHCP Dynamic Host Configuration Protocol 

DMZ Demilitarized Zone 

DNS Domain Name System 

DPP Device Provisioning Protocol 

DTLS Datagram Transport Layer Security 

ECC Elliptic Curve Cryptography 

ESP (Aruba) Edge Services Platform 

ESS Extended Service Set 

EST Enrollment over Secure Transport 

HPE Hewlett Packard Enterprise 

HSM Hardware Security Module 

HTTPS Hypertext Transfer Protocol Secure 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 57 

IDevID Initial Device Identifier 

IE Information Element 

IEC International Electrotechnical Commission 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

IPsec Internet Protocol Security 

ISO International Organization for Standardization 

LAN Local Area Network, Local Area Networking 

LDevID Local Device Identifier 

LmP Linux microPlatform 

MASA Manufacturer Authorized Signing Authority 

MeshCoP Thread Mesh Commissioning Protocol 

ML Machine Learning 

mPKI Managed Public Key Infrastructure 

MUD Manufacturer Usage Description 

NAC Network Access Control 

NCCoE National Cybersecurity Center of Excellence 

NIST National Institute of Standards and Technology 

OBT Onboarding Tool 

OCF Open Connectivity Foundation 

OCSP Online Certificate Status Protocol 

OS Operating System 

OTA Over the Air 

OTBR OpenThread Border Router 

PKI Public Key Infrastructure 

PSK Pre-Shared Key 

R&D Research & Development 

RBAC Role-Based Access Control 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 58 

RCP Radio Coprocessor 

RESTful Representational State Transfer 

RFC Request for Comments 

RoT Root of Trust 

RSA Rivest-Shamir-Adleman (public-key cryptosystem) 

SaaS Software as a Service 

SE Secure Element 

SEF Secure Element Factory 

SoC System-on-Chip 

SP Special Publication 

SSID Service Set Identifier 

SSW Sandelman Software Works 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

TOFU Trust On First Use 

TPM Trusted Platform Module 

URI Uniform Resource Identifier 

UXI (Aruba) User Experience Insight 

VM Virtual Machine 

WAN Wide Area Network, Wide Area Networking 

WFA Wi-Fi Alliance 

WPA2 Wi-Fi Protected Access 2 

WPA3 Wi-Fi Protected Access 3 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 59 

1849 Appendix B Glossary 
Application-Layer 
Bootstrapping 
Information 

Information that the device and an application-layer service must have in order 
for them to mutually authenticate and use a trusted application-layer 
onboarding protocol to onboard a device at the application layer. There is 
application-layer bootstrapping information about the device that the network 
must be in possession of, and application-layer bootstrapping information 
about the application service that the device must be in possession of. A typical 
example of application-layer bootstrapping information that the device must 
have is the public key that corresponds to the trusted application service’s 
private key. 

Application-Layer 
Onboarding 

The process of providing IoT devices with the application-layer credentials they 
need to establish a secure (i.e., encrypted) association with a trusted 
application service. This document defines two types of application-layer 
onboarding: independent and streamlined. 

Independent 
Application-Layer 
Onboarding 

An application-layer onboarding process that does not rely on use of the 
network-layer onboarding process to transfer application-layer bootstrapping 
information between the device and the application service. 

Network-Layer 
Bootstrapping 
Information 

Information that the device and the network must have in order for them to 
use a trusted network-layer onboarding protocol to onboard a device. There is 
network-layer bootstrapping information about the device that the network 
must be in possession of, and network-layer bootstrapping information about 
the network that the device must be in possession of. A typical example of 
device bootstrapping information that the network must have is the public key 
that corresponds with the device’s private key. 

Network-Layer 
Onboarding 

The process of providing IoT devices with the network-layer credentials and 
policy they need to join a network upon deployment. 

Streamlined 
Application-Layer 
Onboarding 

An application-layer onboarding process that uses the network-layer 
onboarding protocol to securely transfer application-layer bootstrapping 
information between the device and the application service. 

Trusted Network-
Layer Onboarding 

A network-layer onboarding process that meets the following criteria: 

• provides each device with unique network credentials, 

• enables the device and the network to mutually authenticate, 

• sends devices their network credentials over an encrypted channel, 

• does not provide any person with access to the network credentials, and 

• can be performed repeatedly throughout the device lifecycle to enable: 

• the device’s network credentials to be securely managed and replaced 
as needed, and 

• the device to be securely onboarded to other networks after being 
repurposed or resold. 

  



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 60 

1850 Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE) 

1851 C.1 Technologies 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 1852 

The onboarding infrastructure and related technology components for Build 1 have been provided by 1853 

Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 1854 

The CA used for signing credentials issued to IoT devices was provided by SEALSQ, a subsidiary of 1855 

WISeKey. For more information on these collaborators and the products and technologies that they 1856 

contributed to this project overall, see Section 3.4. 1857 

Build 1 network onboarding infrastructure components within the NCCoE lab consist of the Aruba 1858 

Access Point. Build 1 also requires support from Aruba Central and the UXI Cloud, which are accessed via 1859 

the internet. IoT devices that can be network-layer onboarded using Build 1 include the Aruba/HPE UXI 1860 

sensor and CableLabs Raspberry Pi. The UXI sensor also includes the Aruba UXI Application, which 1861 

enables it to use independent (see Section 3.3.2) application-layer onboarding to be onboarded at the 1862 

application layer as well, providing that the network to which the UXI sensor is onboarded has 1863 

connectivity to the UXI Cloud via the internet. The Build 1 implementation supports the provisioning of 1864 

all three types of network credentials defined in DPP: 1865 

▪ Connector for DPP-based network access 1866 

▪ Password/passphrase/PSK for WPA3/WPA2 network access 1867 

▪ X.509 certificates for 802.1X network access 1868 

Build 1 has been integrated with the SEALSQ CA on SEALSQ INeS CMS to enable Build 1 to obtain signed 1869 

certificates from this CA when Build 1 is onboarding devices and issuing credentials for 802.1X network 1870 

access. When issuing credentials for DPP and WPA3/WPA2-based network access, the configurator does 1871 

not need to use a CA. 1872 

Table C-1 lists the technologies used in Build 1. It lists the products used to instantiate each component 1873 

of the reference architecture and describes the security function that the component provides. The 1874 

components listed are logical. They may be combined in physical form, e.g., a single piece of hardware 1875 

may house a network onboarding component, a router, and a wireless access point. 1876 

Table C-1 Build 1 Products and Technologies 1877 

Component Product Function 

Network-Layer 
Onboarding 
Component (Wi-Fi 
Easy Connect 
Configurator) 

Aruba Access Point 
with support from 
Aruba Central 

Runs the Wi-Fi Easy Connect network-layer onboarding 
protocol to interact with the IoT device to perform one-
way or mutual authentication, establish a secure 
channel, and securely provide local network credentials 
to the device. If the network credential that is being 
provided to the device is a certificate, the onboarding 
component will interact with a certificate authority to 
sign the certificate. The configurator deployed in Build 1 
supports DPP 2.0, but it is also backward compatible with 
DPP 1.0. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 61 

Component Product Function 

Access Point, 
Router, or Switch 

Aruba Access Point Wireless access point that also serves as a router. It may 
get configured with per-device access control lists (ACLs) 
and policy when devices are onboarded. 

Supply Chain 
Integration Service 

Aruba Central The device manufacturer provides device bootstrapping 
information to the HPE Cloud via the REST API that is 
documented in the DPP specification. Once the device is 
transferred to an owner, the HPE Cloud provides the 
device bootstrapping information (i.e., the device’s DPP 
URI) to the device owner’s private tenancy within the 
HPE Cloud. 

Authorization 
Service 

Cloud Auth (on 
Aruba Central) 

The authorization service provides the configurator and 
router with the information needed to determine if the 
device is authorized to be onboarded to the network 
and, if so, whether it should be assigned any special roles 
or be subject to any specific access controls. It provides 
device authorization, role-based access control, and 
policy enforcement. 

Build-Specific IoT 
Device 

Aruba UXI Sensor The IoT device that is used to demonstrate both trusted 
network-layer onboarding and trusted application-layer 
onboarding. It runs the Wi-Fi Easy Connect network-layer 
onboarding protocol supported by the build to securely 
receive its network credentials. It also has an application 
that enables it to perform independent (see Section 
3.3.2) application-layer onboarding. 

Generic IoT Device Raspberry Pi The IoT device that is used to demonstrate only trusted 
network-layer onboarding. 

Secure Storage Aruba UXI Sensor 
Trusted Platform 
Module (TPM) 

Storage on the IoT device that is designed to be 
protected from unauthorized access and capable of 
detecting attempts to hack or modify its contents. Used 
to store and process private keys, credentials, and other 
information that must be kept confidential. 

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

Issues and signs certificates as needed. These certificates 
can be used by the device to connect to any 802.1a-
based network. 

Application-Layer 
Onboarding 
Service 

UXI Application and 
UXI Cloud 

After connecting to the network, the device downloads 
its application-layer credentials from the UXI cloud and 
uses them to authenticate to the UXI application, with 
which it interacts. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 62 

Component Product Function 

Ongoing Device 
Authorization 

N/A – Not intended 
for inclusion in this 
build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, 
it may perform behavioral analysis or device attestation 
and use the results to determine whether the device 
should be granted access to certain high-value resources, 
assigned to a particular network segment, or other action 
taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not 
implemented at the 
time of publication) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs information the device 
requires for application-layer onboarding (if applicable). 
May populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

1878 C.2 Build 1 Architecture 

1879 C.2.1 Build 1 Logical Architecture 

The network-layer onboarding steps that are performed in Build 1 are depicted in Figure C-1. These 1880 

steps are broken into two main parts: those required to transfer device bootstrapping information from 1881 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 1882 

required to perform network-layer onboarding of the device (labeled with numbers). 1883 

The device manufacturer: 1884 

1. Creates the device and installs a unique birth credential into secure storage on the device. Then 1885 

the manufacturer sends the device’s bootstrapping information, which takes the form of a DPP 1886 

URI, to Aruba Central in the HPE cloud. The device manufacturer interfaces with the HPE cloud 1887 

via a REST API. 1888 

2. When the device is purchased, the device’s DPP URI is sent to the HPE cloud account of the 1889 

device’s owner. The device owner’s cloud account contains the DPP URIs for all devices that it 1890 

owns. 1891 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 63 

Figure C-1 Logical Architecture of Build 1 1892 

 

After obtaining the device, the device owner provisions the device with its network credentials by 1893 

performing the following network-layer onboarding steps: 1894 

1. The owner puts the device into onboarding mode. The device waits for the DPP exchange to 1895 

begin. This exchange includes the device issuing a discovery message, which the owner’s 1896 

configurator hears. The discovery message is secured such that it can only be decoded by an 1897 

entity that possesses the device’s DPP URI. 1898 

2. The configurator consults the list of DPP URIs of all owned devices to decode the discovery 1899 

message and verify that the device is owned by the network owner and is therefore assumed to 1900 

be authorized to be onboarded to the network. 1901 

3. Assuming the configurator finds the device’s DPP URI, the configurator and the device perform 1902 

the authentication phase of DPP, which is a three-way handshake that authenticates the device 1903 

and establishes a secure (encrypted) channel with it. 1904 

4. The configurator and the device use this secure channel to perform the configuration phase of 1905 

DPP, which is a three-way handshake that provisions network credentials to the device, along 1906 

with any other information that may be needed, such as the network SSID. 1907 

5. The router or switch consults the owner’s authentication, authorization, and accounting (AAA) 1908 

service to determine if the device should be assigned any special roles or if any special ACL 1909 

entries should be made for the device. If so, these are configured on the router or switch. 1910 

IoT Devices

Access Point, Router, or Switch

(2) Configurator verifies that the device is authorized 

to be onboarded to the network by obtaining its public 

key from the list of owned device DPP URIs

Configurator

(4) Configurator and device perform the configuration phase 

of DPP—a 3-way handshake that provisions network 

credentials to the device (e.g., SSID, unique PSK)

(6) Acquire an IP address via DHCP and use the network 

credentials to connect to the network securely

HPE Cloud

(B) Provide the 

device’s DPP 

URI to the 

device owner’s 

account in the 

cloud

Device Manufacturer 
(A) Create the IoT Device

Install the device’s unique birth credential into the device’s secure storage

Send the device’s DPP URI to the HPE Cloud (via the REST API)

(1) Device enters onboarding 

mode and waits for DPP 

exchange to begin

(3) Configurator and device 

perform the authentication 

phase of DPP—a 3-way 

handshake that authenticates 

the device and establishes a 

secure channel with it

Network-Layer Onboarding Steps

IoT Device Manufacturing and Ownership Transfer Activities

Authorization

Service

(5) Assign any special roles or 

ACLs pertaining to the device



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 64 

6. The device uses Dynamic Host Configuration Protocol (DHCP) to acquire an IP address and then 1911 

uses its newly provisioned network credentials to connect to the network securely. 1912 

This completes the network-layer onboarding process. 1913 

After the device is network-layer onboarded and connects to the network, it automatically performs 1914 

independent (see Section 3.3.2) application-layer onboarding. The application-layer onboarding steps 1915 

are not depicted in Figure C-1. During the application-layer onboarding process, the IoT device, which is 1916 

a UXI sensor, authenticates itself to the UXI cloud using its manufacturing certificate and pulls its 1917 

application-layer credentials from the UXI cloud. In addition, if a firmware update is relevant, this also 1918 

happens. The UXI sensor contacts the UXI cloud service to download a customer-specific configuration 1919 

that tells it what to monitor on the customer’s network. The UXI sensor then conducts the network 1920 

performance monitoring functions it is designed to perform and uploads the data it collects to the UXI 1921 

application dashboard. 1922 

1923 C.2.2 Build 1 Physical Architecture 

Section 5.2 describes the physical architecture of Build 1.  1924 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 65 

1925 Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) 

1926 D.1 Technologies 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 1927 

Build 2 also supports streamlined (see Section 3.3.2) application-layer onboarding to the OCF security 1928 

domain. The network-layer onboarding infrastructure for Build 2 is provided by CableLabs and the 1929 

application-layer onboarding infrastructure is provided by OCF. IoT devices that were network-layer 1930 

onboarded using Build 2 were provided by Aruba/HPE and OCF. Only the IoT devices provided by OCF 1931 

were capable of being both network-layer onboarded and streamlined application-layer onboarded. For 1932 

more information on these collaborators and the products and technologies that they contributed to 1933 

this project overall, see Section 3.4. 1934 

Build 2 onboarding infrastructure components consist of the CableLabs Custom Connectivity Gateway 1935 

Agent, which runs on the Gateway Access Point, and the Platform Controller. IoT devices onboarded by 1936 

Build 2 include the Aruba UXI Sensor and CableLabs Raspberry Pi. 1937 

Table D-1 lists the technologies used in Build 2. It lists the products used to instantiate each logical build 1938 

component and the security function that the component provides. The components listed are logical. 1939 

They may be combined in physical form, e.g., a single piece of hardware may house a network 1940 

onboarding component, a router, and a wireless access point. 1941 

Table D-1 Build 2 Products and Technologies 1942 

Component Product Function 

Network-Layer 
Onboarding 
Component 
(Configurator) 

CableLabs Custom 
Connectivity 
Gateway Agent 
with support from 
CableLabs 
Platform 
Controller 

Runs the Wi-Fi Easy Connect network-layer onboarding 
protocol to interact with the IoT device to perform one-
way or mutual authentication, establish a secure channel, 
and securely provide local network credentials to the 
device. It also securely conveys application-layer 
bootstrapping information to the device as part of the Wi-
Fi Easy Connect protocol to support application-layer 
onboarding. The network-layer onboarding component 
deployed in Build 2 supports DPP 2.0, but it is also 
backward compatible with DPP 1.0. 

Access Point, 
Router, or Switch 

Raspberry Pi 
(running Custom 
Connectivity 
Gateway Agent) 

The access point includes a configurator that runs the Wi-
Fi Easy Connect Protocol. It also serves as a router that: 1) 
routes all traffic exchanged between IoT devices and the 
rest of the network, and 2) assigns each IoT device to a 
local network segment appropriate to the device’s trust 
level (optional). 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 66 

Component Product Function 

Supply Chain 
Integration Service 

CableLabs 
Platform 
Controller/IoTivity 
Cloud Service 

The device manufacturer provides device bootstrapping 
information (i.e., the DPP URI) to the CableLabs Web 
Server. There are several potential mechanisms for 
sending the DPP URI to the CableLabs Web Server. The 
manufacturer can send the device’s DPP URI to the Web 
Server directly, via an API. The API used is not the REST API 
that is documented in the DPP specification. However, the 
API is published and was made available to manufacturers 
wanting to onboard their IoT devices using Build 2. Once 
the device is transferred to an owner, the CableLabs Web 
Server provides the device’s DPP URI to the device owner’s 
authorization service, which is part of the owner’s 
configurator. 

Authorization 
Service 

CableLabs 
Platform 
Controller 

The authorization service provides the configurator and 
router with the information needed to determine if the 
device is authorized to be onboarded to the network and, 
if so, whether it should be assigned any special roles, 
assigned to any specific network segments, or be subject 
to any specific access controls. 

Build-Specific IoT 
Device 

Raspberry Pi 
(Bulb) 

Raspberry Pi 
(switch) 

The IoT devices that are used to demonstrate both trusted 
network-layer onboarding and trusted application-layer 
onboarding. They run the Wi-Fi Easy Connect network-
layer onboarding protocol to securely receive their 
network credentials. They also support application-layer 
onboarding of the device to the OCF environment by 
conveying the device’s application-layer bootstrapping 
information as part of the network-layer onboarding 
protocol. 

Generic IoT Device Aruba UXI Sensor The IoT device that is used to demonstrate only trusted 
network-layer onboarding. 

Secure Storage N/A (IoT device is 
not equipped 
with secure 
storage) 

Storage designed to be protected from unauthorized 
access and capable of detecting attempts to hack or 
modify its contents. Used to store and process private keys 
and other information that must be kept confidential.   

Certificate 
Authority 

N/A (Not 
implemented at 
the time of 
publication) 

Issues and signs certificates as needed. 

Application-Layer 
Onboarding Service 

OCF Diplomat and 
OCF OBT within 
IoTivity 

After connecting to the network, the OCF Diplomat 
authenticates the devices, establishes secure channels 
with them, and sends them access control lists that control 
which bulbs each switch is authorized to turn on and off. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 67 

Component Product Function 

Ongoing Device 
Authorization 

N/A – Not 
intended for 
inclusion in this 
build 

Performs activities designed to provide ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, it 
may perform behavioral analysis or device attestation and 
use the results to determine whether the device should be 
granted access to certain high-value resources, assigned to 
a particular network segment, or other action taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not yet 
implemented) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs information the device 
requires for application-layer onboarding (if applicable). 
May populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

1943 D.2 Build 2 Architecture 

1944 D.2.1 Build 2 Logical Architecture 

The network-layer onboarding steps that are performed in Build 2 are depicted in Figure D-1. These 1945 

steps are broken into two main parts: those required to transfer device bootstrapping information from 1946 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 1947 

required to perform network-layer onboarding of the device (labeled with numbers). 1948 

The device manufacturer: 1949 

1. Creates the device and installs a unique birth credential into secure storage on the device. 1950 

Because the device created for use in Build 2 will also perform application-layer onboarding into 1951 

the OCF security domain, as part of the manufacturing process the manufacturer also either 1952 

installs application-layer bootstrapping information onto the device or ensures that the device 1953 

has the capability to generate one-time application-layer bootstrapping information at runtime. 1954 

Then the manufacturer makes the device’s network-layer bootstrapping information, which 1955 

takes the form of a DPP URI, available to the device’s owner. 1956 

Build 2 supports several mechanisms whereby the manufacturer can make the device’s 1957 

network-layer bootstrapping information (i.e., its DPP URI) available to the device owner. The 1958 

device’s DPP URI can be uploaded directly to a device owner’s cloud account or web server via 1959 

API (as might come in handy when onboarding many enterprise devices at one time). 1960 

Alternatively, the DPP URI can be manually entered into a local web portal that runs a 1961 

configuration webpage that a device on the same Wi-Fi network can connect to for purposes of 1962 

scanning a QR code or typing in the DPP URI. A DPP URI that is to be entered manually could, for 1963 

example, be emailed to the owner or encoded into a QR code and printed on the device chassis, 1964 

in device documentation, or on device packaging. Table D-1 depicts the case in which the 1965 

manufacturer provides the device’s DPP URI to the owner for manual entry. When the owner 1966 

receives the device’s DPP URI, the owner may optionally add the device’s DPP URI to a list of 1967 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 68 

DPP URIs for devices that it owns that is maintained as part of the owner’s authorization service. 1968 

Such a list would enable the owner’s network to determine if a device is authorized to be 1969 

onboarded to it. 1970 

2. The person onboarding the device opens a web application and enters the device’s DPP URI. The 1971 

web application then sends the DPP URI to the Wi-Fi Easy Connect configurator, e.g., through a 1972 

web request. (Note: Although the laboratory implementation of Build 2 requires the user to 1973 

enter the DPP URI via a web page, an implementation designed for operational use would 1974 

typically require the user to provide the DPP URI by scanning a QR code into a network 1975 

operator-provided app that is logged into the user’s account.) 1976 

Figure D-1 Logical Architecture of Build 2 1977 

 

After ensuring that the device’s network-layer bootstrapping information (i.e., its DPP URI) has been 1978 

uploaded to the configurator, the device owner performs both trusted network-layer onboarding and 1979 

streamlined application-layer onboarding to the OCF security domain by performing the steps depicted 1980 

in Figure D-1. In this diagram, the components that relate to network-layer onboarding are depicted in 1981 

dark blue and their associated steps are written in black font. The components and steps that are 1982 

related to application-layer onboarding are depicted in light blue. The steps are as follows: 1983 

1. The owner puts the device into onboarding mode. The device waits for the DPP exchange to 1984 

begin. This exchange includes the device issuing a discovery message, which the owner’s 1985 

configurator hears. The discovery message is secured such that it can only be decoded by an 1986 

entity that possesses the device’s DPP URI. 1987 

(B) Person opens a web app 

and inputs the device’s DPP URI, 

which is sent to the configurator, 

thereby performing the trusted 

introduction of the device’s 

bootstrapping information

(1) The device enters onboarding 

mode and waits for the DPP 

exchange to begin

(3) The configurator and the device 

perform the authentication phase 

of DPP—a three-way handshake 

that authenticates the device and 

establishes a secure channel with it

(4) The configurator and the device 

perform the configuration phase of 

DPP. During this three-way 

handshake, the device sends its 

application-layer bootstrapping 

information as part of the DPP 

configuration crequest object and 

the configurator provisions 

network credentials to the device

IoT Devices

Access Point and Router

(6) The device uses its newly-provisioned 

network credentials to connect to the 

network securely and then acquires an IP 

address via DHCP

(2) The configurator verifies that 

the device is authorized to be 

onboarded to the network

(5) The configurator sends the 

device’s application-layer 

bootstrapping information to the 

OCF OBT via the OCF Diplomat

(7) The OCF OBT 

discovers the device and 

prompts the user for 

confirmation. Assuming 

user confirmation is 

received, the OBT 

authenticates the device 

and establishes a secure 

channel with it

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage

Wi-Fi Easy 

Connect 

Configurator

OCF Diplomat
OCF OBT

(8) The OBT installs 

operational trust 

anchors on the device 

and sends it an access 

control list that dictates 

which bulbs each light 

switch is authorized to 

turn on and off. 

Device Manufacturer 

(A) Create the IoT Device, install the device’s unique birth credential, and either install its application-layer 

bootstrapping information or ensure that it can generate one-time application-layer bootstrapping 

information at runtime.

Provide the device’s DPP URI to the device’s owner either via the CableLabs web server or via QR code

IoT Device Manufacturing and Ownership Transfer Activities

Network- and Application-Layer Onboarding



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 69 

2. Optionally, if such a list is being maintained, the configurator consults the list of DPP URIs of all 1988 

owned devices to verify that the device is owned by the network owner and is, therefore, 1989 

assumed to be authorized to be onboarded to the network. (If the device is being onboarded by 1990 

an enterprise, the enterprise would likely maintain such a list; however, if the device is being 1991 

onboarded to a home network, this step might be omitted.) 1992 

3. Assuming the configurator finds the device’s DPP URI, the configurator and the device perform 1993 

the authentication phase of DPP, which is a three-way handshake that authenticates the device 1994 

and establishes a secure (encrypted) channel with it. 1995 

4. The configurator and the device use this secure channel to perform the configuration phase of 1996 

DPP, which is a three-way handshake that provisions network credentials to the device, along 1997 

with any other information that may be needed, such as the network SSID. In particular, as part 1998 

of the three-way handshake in the Build 2 demonstration, the device sends its application-layer 1999 

bootstrapping information to the configurator as part of the DPP configuration request object. 2000 

5. The configurator receives the device’s application-layer bootstrapping information and forwards 2001 

it to the OCF Diplomat. The purpose of the OCF Diplomat is to provide a bridge between the 2002 

network and application layers. It accomplishes this by parsing the org.openconnectivity fields of 2003 

the DPP request object, which contains the UUID of the device and the application-layer 2004 

bootstrapping credentials, and sending these to the OCF OBT as part of a notification that the 2005 

OBT has a new device to onboard. The Diplomat and the OBT use a subscribe and notify 2006 

mechanism to ensure that the OBT will receive the onboarding request even if the OBT is 2007 

unreachable for a period of time (e.g., the OBT is out of the home). 2008 

6. The device uses its newly provisioned network credentials to connect to the network securely 2009 

and then uses DHCP to acquire an IP address. This completes the network-layer onboarding 2010 

process. 2011 

7. The OBT implements a filtered discovery mechanism using the UUID provided from the OCF 2012 

Diplomat to discover the new device on the network. Once it discovers the device, before 2013 

proceeding, the OBT may optionally prompt the user for confirmation that they want to perform 2014 

application-layer onboarding to the OCF security domain. This prompting may be accomplished, 2015 

for example, by sending a confirmation request to an OCF app on the user’s mobile device. 2016 

Assuming the user responds affirmatively, the OBT uses the application-layer bootstrapping 2017 

information to authenticate the device and take ownership of it by setting up a Datagram 2018 

Transport Layer Security (DTLS) connection with the device. 2019 

8. The OBT then installs operational trust anchors and access control lists onto the device. For 2020 

example, in the access control list, each light bulb may have an access control entry dictating 2021 

which light switches are authorized to turn it on and off. This completes the application-layer 2022 

onboarding process. 2023 

Note that, at this time, the application-layer bootstrapping information is provided unilaterally in the 2024 

Build 2 application-layer onboarding demonstration. The application-layer bootstrapping information of 2025 

the device is provided to the OCF Diplomat, enabling the OBT to authenticate the device. In a future 2026 

version of this process, the application-layer bootstrapping information could be provided bi-2027 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 70 

directionally, meaning that the OCF Diplomat could also send the OCF operational root of trust to the 2028 

IoT device as part of the DPP configuration response frame. Exchanging application-layer bootstrapping 2029 

information bilaterally in this way would enable the secure channel set up as part of the network-layer 2030 

onboarding process to support establishment of a mutually authenticated session between the device 2031 

and the OBT. 2032 

In the Build 2 demonstration, two IoT devices, a switch and a light bulb, are onboarded at both the 2033 

network and application layers. Each of these devices sends the OCF Diplomat its application-layer 2034 

bootstrapping information over the secure network-layer onboarding channel during the network-layer 2035 

onboarding process. Immediately after they complete the network-layer onboarding process and 2036 

connect to the network, the OCF Diplomat provides their application-layer bootstrapping information to 2037 

the OBT. The OBT then uses the provided application-layer bootstrapping information to discover, 2038 

authenticate, and onboard each device. Because the devices have no way to authenticate the identity of 2039 

the OBT in the current implementation, the devices are configured to trust the OBT upon first use. 2040 

After the OBT authenticates the devices, it establishes secure channels with them and provisions them 2041 

access control lists that control which bulbs each switch is authorized to turn on and off. To demonstrate 2042 

that the application onboarding was successful, Build 2 demonstrates that the switch is able to control 2043 

only those bulbs that the OCF OBT has authorized it to. 2044 

2045 D.2.2 Build 2 Physical Architecture 

Section 5.3 describes the physical architecture of Build 2.  2046 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 71 

2047 Appendix E Build 3 (BRSKI, Sandelman Software Works) 

2048 E.1 Technologies 

Build 3 is an implementation of network-layer onboarding that uses the BRSKI protocol. Build 3 does not 2049 

support application-layer onboarding. The network-layer onboarding infrastructure and related 2050 

technology components for Build 3 were provided by Sandelman Software Works. The Raspberry Pi, 2051 

ESP32, and Nordic NRF IoT devices that will be onboarded in a future implementation of Build 3 were 2052 

also provided by Sandelman Software Works, as was the Sandelman Software Works Reach Pledge 2053 

Simulator, which is the device that is onboarded in the current build. The IoT devices do not have secure 2054 

storage, but future plans are to integrate them with secure storage elements. Build 3 issues private PKI 2055 

certificates as network credentials at this time, but future plans are to integrate Build 3 with a third-2056 

party private CA from which it can obtain signed certificates. For more information on Sandelman 2057 

Software Works and the products and technologies that it contributed to this project overall, see Section 2058 

3.4. 2059 

Onboarding Build 3 infrastructure components consist of Raspberry Pi, Nordic NRF, ESP32, Sandelman 2060 

Software Works Minerva Fountain Join Registrar/Coordinator, Sandelman Software Works Minerva. 2061 

Highway, Sandelman Software Works Reach Pledge Simulator, and a Minerva Fountain internal CA. 2062 

Table E-1 lists the technologies used in Build 3. It lists the products used to instantiate each logical build 2063 

component and the security function that the component provides. The components are logical. They 2064 

may be combined in physical form, e.g., a single piece of hardware may house both a network 2065 

onboarding component and a router and/or wireless access point. 2066 

Table E-1 Build 3 Products and Technologies 2067 

Component Product Function 

Network-Layer 
Onboarding 
Component (BRSKI 
Domain Registrar) 

Sandelman Software 
Works Minerva 
Fountain Registrar 

Runs the BRSKI protocol. It authenticates the IoT 
device, receives a voucher-request from the IoT 
device, and passes the request to the MASA. It also 
receives a voucher from the MASA, verifies it, and 
passes it to the IoT device. Assuming the IoT device 
finds the voucher to be valid and determines that the 
network is authorized to onboard it, the Domain 
Registrar provisions network credentials to the IoT 
device using EST. 

Access Point, 
Router, or Switch 

Turris MOX router 
running OpenWRT  

The Onboarding Router segments the onboarding 
device from the rest of the network until the BRSKI 
onboarding is complete 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 72 

Component Product Function 

Supply Chain 
Integration 
Service 
(Manufacturer 
Authorized Signing 
Authority—MASA) 

Minerva Highway, 
which is a MASA 
provided by 
Sandelman Software 
Works 

The device manufacturer provides device 
bootstrapping information (e.g., the device’s X.509 
certificate) and device ownership information to the 
MASA. The MASA creates and signs a voucher saying 
who the owner of the device is and provides this 
voucher to the IoT device via the Domain Registrar so 
that the device can verify that the network that is 
trying to onboard it is authorized to do so. 

Authorization 
Service 

Minerva Highway, 
which is a MASA 
provided by 
Sandelman Software 
Works 

As described in the previous row. 

IoT Device 
(Pledge) 

Sandelman Software 
Works Reach Pledge 
Simulator 

The device that is used to demonstrate trusted 
network-layer onboarding by joining the network. 

Secure Storage N/A (The IoT devices 
and the Sandelman 
Software Works Reach 
Pledge Simulator do 
not include secure 
storage) 

Storage on the IoT device that is designed to be 
protected from unauthorized access and capable of 
detecting attempts to hack or modify its contents. 
Used to store and process private keys, credentials, 
and other information that must be kept confidential. 

Certificate 
Authority 

N/A (self-signed 
certificates were used) 

Issues and signs certificates as needed. 

Application-Layer 
Onboarding 
Service 

None. Not supported 
in this build. 

After connecting to the network, the device mutually 
authenticates with a trusted application service and 
interacts with it at the application layer. 

Ongoing Device 
Authorization 

N/A – Not intended for 
inclusion in this build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For 
example, it may perform behavioral analysis or device 
attestation and use the results to determine whether 
the device should be granted access to certain high-
value resources, assigned to a particular network 
segment, or other action taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not implemented 
at the time of 
publication) 

Manufactures the IoT device. Creates, signs, and 
installs the device’s unique identity and other birth 
credentials into secure storage. Installs information 
the device requires for application-layer onboarding (if 
applicable). May populate a manufacturer database 
with information regarding devices that are created 
and, when the devices are sold, may record what 
entity owns them. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 73 

2068 E.2 Build 3 Architecture 

2069 E.2.1 Build 3 Logical Architecture 

The network-layer onboarding steps that are performed in Build 3 are depicted in Figure E-1. These 2070 

steps are broken into two main parts: those required to transfer device bootstrapping information from 2071 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 2072 

required to perform network-layer onboarding of the device (labeled with numbers). These steps are 2073 

described in greater detail in IETF RFC 8995. 2074 

The device manufacturer: 2075 

1. Creates the device and installs a unique serial number and birth credential into secure storage 2076 

on the device. This unique birth credential takes the form of a private key and its associated 2077 

802.1AR certificate, e.g., the device’s IDevID. As part of this factory-installed certificate process, 2078 

the location of the device’s MASA is provided in an extension to the IDevID. The device is also 2079 

provided with trust anchors for the MASA entity that will sign the returned vouchers. 2080 

2. Stores information about the device, such as its serial number and its IDevID, in the MASA’s 2081 

database. 2082 

3. Eventually, when the device is sold, the MASA may also record the device ownership 2083 

information in its database. 2084 

Figure E-1 Logical Architecture of Build 3 2085 

           

IoT Devices (Pledges)

Access Point, Router, or Switch

(3) Registrar determines if the device was 

expected. If so, it creates, signs, and sends to 

the device’s MASA a registrar voucher-request 

containing the info from the pledge voucher-

request and info about the registrar/owner. 

Domain 

Registrar

(8) Registrar provisions network credentials 

to the device using EST (e.g. LDevID)

(9) Device uses network credentials 

to connect to the network securely

Manufacturer 

Authorized 

Signing Authority 

(MASA)

Device Manufacturer 

(A) Create the IoT Device and give it a serial number

Install the device’s unique birth credential into the device’s secure storage (IDevID)

Provide the location of the device's MASA and a trust anchor for the MASA

(1) Device establishes/discovers an https 

connection to the local Domain Registrar

(2) Device creates a pledge voucher request, 

signs it using its IDevID certificate, and 

sends the request to the Registrar

(5) Registrar examines the new voucher and 

other info. Based on this info, the Registrar 

makes the decision to continue 

bootstrapping and passes the voucher to 

the device

(6) Device verifies the voucher signature by 

using pre-provisioned trust anchors 

associated with the MASA

(7) Device uses EST to requests new 

credentials

IoT Device Manufacturing and Ownership Transfer Activities

Network-Layer Onboarding

4) MASA verifies that the Registrar owns the device (or 

trusts on first use), creates a new voucher indicating 

this, and passes the new voucher back to the Registrar.

B) Store the 

device serial # 

and IDevID in the 

MASA database. 

C) Eventually, 

when the device 

is purchased, the 

manufacturer 

may also 

record the 

device owner 

information in 

the MASA

Supply Chain 

Integration 

Service



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 74 

After obtaining the device, the device owner provisions the device with its network credentials by 2086 

performing the following network-layer onboarding steps: 2087 

1. The owner puts the device into onboarding mode. The device establishes an https connection to 2088 

the local Domain Registrar. Trust in the Domain Registrar is provisional. (In a standard 2089 

implementation, the device would use link-local network connectivity to locate a join proxy, and 2090 

the join proxy would provide the device with https connectivity to the local Domain Registrar. 2091 

The Build 3 implementation, however, does not support discovery at this time. To overcome this 2092 

code limitation, the IoT device has been pre-provided with the address of the local Domain 2093 

Registrar, to which it connects directly.) 2094 

2. The device creates a pledge voucher-request that includes the device serial number, signs this 2095 

request with its IDevID certificate (i.e., its birth credential), and sends this signed request to the 2096 

Registrar. 2097 

3. The Registrar receives the pledge voucher-request and considers whether the manufacturer is 2098 

known to it and whether devices of that type are welcome. If so, the Registrar forms a registrar 2099 

voucher-request that includes all the information from the pledge voucher-request along with 2100 

information about the registrar/owner. The Registrar signs this registrar voucher-request. It 2101 

locates the MASA that the IoT device is known to trust (e.g., the MASA that is identified in the 2102 

device’s IDevID extension) and sends the registrar voucher-request to the MASA. 2103 

4. The MASA consults the information that it has stored and applies policy to determine whether 2104 

or not to approve the Registrar’s claim that it owns and/or is authorized to onboard the device. 2105 

(For example, the MASA may consult sales records for the device to verify device ownership, or 2106 

it may be configured to trust that the first registrar that contacts it on behalf of a given device is 2107 

in fact the device owner.) Assuming the MASA decides to approve the Registrar’s claim to own 2108 

and/or be authorized to onboard the device, the MASA creates a voucher that directs the device 2109 

to accept its new owner/authorized network, signs this voucher, and sends it back to the 2110 

Registrar. 2111 

5. The Registrar receives this voucher, examines it along with other related information (such as 2112 

security posture, remote attestation results, and/or expected device serial numbers), and 2113 

determines whether it trusts the voucher. Assuming it trusts the voucher, the Registrar passes 2114 

the voucher to the device. 2115 

6. The device uses its factory-provisioned MASA trust anchors to verify the voucher signature, 2116 

thereby ensuring that the voucher can be trusted. The voucher also validates the Registrar and 2117 

represents the intended owner, ending the provisional aspect of the EST connection. 2118 

7. The device uses Enrollment over Secure Transport (EST) to request new credentials. 2119 

8. The Registrar provisions network credentials to the device using EST. These network credentials 2120 

get stored into secure storage on the device, e.g., as an LDevID. 2121 

9. The device uses its newly provisioned network credentials to connect to the network securely. 2122 

This completes the trusted network-layer onboarding process for Build 3. 2123 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 75 

2124 E.2.2 Build 3 Physical Architecture 

Section 5.4 describes the physical architecture of Build 3.  2125 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 76 

2126 Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski 
2127 KeySTREAM) 

2128 F.1 Technologies 

Build 4 is an implementation of network-layer connection to an OpenThread network, followed by use 2129 

of the Kudelski IoT keySTREAM Service to perform independent (see Section 3.3.2) application-layer 2130 

onboarding of the device to a particular customer’s tenancy in the AWS IoT Core. To join the network, 2131 

the joining device generates and displays a pre-shared key that the owner enters on the commissioner, 2132 

through a web interface, for authentication. The network-layer infrastructure for Build 4 was provided 2133 

by Silicon Labs. The application-layer onboarding infrastructure for Build 4 was provided by Kudelski IoT. 2134 

IoT devices that were onboarded using Build 4 were provided by Silicon Labs. For more information on 2135 

these collaborators and the products and technologies that they contributed to this project overall, see 2136 

Section 3.4. 2137 

Build 4 network infrastructure components within the NCCoE lab consist of a Thread border router 2138 

(which is implemented using a Raspberry Pi) and a Silicon Labs Gecko Wireless Starter Kit. Build 4 also 2139 

requires support from the Kudelski IoT keySTREAM service to perform application-layer onboarding. The 2140 

keySTREAM service comes as a SaaS platform that is running in the cloud (accessible via the internet), 2141 

and a software library (KTA – Kudelski Trusted Agent) that is integrated in the IoT device software stack. 2142 

The KTA integrates with the Silicon Labs’ Hardware Root of Trust (Secure Vault). The IoT device that is 2143 

connected to the network and application-layer onboarded using Build 4 is the Silicon Labs 2144 

Thunderboard (BRD2601A) with EFR32MG24x with Secure Vault(TM) High which is security certified to 2145 

PSA/SESIP Level 3. 2146 

Table F-1 lists the technologies used in Build 4. It lists the products used to instantiate each logical build 2147 

component and the security function that the component provides. The components are logical. They 2148 

may be combined in physical form, e.g., a single piece of hardware may house a network onboarding 2149 

component, a router, and a wireless access point. 2150 

Table F-1 Build 4 Products and Technologies 2151 

Component Product Function 

Network-Layer 
Onboarding 
Component 

(Thread Protocol 
Component) 

SLWSTK6023A 
Thread Radio 
Transceiver 
(Wireless starter 
kit); 

The SLWSTK6023A acts as a Thread radio transceiver or 
radio coprocessor (RCP), allowing the open thread boarder 
router host platform to form and communicate with a 
Thread network. If the Thread MeshCoP were running on 
this device, it would provision the IoT device with 
credentials for the Thread network. 

Access Point, 
Router, or Switch 

OpenThread 
Border Router 
(OTBR) hosted on 
a Raspberry Pi 

Router that has interfaces both on the Thread network and 
on the IP network to act as a bridge between the Thread 
network and the public internet. This allows the IoT device 
that communicates using the Thread wireless protocol to 
communicate with cloud services. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 77 

Component Product Function 

Supply Chain 
Integration Service 

Silicon Labs 
Custom Parts 
Manufacturer 
Service (CPMS) 

To support network-layer onboarding, the device 
manufacturer provides device bootstrapping information 
to the to the device owner. 

Authorization 
Service 

Not implemented Enables the network to verify that the device that is trying 
to onboard to it is authorized to do so. 

IoT Device Silicon Labs 
Thunderboard 
(BRD2601A) 

The IoT device that is used to demonstrate trusted 
network- and application-layer onboarding. 

Secure Storage Secure Vault ™ 
High on Silicon 
Labs IoT device 

Storage designed to be protected from unauthorized 
access and capable of detecting attempts to hack or 
modify its contents. Used to store and process private keys 
and other information that must be kept confidential.   

Certificate 
Authority 

Each tenant in the 
Kudelski 
keySTREAM 
service cloud has 
its own certificate 
signing authority 

Issues and signs certificates as needed. For application-
layer onboarding, the device owner has its own certificate 
signing authority in its portion of the Kudelski keySTREAM 
service cloud. 

Application-Layer 
Onboarding Service 

Kudelski 
keySTREAM 
Service 

After connecting to the Thread network, the device 
performs application-layer onboarding by accessing the 
Kudelski keySTREAM service. The device and the 
keySTREAM service mutually authenticate; the keySTREAM 
service verifies the device’s owner, generates an 
application-layer credential (i.e., an AWS certificate that is 
based on the device’s chipset identity and owner) for the 
device, and provisions the device with this X.509 credential 
that will enable the device to access the owner’s tenancy 
in the AWS IoT Core cloud. 

Ongoing Device 
Authorization 

N/A – Not 
intended for 
inclusion in this 
build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, it 
may perform behavioral analysis or device attestation and 
use the results to determine whether the device should be 
granted access to certain high-value resources, assign the 
device to a particular network segment, or take other 
action. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 78 

Component Product Function 

Manufacturer 
Factory 
Provisioning 
Process 

Silicon Labs 
Custom Parts 
Manufacturing 
Service (CPMS) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs software and information the 
device requires for application-layer onboarding. May 
populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

The MG24 “B” version comes pre-loaded with a Silicon 
Labs Birth certificate. The “A” or “B” version birth 
certificate can be modified via their Custom Part 
Manufacturing Service (CPMS) to be unique per end device 
manufacturer and signed into their Root CA if desired. 

2152 F.2 Build 4 Architecture 

2153 F.2.1 Build 4 Logical Architecture 

Build 4 demonstrates a device connecting to an OpenThread network. IoT devices generate and use a 2154 

pre-shared key to connect to the OpenThread network of Build 4 using the Thread MeshCoP service. 2155 

Once a device is connected to the OpenThread network of Build 4, it gets access to an IP network via a 2156 

border router, and then performs application-layer onboarding using the Kudelski keySTREAM Service. 2157 

Kudelski keySTREAM is a device security management service that runs as a SaaS platform on the 2158 

Amazon cloud. Build 4 relies on an integration that has been performed between Silicon Labs and 2159 

Kudelski keySTREAM. KeySTREAM has integrated software libraries with the Silicon Lab EFR32MG24 2160 

(MG24) IoT device’s secure vault to enable the private signing key that is associated with an application-2161 

layer certificate to be stored into the secure vault using security controls that are available on the 2162 

MG24. This integration ensures that application-layer credentials can be provisioned into the vault 2163 

securely such that no key material is misused or exposed. 2164 

At a high level, the steps required to enable demonstration of Build 4’s network connection and 2165 

application-layer onboarding capabilities can be broken into the following three main parts: 2166 

▪ Device Preparation: The IoT device is prepared for network connection and application-layer 2167 
onboarding by the device manufacturer.  2168 

• The device comes from the manufacturer ready to be provisioned onto a Thread network. 2169 
No additional preparation is required. 2170 

• The device is prepared for application-layer onboarding on behalf of a specific, pre-defined 2171 
customer who will become its owner. The device is assigned ownership to this customer 2172 
(e.g., customer A) and this ownership information is sealed into device firmware, 2173 
permanently identifying the device as being owned by customer A. The device owner, 2174 
customer A, has a tenancy on the Kudelski keySTREAM Service and is also an Amazon Web 2175 
Services (AWS) customer. After the device has been prepared, the device is provided to its 2176 
owner (customer A). 2177 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 79 

▪ Network Connection: Customer A connects the device to Customer A’s OpenThread network by 2178 
entering the pre-shared key displayed on the device’s serial terminal in the OpenThread Border 2179 
Router’s (OTBR) web interface. This allows the network‘s radio channel, PAN ID, extended PAN 2180 
ID and network name to be discovered, avoiding the need to preconfigure any of these 2181 
parameters. Once on customer A’s OpenThread network, the device has access to the public IP 2182 
network via the border router. 2183 

▪ Application-Layer Onboarding: The device and the keySTREAM service mutually authenticate, 2184 
keySTREAM confirms that customer A owns the device, and keySTREAM provisions the device 2185 
with an AWS certificate that is specific to the device and to customer A, enabling the device to 2186 
authenticate to customer A’s tenancy in the AWS IoT Core. 2187 

Each of these three aspects of the demonstration are illustrated in its own figure and described in more 2188 

detail in the three subsections below. 2189 

F.2.1.1 Device Preparation 2190 

Figure F-1 depicts the steps that are performed by the device manufacturer, which in this case is Silicon 2191 

Labs, to prepare the device for network- and application-layer onboarding by a particular customer, 2192 

Customer A. Each step is described in more detail below. Because these steps are performed to prepare 2193 

the device for onboarding rather than as part of onboarding itself, they are labeled with letters instead 2194 

of numbers in keeping with the conventions used in other build descriptions. 2195 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 80 

Figure F-1 Logical Architecture of Build 4: Device Preparation 2196 

 

The following steps are performed to prepare the device for network connection and application-layer 2197 

onboarding: 2198 

1. The manufacturer creates the device, which in this case is a Silicon Labs MG24, and prepares it 2199 

for network connection by installing the device’s unique birth credential into the device’s 2200 

chipset. This chipset identity is a hardware root of trust. The MG24 “B” version comes pre-2201 

loaded with a Silicon Labs Birth certificate. The “A” or “B” version birth certificate can be 2202 

modified via their Custom Part Manufacturing Service (CPMS) to be unique per end device 2203 

manufacturer and signed into their Root CA if desired. 2204 

2. The manufacturer provides information about the device to customer A (perhaps via the supply 2205 

chain service, as depicted in Figure 1-1) so customer A can be aware that the device is expected 2206 

on its network. 2207 

3. The manufacturer prepares the device for application-layer onboarding by installing the Kudelski 2208 

keySTREAM Trusted Agent (KTA) software onto the device. 2209 

4. The manufacturer connects the device to the manufacturer’s local OpenThread network. (See 2210 

Figure 1-2 for details of the network connection steps.) Note that in this case, which is the first 2211 

time that the device is being connected to a network, the device is being connected to the 2212 

manufacturer’s network rather than to the network of the device’s eventual owner. 2213 

5. After the device connects to the manufacturer’s OpenThread network, the device has access to 2214 

the public IP network via the border router. 2215 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 81 

6. The device and the Kudelski keySTREAM service mutually authenticate and establish an 2216 

encrypted connection. 2217 

7. The KTA installs a configuration into the keySTREAM service platform that builds up a group of 2218 

devices that belong to a certain end user and associates the group with a device ownership 2219 

profile. This device ownership profile is associated with a particular customer (e.g., customer A). 2220 

The same device profile is used by all devices in a group of devices that are owned by this 2221 

owner. The profile is not specific to individual devices. The owner of these devices (customer A) 2222 

has a keySTREAM tenancy, which includes a dedicated certificate signing CA. Customer A is also 2223 

an AWS customer. 2224 

8. The device manufacturer installs and seals this device ownership profile into the device 2225 

firmware. This profile permanently identifies the device as being owned by customer A. 2226 

F.2.1.2 Network-Layer Connection 2227 

Figure F-2 depicts the steps of an IoT device connecting to that thread network using a pre-shared key 2228 

that the device generates and shares with the OpenThread boarder router. Each step is described in 2229 

more detail below. 2230 

Figure F-2 Logical Architecture of Build 4: Connection to the OpenThread Network 2231 

 

The device connects to the OpenThread network using the following steps: 2232 

1. The device generates a pre-shared key. 2233 

2. The owner starts the commissioning process by entering this pre-shared key on the OpenThread 2234 

border router. 2235 

IoT Devices

Border Router

(5) Verify that the device is authorized 

to connect to the network

(6) Assign the device network 

permissions

Thread 

Network 

Onboarding 

Component

(3) Device requests to join the network and provides 

the pre-shared key as its network credential

(4) Router authenticates the device based on the 

pre-shared key and grants the join request

Supply Chain 

Integration 

Service

(C) Provide the 

device info to 

the device 

owner’s 

authorization 

service

Device

Manufacturer 

(A) Prepare the device for network connection and application-layer onboarding (See the 

previous figure for detailed device preparation steps.)

(B)  One aspect of this preparation involves providing device information to the device owner 

(perhaps via the supply chain integration service, as depicted here)

(1) Device generates a 

pre-shared key.

(2) Owner shares this key 

with the OpenThread

border router using the 

router’s web interface

Network-Layer Connection Steps

IoT Device Manufacturing Activities

Authorization Service 

for Device Owner

(7) The device is able to access the IP network via 

the border router.



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 82 

3. The device requests to join the network and provides the pre-shared key as its network 2236 

credential. 2237 

4. The network authenticates the device based on the pre-shared key and grants the join request. 2238 

5. The network verifies that the device is authorized to connect to the network. 2239 

6. The network assigns the device network permissions and configures these as policies on the 2240 

border router. 2241 

7. The device is able to access the IP network (and the internet) via the border router. 2242 

This completes the network-layer connection process. 2243 

F.2.1.3 Application-Layer Onboarding 2244 

Figure F-3 depicts the steps of the application-layer onboarding process using the Kudelski keySTREAM 2245 

service. Each step is described in more detail below. 2246 

Figure F-3 Logical Architecture of Build 4: Application-Layer Onboarding using the Kudelski keySTREAM 2247 
Service 2248 

 

The application-layer onboarding steps performed to provision the device with its application-layer 2249 

credentials (e.g., its AWS certificate) are as follows: 2250 

1. The device, which is already connected to the OpenThread network, accesses the IP network via 2251 

the border router. 2252 

2. The device and the keySTREAM service mutually authenticate. 2253 

IoT Devices

Border Router

(3) The KeySTREAM Service examines the 

device’s firmware profile to determine which 

of KeySTREAM’s customers owns the 

device and associates the device with the 

KeySTREAM tenancy of that customer (e.g., 

customer A).

Kudelski 

KeySTREAM

Provisioning 

Service

(6) The KeySTREAM Service securely provisions the AWS certificate to 

the device’s secure storage using the software library that KeySTREAM

has integrated with the device’s secure vault chipset security controls to 

ensure that no key material is misused or exposed.

(7) The device uses its newly-

provisioned AWS certificate to 

authenticate to the AWS IoT Core 

using the MQTT-TLS protocol.

Kudelski

KeySTREAM

Device  

Management 

Interface

(1) The device has already connected to 

the Thread network and now has access 

to the public (IP) network via the border 

router.

(2) The device and the KeySTREAM

Service mutually authenticate.

(4) The KeySTREAM Service generates 

an AWS certificate for the device based 

on the device’s chipset identity and 

owner.

(5) The KeySTREAM Service uses the 

dedicated CA that is running in customer 

A’s KeySTREAM tenancy to sign the 

certificate.

Application-Layer Onboarding

AWS IoT 

Core

Device Manufacturer 

Prepare the device for application-layer onboarding by sealing a device ownership 

profile that permanently associates the device with KeySTREAM customer A into the 

device’s firmware. (See Figure 1-1 for the detailed device preparation steps.)

IoT Device Manufacturing Activities

CA

profileKTA



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 83 

3. The keySTREAM Service examines the device’s firmware profile to determine which of 2254 

keySTREAM’s customers owns the device. In this case, customer A is identified as the device 2255 

owner. The keySTREAM service associates the device with customer A’s keySTREAM tenancy. 2256 

4. The keySTREAM Service generates an AWS IoT Core certificate for the device based on both the 2257 

device’s ownership information and the secure hardware root of trust that is in the device’s 2258 

chipset. 2259 

5. The keySTREAM Service uses the dedicated CA that is running in customer A’s keySTREAM 2260 

tenancy to sign the AWS certificate. 2261 

6. The keySTREAM Service securely provisions the AWS certificate to the device’s secure storage 2262 

using the software library that keySTREAM has integrated with the device’s secure vault chipset 2263 

security controls to ensure that no key material is misused or exposed. 2264 

7. The device uses its newly provisioned application-layer credentials (i.e., the AWS certificate) to 2265 

authenticate to customer A’s tenancy in the AWS IoT Core using the MQTT-TLS protocol. 2266 

2267 F.2.2 Build 4 Physical Architecture 

Section 5.5 describes the physical architecture of Build 4.  2268 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 84 

2269 Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds) 

2270 G.1 Technologies 

Build 5 is an implementation of network-layer onboarding that uses a version of the BRSKI Protocol that 2271 

has been modified to work over Wi-Fi. After the IoT device has joined the network, Build 5 also 2272 

demonstrates a number of mechanisms that are performed on an ongoing basis to provide continuous, 2273 

policy-based authorization and assurance. Both the network-layer onboarding infrastructure and the 2274 

continuous assurance service for Build 5 were provided by NquiringMinds. This entire build can be 2275 

replicated using the open sourced TrustNetZ code base. 2276 

For more information on NquiringMinds and the products and technologies that they contributed to this 2277 

project overall, see Section 3.4. 2278 

Build 5 network onboarding infrastructure components within the NCCoE lab consist of a Linux based 2279 

Raspberry Pi 4B router (which also runs the registrar service and MASA service), and a USB hub. The 2280 

Build 5 components used to support the continuous assurance service include TrustNetZ Authorization 2281 

interfaces, TrustNetZ information provider, and TrustNetZ policy engine. The IoT devices that are 2282 

onboarded using Build 5 are a Raspberry Pi device. These IoT devices do not have secure storage, but 2283 

use the Infineon Optiga SLB 9670 TPM 2.0 as an external secure element. Build 5 depends on an IDevID 2284 

(X.509 Certificate) having been provisioned to the secure element of the IoT device (pledge) prior to 2285 

onboarding, as part of the factory provisioning process (see Section H.1). For Build 5, this factory 2286 

provisioning process was accomplished by the BRSKI Factory Provisioning Build, which is described in 2287 

Appendix H.3. 2288 

Table G-1 lists the technologies used in Build 5. It lists the products used to instantiate each logical build 2289 

component and the security function that the component provides. The components are logical. They 2290 

may be combined in physical form, e.g., a single piece of hardware may house a network onboarding 2291 

component, a router, and a wireless access point. 2292 

Table G-1 Build 5 Products and Technologies 2293 

Component Product Function 

Network-Layer 
Onboarding 
Component 

(BRSKI Domain 
Registrar) 

Stateful, non-
persistent Linux 
app that has two 
functional 
interfaces for 
both BRSKI and 
for the 
Authentication 
Service. 
(TrustNetZ 
onboarding) 

Runs the BRSKI protocol modified to work over Wi-Fi and 
acts as a BRSKI Domain Registrar. It authenticates the IoT 
device, receives a voucher request from the IoT device, 
and passes the request to the MASA. It also receives a 
voucher from the MASA, verifies it, and passes it to the IoT 
device. Assuming the IoT device finds the voucher to be 
valid and determines that the network is authorized to 
onboard it, the Domain Registrar provisions network 
credentials to the IoT device using EST. 

https://github.com/nqminds/trustnetz


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 85 

Component Product Function 

Access Point, 
Router, or Switch 

Raspberry Pi 4B 
equipped with 
USB Wi-Fi dongle, 
running TrustNetZ 
AP code. 

Router, providing an open Wi-Fi network and closed Wi-Fi 
network. Physical access control is mediated through the 
RADUIS interface (which is part of the TrustNetZ AP 
configuration) The AP also receives network commands 
from the continuous assurance service. 

Supply Chain 
Integration Service 
(Manufacturer 
Authorized Signing 
Authority—MASA) 

TrustNetZ MASA The MASA creates and signs a voucher and provides this 
voucher to the IoT device via the Registrar so that the 
device can verify that the network that is trying to onboard 
it is authorized to do so. 

Authorization 
Service 

Linux application 
which contains an 
encapsulated 
policy engine 
(TrustNetZ policy 
engine) 

Determines whether the device is authorized to be 
onboarded to the network. The application features a REST 
API which accepts verifiable credential claims to feed data 
on entities and their relationships into its SQL database. 

The policy engine itself is based on verifiable credentials 
presentation, (persisted to SQL database), making it easily 
configurable and extensible. 

IoT Device Raspberry Pi 
devices (running 
TrustNetZ pledge 
agent) 

The IoT device that is used to demonstrate trusted 
network- and application-layer onboarding. Handles the 
client side BRSKI protocols, the integration with the secure 
storage, with factory provisioning and TLS connections. 

Secure Storage Infineon Optiga 
SLB 9670 TPM 2.0 

Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to store and 
process private keys and other information that must be 
kept confidential. 

Certificate 
Authority 

TrustNetZ demo 
manufacturer CA 
(MPR – 
manufacture 
provisioning root) 

TrustNetZ Domain 
CA 

Two CA are used in Build 5 

Domain CA issues certificates and provides signing and 
attestation functions that model network owner 
relationships (e.g. sign the LDevID certificate) 

Manufacturer CA issues the IDevID certificates; proving the 
device has been created by the manufacturer. 

Application-Layer 
Onboarding Service 

TrustNetZ Demo 
application sever 

After connecting to the network, the device mutually 
authenticates with a trusted application service and 
interacts with it at the application layer. 

The IDevID and TPM private key are used to establish a TLS 
session with the demonstration application server and 
send data to it from the device. 

This demonstrates the concept of secure connection to a 
third-party application server using the cryptographic 
artifacts from the onboarding process. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 86 

Component Product Function 

Ongoing Device 
Authorization 

Continuous 
Authorization 
Service, which 
calls into the in 
the TrustNetZ 
policy engine 

Designed to perform a set of ongoing, policy-based 
continuous assurance and authorization checks on the 
device after it has connected to the network. As of this 
publication, the following ongoing checks have been 
implemented: 

▪ The manufacturer of the device must be trusted by 
the network owner 

▪ The device must be trusted by a user with 
appropriate privileges 

▪ The device must have an associated device type 

▪ The vulnerability score of the software bill of 
materials (SBOM) for the device type must be 
lower than a set threshold 

▪ The device must not have contacted an IP address 
that is on a deny list 

If it fails any of these periodic checks, its voucher is 
revoked, which removes the device from the network. 

Manufacturer 
Factory 
Provisioning 
Process 

BRSKI Factory 
Provisioning 
Process used to 
provision the 
Infineon TPM 
with its private 
key and IDevID 
(See Appendix 
H.3) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity (i.e., its IDevID, which is an 
X.509 certificate) into secure storage. Installs information 
the device requires for application-layer onboarding. 
Populates the MASA with information regarding devices 
that are created and, when the devices are sold, may 
record what entity owns them. 

2294 G.2 Build 5 Architecture 

2295 G.2.1 Build 5 Logical Architecture 

The network-layer onboarding steps that are performed in Build 5 are depicted in Figure G-1. These 2296 

steps are broken into two main parts: those required to transfer device bootstrapping information from 2297 

the device manufacturer to the MASA (labeled with letters) and those required to perform network-2298 

layer onboarding of the device and establish the operation of the continuous authorization service 2299 

(labeled with numbers). 2300 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 87 

Figure G-1 Logical Architecture of Build 5 2301 

 

The device manufacturer: 2302 

1. Creates the device and installs a unique serial number and birth credential into secure storage 2303 

on the device. This unique birth credential takes the form of a private key and its associated 2304 

802.1AR certificate, e.g., the device’s IDevID. As part of this factory-installed certificate process, 2305 

the location of the device’s manufacturer authorized signing authority (MASA) is provided in an 2306 

extension to the IDevID. The device is also provided with trust anchors for the MASA entity that 2307 

will sign the returned vouchers. 2308 

2. Stores information about the device, such as its serial number and its IDevID, in the MASA’s 2309 

database. 2310 

3. Eventually, when the device is sold, the MASA may also record the device ownership 2311 

information in its database. 2312 

After obtaining the device, the device owner provisions the device with its network credentials by 2313 

performing the following network-layer onboarding steps: 2314 

1. The owner puts the device (i.e., the pledge) into onboarding mode. The device establishes an 2315 

https connection to the local Domain Registrar. (In a standard BRSKI implementation, the device 2316 

would have wired network connectivity. The device would use its link-local network connectivity 2317 

to locate a join proxy, and the join proxy would provide the device with https connectivity to the 2318 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 88 

local Domain Registrar.) The Build 5 implementation, however, relies on wireless connectivity 2319 

and initially uses the unauthenticated EAP-TLS protocol. The pledge discovers potential 2320 

onboarding networks by searching for public Wi-Fi networks that either match a particular SSID 2321 

wildcard name or that advertise a particular realm. When the device finds a potential 2322 

onboarding network, it connects to it and attempts to discover the registrar. The pledge will 2323 

connect to the open Wi-Fi network and will receive either an IPv4 or IPv6 address. Subsequently, 2324 

the pledge will listen to mDNS packets and will obtain the list of join proxies (IP addresses). 2325 

Finally, the pledge will subsequently connect to each join proxy using the BRSKI-EST protocol. 2326 

2. The device creates a pledge voucher-request that includes the device serial number, signs this 2327 

request with its IDevID certificate (i.e., its birth credential), and sends this signed request to the 2328 

Registrar. 2329 

3. The Registrar receives the pledge voucher-request and considers whether the manufacturer is 2330 

known to it and whether devices of that type are welcome. If so, the Registrar forms a registrar 2331 

voucher-request that includes all the information from the pledge voucher request along with 2332 

information about the registrar/owner. The Registrar sends this registrar voucher-request to the 2333 

Continuous Authorization Service. 2334 

4. The Continuous Authorization Service consults policy to determine if this device should be 2335 

permitted to be onboarded and what other conditions should be enforced. An example of policy 2336 

that might be used is that the network owner wants to disable MASA validation. Assuming the 2337 

device is permitted to be onboarded, the Continuous Authorization Service locates the MASA 2338 

that the IoT device is known to trust (i.e., the MASA that is identified in the device’s IDevID 2339 

extension) and sends the registrar voucher-request to the MASA. 2340 

5. The MASA consults the information that it has stored and applies policy to determine whether 2341 

to approve the Registrar’s claim that it owns the device. (For example, the MASA may consult 2342 

sales records for the device to verify device ownership, or it may be configured to trust that the 2343 

first registrar that contacts it on behalf of a given device is in fact the device owner). Assuming 2344 

the MASA decides to approve the Registrar’s claim to own the device, the MASA creates a new 2345 

voucher that directs the device to accept its new owner, signs this voucher, and sends it back to 2346 

the Continuous Authorization Service. 2347 

6. The Continuous Authorization Service receives this new voucher and examines it in consultation 2348 

with policy to determine whether to continue onboarding. Some examples of policies that might 2349 

be used include: permit onboarding only if no current critical vulnerabilities have been disclosed 2350 

against the declared device type, the device instance has successfully passed a site-specific test 2351 

process, or a test compliance certificate has been found for the declared device type. Assuming 2352 

the device is permitted to be onboarded, the Continuous Authorization Service sends the new 2353 

voucher to the Domain Registrar. 2354 

7. The Domain Registrar receives and examines the new voucher along with other related 2355 

information and determines whether it trusts the voucher. Assuming it trusts the voucher, the 2356 

Registrar passes the voucher to the device. 2357 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 89 

8. The device uses its factory-provisioned MASA trust anchors to verify the voucher signature, 2358 

thereby ensuring that the voucher can be trusted. 2359 

9. The device uses Enrollment over Secure Transport (EST) to request new credentials. 2360 

10. The Registrar provisions network credentials to the device using EST. These network credentials 2361 

get stored into secure storage on the device, e.g., as an LDevID. 2362 

11. The device uses its newly provisioned network credentials to connect to the network securely. 2363 

12. After the device is connected and begins operating on the network, the Continuous 2364 

Authorization Service and the router make periodic asynchronous calls to each other that enable 2365 

the Continuous Authorization Service to monitor device behavior and constrain communications 2366 

to and from the device as needed in accordance with policy. In this manner, the Continuous 2367 

Authorization Service interacts with the router on an ongoing basis to verify that the device and 2368 

its operations continue to be authorized throughout the device’s tenure on the network. 2369 

This completes the network-layer onboarding process for Build 5 as well as the initialization of the Build 2370 

5 continuous authorization service. More details regarding the Build 5 implementation can be found at 2371 

https://trustnetz.nqm.ai/docs/. 2372 

2373 G.2.2 Build 5 Physical Architecture 

Section 5.6 describes the physical architecture of Build 5. 2374 

  

https://trustnetz.nqm.ai/docs/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 90 

2375 Appendix H Factory Provisioning Process 

2376 H.1 Factory Provisioning Process 

The Factory Provisioning Process creates and provisions a private key into the device’s secure storage; 2377 

generates and signs the device’s certificate (when BRSKI is supported), generates the device’s DPP URI 2378 

(when Wi-Fi Easy Connect is supported), or generates other bootstrapping information (when other 2379 

trusted network-layer onboarding protocols are supported); provisions the device’s certificate, DPP URI, 2380 

or other bootstrapping information onto the device; and sends the device’s certificate, DPP URI, or other 2381 

bootstrapping information to the manufacturer’s database, which will eventually make this information 2382 

available to the device owner to use during network-layer onboarding. 2383 

2384 H.1.1 Device Birth Credential Provisioning Methods 

There are various methods by which a device can be provisioned with its private key and bootstrapping 2385 

information (e.g., its certificate, DPP URI, etc.) depending on how, where, and by what entity the 2386 

public/private key pairs are generated [14]. Additional methods are also possible depending on how the 2387 

device’s certificate is provided to the manufacturer’s database. The following are high-level descriptions 2388 

of five potential methods for provisioning device birth credentials during various points in the device 2389 

lifecycle. These methods are not intended to be exhaustive: 2390 

1. Method 1: Key Pair Generated on IoT Device 2391 

Summary: Generate the private key on the device; device sends the device’s bootstrapping 2392 

information (e.g., the device’s certificate or DPP URI) to the manufacturer’s database. The steps for 2393 

Method 1 are: 2394 

a. The public/private key pair is generated on the device and stored in secure storage. 2395 

b. The device generates and signs a CSR structure and sends the CSR to the 2396 

manufacturer’s IDevID CA, which sends a signed certificate (IDevID) back to the device. 2397 

c. If BRSKI is being supported, the device loads the certificate (IDevID) into its secure 2398 

storage; if Wi-Fi Easy Connect is being supported, the device creates a DPP URI and 2399 

loads that into secure storage. 2400 

d. The device sends the certificate or DPP URI to the manufacturer’s database. 2401 

One disadvantage of this method is that the device’s random number generator is being relied 2402 

upon to generate the key pair, and it is possible that a device’s random number generator will not 2403 

be as robust as the random number generator that would be included in an SE, for example. An 2404 

advantage of this method is that the device’s private key is not vulnerable to disclosure, assuming 2405 

the device is equipped with a strong random number generator that is used for key generation and 2406 

the private key is put into secure storage immediately upon generation. 2407 

2. Method 2: Key Pair Generated in Secure Element 2408 

Summary: Generate the private key in a secure element on the device; IDevID CA provides the 2409 

device certificate to the manufacturer’s database. The steps for Method 2 are: 2410 

a. The public/private key pair is generated within the device’s SE. 2411 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 91 

b. The device generates a CSR structure, the SE signs it, and the device sends the CSR to 2412 

the manufacturer’s IDevID CA, which sends a signed certificate (IDevID) back to the 2413 

device. 2414 

c. If BRSKI is being supported, the device loads the certificate (IDevID) into its secure 2415 

storage; if Wi-Fi Easy Connect is being supported, the device creates a DPP URI and 2416 

loads that into secure storage. 2417 

d. The IDevID CA provides the certificate to the manufacturer’s database. The 2418 

manufacturer stores either the certificate (i.e., if BRSKI is being supported), or creates 2419 

and stores a DPP URI (i.e., if Wi-Fi Easy Connect is being supported). 2420 

Method 2 is similar to Method 1 except that in method 2, the key pair is generated and stored in a 2421 

secure element and the manufacturer’s database receives the signed certificate directly from the 2422 

CA (either via a push or a pull) rather than via the device. An advantage of method 2 is that the 2423 

device’s private key is not vulnerable to disclosure because secure elements are normally equipped 2424 

with a strong random number generator and tamper-proof storage. 2425 

3. Method 3: Key Pair Loaded into IoT Device 2426 

Summary: Generate the private key in the device factory and load it onto the device. The steps for 2427 

Method 3 are: 2428 

a. The public/private key pairs and certificates are generated in advance at the device 2429 

factory and recorded in the manufacturer’s database. 2430 

b. The public/private key pair and certificate are loaded onto the device at the device 2431 

factory. 2432 

One advantage of this method is that there is no need to trust the random number generator on 2433 

the device to generate strong public/private key pairs. However, the private keys may be 2434 

vulnerable to disclosure during the period of time before they are provisioned into secure storage 2435 

on the devices (and afterwards if they are not deleted once they have been copied into secure 2436 

storage). 2437 

4. Method 4: Key Pair Pre-Provisioned onto Secure Element 2438 

Summary: Generate the private key in the SE and load the certificate on the device at the SE 2439 

factory (SEF). The steps for Method 4 are: 2440 

a. The public/private key pair and certificate are generated in advance in the SE at the 2441 

SEF and the public key is recorded. 2442 

b. The certificate is loaded onto the devices at the SEF. 2443 

c. The certificates and the serial numbers of their corresponding devices are provided to 2444 

the device manufacturer, and the device manufacturer can put them into the 2445 

manufacturer database. 2446 

d. The CA that signs the certificates that are generated and loaded onto the SEs may 2447 

come from either the SEF or the device manufacturer. (Note: the CA is likely not 2448 

located at the factory, which may be offshore.) 2449 

Additional trust anchors can also be loaded into the SE at the SEF (e.g., code signing keys, server 2450 

public keys for TLS connections, etc.) As with methods 2 and 3, one advantage of this method 2451 

(method 4) is that there is no need to trust the random number generator on the device to 2452 

generate strong public/private key pairs because the random number generator on the SE is used 2453 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-02.html#name-bamboo-method-off-device-pr
https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-02.html#name-sapodilla-method-secure-ele


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 92 

instead. With this method, the security level of the manufacturer’s factory does not need to be as 2454 

high as that of the SEF because all key generation and certificate signing is performed at the SEF; 2455 

the manufacturer can rely on the security of the SEF, which can be advantageous to the device 2456 

manufacturer, assuming that the SEF is in fact secure. 2457 

5. Method 5: Private Key Derived from Shared Seed 2458 

Summary: The device’s private key is derived from a shared seed. The steps for Method 5 are: 2459 

a. The chip vendor embeds a random number into each IoT device (e.g., this may be 2460 

burned into fuses on the IoT device, inside the Trusted Execution Environment (TEE)). 2461 

b. The IoT device manufacturer gets a copy of this seed securely (e.g., on a USB device 2462 

that is transported via trusted courier). 2463 

c. On first boot, the IoT device generates a private key from this seed. 2464 

d. The manufacturer uses the same seed to generate a public key and signs a certificate. 2465 

As with method 4, with this option (method 5), there is no need for the IoT device manufacturer to have 2466 

a secure factory because the IoT device manufacturer may rely on the security of the chip manufacturer. 2467 

However, the IoT device manufacturer must also rely on the security of the courier or other mechanism 2468 

that is delivering the seed, and the IoT device manufacturer must ensure that the value of this seed is 2469 

not disclosed. 2470 

2471 H.2 Factory Provisioning Builds – General Provisioning Process 

The Factory Provisioning Builds implemented as part of this project simulate activities performed during 2472 

the IoT device manufacturing process to securely provision the device’s birth credentials (i.e., its private 2473 

key) into secure storage on the device and make the device’s network-layer bootstrapping information 2474 

available by enrolling the device’s public key into a database that will make this public key accessible to 2475 

the device owner in a form such as a certificate or DPP URI. The method used in the factory provisioning 2476 

builds most closely resembles Method 2: Key Pair Generated on IoT Device, as described in Section H.1.1. 2477 

There are several different potential versions of the factory provisioning build architecture depending 2478 

on whether the credentials being generated are designed to support BRSKI, Wi-Fi Easy Connect, Thread, 2479 

or some other trusted network-layer onboarding protocol. For example, when BRSKI is being supported, 2480 

the device bootstrapping information that is created takes the form of an 802.1AR certificate (IDevID); if 2481 

DPP is supported, it takes the form of a DPP URI. 2482 

Because this project does not have access to a real factory or the tools necessary to provision birth 2483 

credentials directly into device firmware, the factory builds simulate the firmware loading process by 2484 

loading factory provisioning code into the IoT device (e.g., a Raspberry Pi device). This code plays the 2485 

role of the factory in the builds by instructing the SE that is attached to the IoT device to generate the 2486 

device’s private key and bootstrapping information. Once the IoT device has been provisioned with its 2487 

birth credentials in this manner, it can, in theory, be network-layer onboarded to one of the project 2488 

build networks. 2489 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 93 

2490 H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ) 

Two variants of the BRSKI Factory Provisioning Build were implemented: 2491 

▪ NquiringMinds and SEALSQ implementation (first version): SEALSQ, a subsidiary of WISeKey, 2492 
and NquiringMinds collaborated to implement one version of the BRSKI Factory Provisioning 2493 
Build. This build is designed to provision birth credentials to a Raspberry Pi device that has an 2494 
attached secure element provided by SEALSQ. 2495 

▪ NquiringMinds and Infineon implementation (second version): NquiringMinds implemented a 2496 
second version of the BRSKI Factory Provisioning Build using an Infineon SE. This build is 2497 
designed to provision birth credentials to a Raspberry Pi device that has an attached Infineon 2498 
Optiga SLB 9670 TPM 2.0. 2499 

2500 H.3.1 BRSKI Factory Provisioning Build Technologies 

The general infrastructure for the first version of the BRSKI Factory Provisioning Build (i.e., the 2501 

NquiringMinds and SEALSQ implementation) is provided by SEALSQ. The first version of the BRSKI 2502 

Factory Provisioning Build infrastructure consists of: 2503 

▪ A SEALSQ VaultIC SE that is attached to the Raspberry Pi 2504 

▪ SEALSQ Factory Provisioning Code that is located on an SD card and that communicates with the 2505 
chip in the SE to 2506 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2507 

• construct a certificate signing request, and 2508 

• store the certificate in the SE as well as send it to the manufacturer’s database 2509 

▪ SEALSQ INeS CMS CA, a certificate authority for signing the device’s birth certificate 2510 

As mentioned earlier, separate factory provisioning builds are required for each network-layer 2511 

onboarding protocol being supported. A small amount of factory provisioning code is required to be 2512 

customized for each build, depending on the onboarding protocol that is supported and how the 2513 

bootstrapping information will be provided to the manufacturer. In this build, NquiringMinds provided 2514 

this code and made it available to the Raspberry Pi IoT device by placing it on an SD card. (This could be 2515 

either in a partition of the SD card that holds the device’s BRSKI onboarding software or on a separate 2516 

SD card altogether). 2517 

Table H-1 lists the technologies used in the first version of the BRSKI Factory Provisioning Build. It lists 2518 

the products used to instantiate each logical build component and the security function that the 2519 

component provides. The components listed are logical. They may be combined in physical form, e.g., a 2520 

single piece of hardware may both generate key pairs and provide secure storage. 2521 

Table H-1 First Version of the BRSKI Factory Provisioning Build Products and Technologies 2522 

Component Product Function 

Key Pair 
Generation 
Component 

SEALSQ VaultIC 
and associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. The VaultIC has a SP800-90B certified 
random number generator for key pair generation. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 94 

Component Product Function 

[15][16][17] Signs the certificate signing request that is sent 
to the CA. 

Secure Storage SEALSQ VaultIC Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

SEALSQ Factory 
Provisioning Code 

Creates a CSR associated with the key pair, installs the 
signed certificate into secure storage. Creates a record of 
devices that it has created and their certificates. 

Build-specific 
Factory 
Provisioning 
Instructions 

NquiringMinds 
Factory 
Provisioning Code 

Sends device ownership information and the certificate 
received by the General Factory Provisioning code to the 
MASA. 

Manufacturer 
Database 

MASA When devices are manufactured, device identity and 
bootstrapping information is stored here by the 
manufacturer. Eventually, this database makes the device’s 
bootstrapping information available to the device owner. 
Device bootstrapping information is information that the 
device owner requires to perform trusted network-layer 
onboarding; for BRSKI, the bootstrapping information is a 
signed certificate that is sent to the MASA, along with 
information regarding the device’s owner. 

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

Issues and signs certificates as needed. 

 

The second version of the BRSKI Factory Provisioning Build (i.e., the NquiringMinds implementation with 2523 

an Infineon SE) infrastructure consists of: 2524 

▪ An Infineon Optiga SLB 9670 TPM 2.0. that is attached to the Raspberry Pi 2525 

▪ Factory Provisioning Code written by NquiringMinds that is located on an SD card and that 2526 
communicates with the chip in SE to  2527 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2528 

• construct a certificate signing request, and 2529 

• store the certificate in the SE as well as send it to the manufacturer’s database 2530 

▪ NquiringMinds Manufacturer Provisioning Root (MPR) server, which signs the device’s IDevID 2531 
birth certificate. It sits in the cloud and is securely contacted using the keys in the Infineon 2532 
Optiga secure element. 2533 

In this build, NquiringMinds provided all of the factory provisioning code and made it available to the 2534 

Raspberry Pi IoT device by placing it on an SD card. (This could be either in a partition of the SD card that 2535 

holds the device’s BRSKI onboarding software or on a separate SD card altogether). 2536 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 95 

Table H-2 lists the technologies used in the second version of the BRSKI Factory Provisioning Build. It lists 2537 

the products used to instantiate each logical build component and the security function that the 2538 

component provides. The components listed are logical. They may be combined in physical form, e.g., a 2539 

single piece of hardware may both generate key pairs and provide secure storage. 2540 

Table H-2 Second Version of the BRSKI Factory Provisioning Build Products and Technologies 2541 

Component Product Function 

Key Pair 
Generation 
Component 

Infineon TPM and 
associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. Signs the certificate signing request that is 
sent to the CA. 

Secure Storage Infineon TPM Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

Infineon TPM-
specific Factory 
Provisioning Code 

Creates a CSR associated with the key pair, installs the 
signed certificate into secure storage. Creates a record of 
devices that it has created and their certificates. 

Build-specific 
Factory 
Provisioning 
Instructions 

Build-specific 
Factory 
Provisioning Code 

Sends device ownership information and the signed 
certificate to the MASA. 

Manufacturer 
Database 

MASA When devices are manufactured, device identity and 
bootstrapping information is stored here by the 
manufacturer. Eventually, this database makes the device’s 
bootstrapping information available to the device owner. 
Device bootstrapping information is information that the 
device owner requires to perform trusted network-layer 
onboarding; for BRSKI, the bootstrapping information is a 
signed certificate that is sent to the MASA, along with 
information regarding the device’s owner.  

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

NquiringMinds On-
premises CA 

Issues and signs certificates as needed. 

 

2542 H.3.2 BRSKI Factory Provisioning Build Logical Architectures 

Figure H-1 depicts the logical architecture of the first version of the BRSKI factory provisioning build (i.e., 2543 

the NquiringMinds and SEALSQ implementation) and is annotated with the steps that are performed in 2544 

this build to prepare IoT devices for network-layer onboarding using the BRSKI protocol. Figure H-1 2545 

shows a Raspberry Pi device with a SEALSQ VaultIC SE attached. An SD card that contains factory 2546 

provisioning code provided by SEALSQ and NquiringMinds is also required. To perform factory 2547 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 96 

provisioning using this build, insert the SD card into the Raspberry Pi, as depicted (or activate the code in 2548 

the factory provisioning partition of the SD card that is already in the Raspberry Pi). The SEALSQ 2549 

software will boot up and perform the following steps to simulate the activities of a factory: 2550 

1. Instruct the SE to generate and store a private/public key pair 2551 

2. Create a certificate signing request for this key pair and have the SE sign it 2552 

3. Send the signed CSR to the IDevID CA (i.e., to the INeS CA that is operated by SEALSQ) 2553 

4. Receive back the signed certificate from the CA 2554 

5. Load the certificate into the SE 2555 

6. Send the certificate (along with device ownership information) to the manufacturer’s database, 2556 

which in this case is the MASA that is trusted by the owner 2557 

This completes the steps performed as part of the first version of the BRSKI Factory Provisioning Build. 2558 

Once complete, shipment of the device to its owner can be simulated by walking the device across the 2559 

room in the NCCoE laboratory to the Build 5 (NquiringMinds) implementation and replacing the SD card 2560 

that has the factory provisioning code on it with and SD card that has the BRSKI onboarding code on it. 2561 

(Alternatively, if the factory provisioning code and the BRSKI onboarding code are stored in separate 2562 

partitions of the same SD card, shipment of the device to its owner can be simulated by booting up the 2563 

code in the onboarding partition.) Build 5 is designed to execute this BRSKI onboarding software, which 2564 

onboards the device to the device owner’s network by provisioning the device with an LDevID that will 2565 

serve as its network-layer credential. Such successful network-layer onboarding of the newly 2566 

provisioned device using the BRSKI protocol by Build 5 would serve to confirm that the first version of 2567 

the BRSKI factory provisioning process successfully provisioned the device with its birth credentials. At 2568 

the time of this writing, however, this confirmation process was not able to be performed. In order to 2569 

securely network-layer onboard the newly provisioned Raspberry Pi using the BRSKI protocol, the 2570 

Raspberry Pi’s onboarding software would need to be written to use the private key stored in the 2571 

SEALSQ secure element when running the BRSKI protocol. Such software was not yet available at the 2572 

time of this publication. The BRSKI onboarding code on the Raspberry Pi does not currently use the 2573 

private key stored in the SEALSQ SE. As a result, Build 5 was not able to onboard this factory Pi as a way 2574 

of confirming that the first version of the BRSKI factory build process completed successfully. The 2575 

repository that hosts the code for this implementation can be found here at the trustnetz-se Github 2576 

repository. 2577 

https://github.com/nqminds/trustnetz-se/
https://github.com/nqminds/trustnetz-se/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 97 

Figure H-1 Logical Architecture of the First Version of the BRSKI Factory Provisioning Build 2578 

 

Figure H-2 depicts the logical architecture of the second version of the BRSKI factory provisioning build 2579 

and is annotated with the steps that are performed in this build to prepare IoT devices for network-layer 2580 

onboarding using the BRSKI protocol. Figure H-2 shows a Raspberry Pi device with an Infineon Optiga 2581 

SLB 9670 TPM 2.0 SE attached. An SD card that contains factory provisioning code provided by 2582 

NquiringMinds is also required. To perform factory provisioning using this build, insert the SD card into 2583 

the Raspberry Pi, as depicted (or activate the code in the factory provisioning partition of the SD card 2584 

that is already in the Raspberry Pi). The factory provisioning code software will boot up and perform the 2585 

following steps to simulate the activities of a factory: 2586 

1. Instruct the Infineon SE to generate and store a private/public key pair 2587 

2. Create a certificate signing request for this key pair and have the SE sign it 2588 

3. Send the signed CSR to the IDevID CA (i.e., to the NquiringMinds on-premises CA/Manufacturer 2589 

Provisioning Root) 2590 

4. Receive back the signed certificate from the CA 2591 

5. Load the certificate into the SE 2592 

6. Send the certificate (along with device ownership information) to the manufacturer’s database, 2593 

which in this case is the MASA that is trusted by the owner 2594 

This completes the steps performed as part of the second version of the BRSKI Factory Provisioning 2595 

Build. Once complete, shipment of the device to its owner can be simulated by walking the device across 2596 

the room in the NCCoE laboratory to the Build 5 (NquiringMinds) implementation and replacing the SD 2597 

card that has the factory provisioning code on it with and SD card that has the BRSKI onboarding code 2598 

on it. (Alternatively, if the factory provisioning code and the BRSKI onboarding code are stored in 2599 

separate partitions of the same SD card, shipment of the device to its owner can be simulated by 2600 

IoT Device 

(Raspberry Pi)

MASA

SEALSQ 

INeS CA

WISeKey VaultIC Secure Element (SE)

Key Pair 

Generation 

Component

SD Card

Provisioning 

Code

Operations performed in the SE:

• Generate private/public key pair

• Sign the certificate signing 

request (CSR)

• Receive and store the signed 

certificate

5. Load the certificate into 

the SE

6. Send the certificate and 

ownership information to 

the manufacturer’s 

database (i.e., the MASA)

The Provisioning Code 

performs the following steps:

1. Instruct the SE to generate 

and store a public/private 

key pair

2. Create a CSR and have the 

SE sign it

3. Send the signed CSR to the 

CA

4. Receive certificate 

from  the CA

Secure 

Storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 98 

booting up the code in the onboarding partition.) Build 5 executes a modification of the BRSKI 2601 

onboarding software that has been modified to use the IDevID resident on the Infineon TPM throughout 2602 

the protocol flow, ensuring the device’s IDevID’s private key is never made public and never leaves the 2603 

secure element. Specifically, the critical signing operations and the TLS negotiation steps are fully 2604 

secured by the SE. The full BRSKI onboarding flow provisions a new LDevID onto the device. This LDevID 2605 

provides the secure method for the device to connect to the domain owner’s network. This successful 2606 

network-layer onboarding of the IoT device by Build 5 serves as confirmation that the second version of 2607 

the BRSKI factory provisioning process successfully provisioned the device with its birth credentials. 2608 

Figure H-2 Logical Architecture of the Second Version of the BRSKI Factory Provisioning Build 2609 

 

2610 H.3.3 BRSKI Factory Provisioning Build Physical Architectures 

Section 5.6.1 describes the physical architecture of the BRSKI Factory Provisioning Builds. 2611 

2612 H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and 
2613 Aruba/HPE) 

SEALSQ, a subsidiary of WISeKey, and Aruba/HPE implemented a Wi-Fi Easy Connect Factory 2614 

Provisioning Build. This build is designed to provision birth credentials to a Raspberry Pi device that has 2615 

an attached secure element provided by SEALSQ. 2616 

2617 H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies 

The general infrastructure for the Wi-Fi Easy Connect Factory Provisioning Build is provided by SEALSQ. 2618 

The Wi-Fi Easy Connect Factory Provisioning Build infrastructure consists of: 2619 

▪ A SEALSQ VaultIC SE that is attached to the Raspberry Pi 2620 

IoT Device 

(Raspberry Pi)

MASA

Nquiring

Minds On-

Premises 

CA

Infineon Optiga SLB 9670 TPM 2.0 (SE)

Key Pair 

Generation 

Component

SD Card

Provisioning 

Code

Operations performed in the SE:

• Generate private/public key pair

• Sign the certificate signing 

request (CSR)

• Receive and store the signed 

certificate

5. Load the certificate into 

the SE

6. Send the certificate and 

ownership information to 

the manufacturer’s 

database (i.e., the MASA)

The Provisioning Code 

performs the following steps:

1. Instruct the SE to generate 

and store a public/private 

key pair

2. Create a CSR and have the 

SE sign it

3. Send the signed CSR to the 

CA

4. Receive certificate 

from  the CA

Secure 

Storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 99 

▪ SEALSQ Factory Provisioning Code that is located on an SD card and that communicates with the 2621 
chip in the SE to: 2622 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2623 

• use the public key to construct a DPP URI 2624 

• export the DPP URI and convert it into a QR code 2625 

Table H-3 lists the technologies used in the Wi-Fi Easy Connect Factory Provisioning Build. It lists the 2626 

products used to instantiate each logical build component and the security function that the component 2627 

provides. The components listed are logical. They may be combined in physical form, e.g., a single piece 2628 

of hardware may both generate key pairs and provide secure storage. 2629 

Table H-3 Wi-Fi Easy Connect Factory Provisioning Build Products and Technologies 2630 

Component Product Function 

Key Pair 
Generation 
Component 

SEALSQ VaultIC 
and associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. The VaultIC has a SP800-90B certified 
random number generator for key pair generation. [17] 

Secure Storage SEALSQ VaultIC Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

SEALSQ Factory 
Provisioning Code 

Creates a public/private key pair. 

Build-specific 
Factory 
Provisioning 
Instructions 

Aruba/HPE Factory 
Provisioning Code 

Uses the public key to create a DPP URI. Exports the DPP 
URI and converts it into a QR code. 

Manufacturer 
Database 

Manufacturer 
cloud or imprint on 
device 

The DPP URI information is stored in the QR code and is the 
mechanism for conveying the device’s bootstrapping 
information to the device owner. 

2631 H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture 

Figure H-3 depicts the logical architecture of the Wi-Fi Easy Connect factory provisioning build and is 2632 

annotated with the steps that are performed in this build to prepare Raspberry Pi IoT devices for 2633 

network-layer onboarding using the Wi-Fi Easy Connect protocol. Figure H-3 shows a Raspberry Pi device 2634 

with a SEALSQ VaultIC SE attached. Factory provisioning code provided by SEALSQ and Aruba/HPE must 2635 

also be loaded. In Figure H-3, this code is shown as being on an SD card. The factory provisioning 2636 

software will boot up and perform the following steps to simulate the activities of a factory: 2637 

1. Instruct the SE to generate and store a private/public key pair 2638 

2. Use the public key to create a DPP URI 2639 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 100 

3. Export the DPP URI and convert it into a QR code 2640 

This completes the steps performed as part of the Wi-Fi Easy Connect Factory Provisioning Build. Once 2641 

complete, shipment of the device to its owner can be simulated by walking the device across the room 2642 

in the NCCoE laboratory to the Build 1 (Aruba/HPE) implementation. Build 1 uses the Wi-Fi Easy Connect 2643 

protocol to network-layer onboard the device to the device owner’s network by provisioning the device 2644 

with connector that will serve as its network-layer credential. Successful network-layer onboarding of 2645 

the newly provisioned device using the Wi-Fi Easy Connect protocol by Build 1 would serve to confirm 2646 

that the Wi-Fi Easy Connect factory provisioning process correctly provisioned the device with its birth 2647 

credentials. At the time of this writing, however, this confirmation process was not able to be 2648 

performed. In order to securely network-layer onboard the newly provisioned Raspberry Pi using the 2649 

Wi-Fi Easy Connect protocol, the Raspberry Pi would need to be equipped with a firmware image that 2650 

uses the private key stored in the secure element when running the Wi-Fi Easy Connect protocol. Such 2651 

firmware was not yet available at the time of this publication. The Wi-Fi Easy Connect code on the 2652 

Raspberry Pi does not use the private key stored in the SE at this time. Confirmation that the factory 2653 

build process completed successfully is limited to inspection of the .PNG file and .URI file that were 2654 

created to display the QR Code and the device’s DPP URI, respectively. 2655 

Figure H-3 Logical Architecture of the Wi-Fi Easy Connect Factory Provisioning Build 2656 

 

2657 H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture 

Section 5.2.1 describes the physical architecture of the Factory Provisioning Build. 2658 

  

IoT Device 

(Raspberry Pi)

WISeKey VaultIC Secure Element (SE)

Key Pair 

Generation 

ComponentSD Card

Provisioning 

Code
Operations performed in the SE:

• Generate private/public key pair

• Create the DPP URI

The Provisioning Code performs 

the following steps:

1. Instruct the SE to generate 

and store a public/private key 

pair

2. Use the public key to create a 

DPP URI

3. Export the DPP URI and 

convert it to a QR code

Secure 

Storage

DPP URI

QR Code



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 101 

2659 Appendix I References 
[1] L. S. Vailshery, “Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2660 

2023, with forecasts from 2022 to 2030,” Statista, July 2023. Available: 2661 

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. 2662 

[2] S. Symington, W. Polk, and M. Souppaya, Trusted Internet of Things (IoT) Device Network-2663 

Layer Onboarding and Lifecycle Management (Draft), National Institute of Standards and 2664 

Technology (NIST) Draft Cybersecurity White Paper, Gaithersburg, MD, Sept. 2020, 88 pp. 2665 

https://doi.org/10.6028/NIST.CSWP.09082020-draft. 2666 

[3] E. Lear, R. Droms, and D. Romascanu, Manufacturer Usage Description Specification, IETF 2667 

Request for Comments (RFC) 8520, March 2019. Available: https://tools.ietf.org/html/rfc8520. 2668 

[4] M. Souppaya et al, Securing Small-Business and Home Internet of Things (IoT) Devices: 2669 

Mitigating Network-Based Attacks Using Manufacturer Usage Description (MUD), National 2670 

Institute of Standards and Technology (NIST) Special Publication (SP) 1800-15, Gaithersburg, 2671 

Md., May 2021, 438 pp. Available: 2672 

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-15.pdf. 2673 

[5] “National Cybersecurity Center of Excellence (NCCoE) Trusted Internet of Things (IoT) Device 2674 

Network-Layer Onboarding and Lifecycle Management,” Federal Register Vol. 86, No. 204, 2675 

October 26, 2021, pp. 59149-59152. Available: 2676 

https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-2677 

center-of-excellence-nccoe-trusted-internet-of-things-iot-device. 2678 

[6] Wi-Fi Alliance, Wi-Fi Easy Connect™ Specification Version 3.0, 2022. Available: 2679 

https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf. 2680 

[7] M. Pritikin, M. Richardson, T.T.E. Eckert, M.H. Behringer, and K.W. Watsen, Bootstrapping 2681 

Remote Secure Key Infrastructure (BRSKI), IETF Request for Comments (RFC) 8995, October 2682 

2021. Available: https://datatracker.ietf.org/doc/rfc8995/. 2683 

[8] Thread 1.1.1 Specification, February 13, 2017. 2684 

[9] OpenThread Released by Google. Available: https://openthread.io/. 2685 

[10] O. Friel, E. Lear, M. Pritikin, and M. Richardson, BRSKI over IEEE 802.11, IETF Internet-Draft 2686 

(Individual), July 2018. Available: https://datatracker.ietf.org/doc/draft-friel-brski-over-2687 

802dot11/01/. 2688 

[11] NIST. The NIST Cybersecurity Framework (CSF) 2.0. Available: 2689 

https://doi.org/10.6028/NIST.CSWP.29. 2690 

[12] IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity, IEEE Std 2691 

802.1AR-2018 (Revision of IEEE Std 802.1AR-2009), 2 Aug. 2018, 73 pp. Available: 2692 

https://ieeexplore.ieee.org/document/8423794. 2693 

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.6028/NIST.CSWP.09082020-draft
https://tools.ietf.org/html/rfc8520
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-15.pdf
https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-center-of-excellence-nccoe-trusted-internet-of-things-iot-device
https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-center-of-excellence-nccoe-trusted-internet-of-things-iot-device
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf
https://datatracker.ietf.org/doc/rfc8995/
https://openthread.io/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://doi.org/10.6028/NIST.CSWP.29
https://ieeexplore.ieee.org/document/8423794


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 102 

[13] F. Stajano and R. Anderson, The Resurrecting Duckling: Security Issues for Ad-hoc Wireless 2694 

Networks, B. Christianson, B. Crispo and M. Roe (Eds.). Security Protocols, 7th International 2695 

Workshop Proceedings, Lecture Notes in Computer Science, 1999. Springer-Verlag Berlin 2696 

Heidelberg 1999. Available: https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-2697 

duckling.pdf. 2698 

[14] M. Richardson, A Taxonomy of operational security considerations for manufacturer installed 2699 

keys and Trust Anchors, IETF Internet-Draft (Individual), November 2022. Available: 2700 

https://datatracker.ietf.org/doc/draft-richardson-t2trg-idevid-considerations/. 2701 

[15] Certificate #4302, Cryptographic Module Validation Program, NIST Computer Security 2702 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2703 

program/certificate/4302. 2704 

[16] Certificate #4303, Cryptographic Module Validation Program, NIST Computer Security 2705 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2706 

program/certificate/4303. 2707 

[17] Entropy Certificate #E2, Cryptographic Module Validation Program, NIST Computer Security 2708 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2709 

program/entropy-validations/certificate/2. 2710 

https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://datatracker.ietf.org/doc/draft-richardson-t2trg-idevid-considerations/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4302
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4302
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4303
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4303
https://csrc.nist.gov/projects/cryptographic-module-validation-program/entropy-validations/certificate/2
https://csrc.nist.gov/projects/cryptographic-module-validation-program/entropy-validations/certificate/2


 

 

NIST SPECIAL PUBLICATION 1800-36C 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and Network 
Security 
 
Volume C: 
How-To Guides 
 

Murugiah Souppaya 
Paul Watrobski 
National Institute of Standards and Technology 
Gaithersburg, Maryland 

Chelsea Deane 
Joshua Klosterman 
Blaine Mulugeta 
Charlie Rearick 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 

Dan Harkins 
Danny Jump 
Aruba, a Hewlett Packard 
Enterprise Company 

San Jose, California 

Andy Dolan 

Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs 
Louisville, Colorado 

Nick Allot 
Ashley Setter 
NquiringMinds 
Southampton, United Kingdom 

 

May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 

 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 

experimental procedure or concept adequately. Such identification is not intended to imply special 4 

status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 

for the purpose. 7 

While NIST and the NCCoE address goals of improving management of cybersecurity and privacy risk 8 

through outreach and application of standards and best practices, it is the stakeholder’s responsibility to 9 

fully perform a risk assessment to include the current threat, vulnerabilities, likelihood of a compromise, 10 

and the impact should the threat be realized before adopting cybersecurity measures such as this 11 

recommendation. 12 

 

National Institute of Standards and Technology Special Publication 1800-36C, Natl. Inst. Stand. Technol. 13 

Spec. Publ. 1800-36C, 55 pages, May 2024, CODEN: NSPUE2 14 

 

FEEDBACK 15 

You can improve this guide by contributing feedback. As you review and adopt this solution for your 16 

own organization, we ask you and your colleagues to share your experience and advice with us. 17 

Comments on this publication may be submitted to: iot-onboarding@nist.gov. 18 

Public comment period: May 31, 2024 through July 30, 2024 19 

All comments are subject to release under the Freedom of Information Act. 20 

National Cybersecurity Center of Excellence 21 

National Institute of Standards and Technology 22 

100 Bureau Drive 23 

Mailstop 2002 24 

Gaithersburg, MD 20899 25 

Email: nccoe@nist.gov  26 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 27 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 28 

and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 29 

academic institutions work together to address businesses’ most pressing cybersecurity issues. This 30 

public-private partnership enables the creation of practical cybersecurity solutions for specific 31 

industries, as well as for broad, cross-sector technology challenges. Through consortia under 32 

Cooperative Research and Development Agreements (CRADAs), including technology partners—from 33 

Fortune 50 market leaders to smaller companies specializing in information technology security—the 34 

NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 35 

solutions using commercially available technology. The NCCoE documents these example solutions in 36 

the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 37 

and details the steps needed for another entity to re-create the example solution. The NCCoE was 38 

established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 39 

Maryland. 40 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 41 

https://www.nist.gov. 42 

NIST CYBERSECURITY PRACTICE GUIDES 43 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 44 

challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 45 

adoption of standards-based approaches to cybersecurity. They show members of the information 46 

security community how to implement example solutions that help them align with relevant standards 47 

and best practices, and provide users with the materials lists, configuration files, and other information 48 

they need to implement a similar approach. 49 

The documents in this series describe example implementations of cybersecurity practices that 50 

businesses and other organizations may voluntarily adopt. These documents do not describe regulations 51 

or mandatory practices, nor do they carry statutory authority. 52 

KEYWORDS 53 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 54 

(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 55 

  

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

ACKNOWLEDGMENTS 56 

We are grateful to the following individuals for their generous contributions of expertise and time. 57 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

Eliot Lear Cisco 

Peter Romness Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT 

Brecht Wyseur Kudelski IoT 

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors 

Mihai Chelalau NXP Semiconductors 

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor NXP Semiconductors 

Michael Richardson Sandelman Software Works 

Karen Scarfone Scarfone Cybersecurity 

Steve Clark SEALSQ, a subsidiary of WISeKey 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

Mike Dow Silicon Labs 

Steve Egerter Silicon Labs 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 58 

response to a notice in the Federal Register. Respondents with relevant capabilities or product 59 

components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 60 

NIST, allowing them to participate in a consortium to build this example solution. We worked with: 61 

Technology Collaborators 62 

Aruba, a Hewlett Packard 63 

Enterprise company 64 

CableLabs 65 

Cisco 66 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

DOCUMENT CONVENTIONS 67 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 68 

publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 69 

among several possibilities, one is recommended as particularly suitable without mentioning or 70 

excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 71 

the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 72 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

“may” and “need not” indicate a course of action permissible within the limits of the publication. The 73 

terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 74 

CALL FOR PATENT CLAIMS 75 

This public review includes a call for information on essential patent claims (claims whose use would be 76 

required for compliance with the guidance or requirements in this Information Technology Laboratory 77 

(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 78 

or by reference to another publication. This call also includes disclosure, where known, of the existence 79 

of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 80 

unexpired U.S. or foreign patents. 81 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 82 

written or electronic form, either: 83 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 84 

currently intend holding any essential patent claim(s); or 85 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 86 

to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 87 

publication either: 88 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 89 

or 90 

2. without compensation and under reasonable terms and conditions that are demonstrably free 91 

of any unfair discrimination. 92 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 93 

behalf) will include in any documents transferring ownership of patents subject to the assurance, 94 

provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 95 

and that the transferee will similarly include appropriate provisions in the event of future transfers with 96 

the goal of binding each successor-in-interest. 97 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 98 

whether such provisions are included in the relevant transfer documents. 99 

Such statements should be addressed to: iot-onboarding@nist.gov. 100 

  

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

Contents 101 

102 

103 

104 

1.2.1 Reference Architecture Summary ................................................................................ 3 105 

1.2.2 Physical Architecture Summary .................................................................................... 3 106 

107 

108 

109 

110 

2.2.1 Wi-Fi Network Setup and Configuration ...................................................................... 8 111 

2.2.2 Wi-Fi Easy Connect Configuration ................................................................................ 9 112 

113 

2.3.1 Configuration .............................................................................................................. 10 114 

115 

2.4.1 Configuration .............................................................................................................. 10 116 

117 

2.5.1 Configuration .............................................................................................................. 11 118 

2.5.2 DPP Onboarding ......................................................................................................... 11 119 

120 

2.6.1 Private Certificate Authority ....................................................................................... 13 121 

2.6.2 SEALSQ INeS................................................................................................................ 17 122 

123 

124 

2.8.1 SEALSQ VaultIC Secure Element ................................................................................. 18 125 

126 

127 

3.1.1 Operation and Demonstration ................................................................................... 20 128 

129 

3.2.1 Installation and Configuration .................................................................................... 20 130 

3.2.2 Integration with CableLabs Platform Controller ........................................................ 20 131 

3.2.3 Operation and Demonstration ................................................................................... 20 132 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ix 

133 

3.3.1 Installation and Configuration .................................................................................... 20 134 

3.3.2 Operation and Demonstration ................................................................................... 20 135 

136 

137 

4.1.1 Setup and Configuration ............................................................................................. 21 138 

139 

4.2.1 Setup and Configuration ............................................................................................. 21 140 

141 

4.3.1 Setup and Configuration ............................................................................................. 22 142 

143 

144 

4.5.1 Setup and Configuration ............................................................................................. 23 145 

146 

147 

5.1.1 Installation and Configuration .................................................................................... 24 148 

5.1.2 Operation and Demonstration ................................................................................... 24 149 

150 

5.2.1 Setup and Configuration ............................................................................................. 25 151 

152 

5.3.1 Setup and Configuration ............................................................................................. 28 153 

154 

5.4.1 Setup and Configuration ............................................................................................. 30 155 

5.4.2 Testing ........................................................................................................................ 35 156 

157 

158 

6.1.1 Installation and Configuration .................................................................................... 37 159 

6.1.2 Operation and Demonstration ................................................................................... 37 160 

161 

6.2.1 Installation and Configuration .................................................................................... 37 162 

6.2.2 Logical services ........................................................................................................... 38 163 

164 

6.3.1 Prerequisites ............................................................................................................... 41 165 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management x 

6.3.2 Onboarding Demonstration ....................................................................................... 42 166 

6.3.3 Continuous Assurance Demonstration ....................................................................... 42 167 

168 

6.4.1 Pledge ......................................................................................................................... 43 169 

6.4.2 Installation and Configuration .................................................................................... 43 170 

6.4.3 Operation and Demonstration ................................................................................... 43 171 

 

List of Figures 172 

Figure 1-1 NCCoE IoT Onboarding Laboratory Physical Architecture .....................................................5 173 

Figure 6-1 Logical Services for Build 5 ............................................................................................... 38 174 

Figure 6-2 Diagram of Physical/Logical Components Used to Demonstrate BRSKI Flow ...................... 42 175 

 

  



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 176 

The following volumes of this guide show information technology (IT) professionals and security 177 

engineers how we implemented these example solutions. We cover all of the products employed in this 178 

reference design. We do not re-create the product manufacturers’ documentation, which is presumed 179 

to be widely available. Rather, these volumes show how we incorporated the products together in our 180 

environment. 181 

Note: These are not comprehensive tutorials. There are many possible service and security configurations 182 

for these products that are out of scope for this reference design. 183 

1.1 How to Use This Guide 184 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 185 

implementing trusted IoT device network-layer onboarding and lifecycle management and describes 186 

various example implementations of this reference design. Each of these implementations, which are 187 

known as builds, is standards-based and is designed to help provide assurance that networks are not put 188 

at risk as new IoT devices are added to them and to help safeguard IoT devices from connecting to 189 

unauthorized networks. The reference design described in this practice guide is modular and can be 190 

deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 191 

onboarding and lifecycle management into their legacy environments according to goals that they have 192 

prioritized based on risk, cost, and resources. 193 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 194 

possible rather than delaying release until all volumes are completed. 195 

This guide contains five volumes: 196 

▪ NIST Special Publication (SP) 1800-36A: Executive Summary – why we wrote this guide, the 197 
challenge we address, why it could be important to your organization, and our approach to 198 
solving this challenge 199 

▪ NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 200 

▪ NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 201 
including all the security-relevant details that would allow you to replicate all or parts of this 202 
project (you are here) 203 

▪ NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 204 
trusted IoT device network-layer onboarding and lifecycle management security capabilities and 205 
the results of demonstrating these use cases with each of the example implementations 206 

▪ NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 207 
device network-layer onboarding and lifecycle management security characteristics to 208 
cybersecurity standards and recommended practices 209 

Depending on your role in your organization, you might use this guide in different ways: 210 

Business decision makers, including chief security and technology officers, will be interested in the 211 

Executive Summary, NIST SP 1800-36A, which describes the following topics: 212 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

▪ challenges that enterprises face in migrating to the use of trusted IoT device network-layer 213 
onboarding 214 

▪ example solutions built at the NCCoE 215 

▪ benefits of adopting the example solution 216 

Technology or security program managers who are concerned with how to identify, understand, assess, 217 

and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 218 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 219 

components of the general trusted IoT device network-layer onboarding and lifecycle management 220 

reference design to security characteristics listed in various cybersecurity standards and recommended 221 

practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 222 

Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 223 

(NIST SP 800-53). 224 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 225 

them understand the importance of using standards-based trusted IoT device network-layer onboarding 226 

and lifecycle management implementations. 227 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 228 

can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 229 

in our lab. The how-to portion of the guide provides specific product installation, configuration, and 230 

integration instructions for implementing the example solution. We do not re-create the product 231 

manufacturers’ documentation, which is generally widely available. Rather, we show how we 232 

incorporated the products together in our environment to create an example solution. Also, you can use 233 

Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 234 

showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 235 

and the results of demonstrating these use cases with each of the example implementations. Finally, 236 

NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 237 

build provide. 238 

This guide assumes that IT professionals have experience implementing security products within the 239 

enterprise. While we have used a suite of commercial products to address this challenge, this guide does 240 

not endorse these particular products. Your organization can adopt this solution or one that adheres to 241 

these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 242 

parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 243 

organization’s security experts should identify the products that will best integrate with your existing 244 

tools and IT system infrastructure. We hope that you will seek products that are congruent with 245 

applicable standards and recommended practices. 246 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 247 

feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 248 

stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-249 

onboarding@nist.gov. 250 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf
mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

1.2 Build Overview 251 

This NIST Cybersecurity Practice Guide addresses the challenge of network-layer onboarding using 252 

standards-based protocols to perform trusted network-layer onboarding of an IoT device. Each build 253 

demonstrates one or more of these capabilities: 254 

▪ Trusted Network-Layer Onboarding: providing the device with its unique network credentials 255 
over an encrypted channel 256 

▪ Network Re-Onboarding: performing trusted network-layer onboarding of the device again, 257 
after device reset 258 

▪ Network Segmentation: assigning a device to a particular local network segment to prevent it 259 
from communicating with other network components, as determined by enterprise policy 260 

▪ Trusted Application-Layer Onboarding: providing the device with application-layer credentials 261 
over an encrypted channel after completing network-layer onboarding 262 

▪ Ongoing Device Authorization: continuously monitoring the device on an ongoing basis, 263 
providing policy-based assurance and authorization checks on the device throughout its lifecycle 264 

▪ Device Communications Intent Enforcement: Secure conveyance of device communications 265 
intent information, combined with enforcement of it, to ensure that IoT devices are constrained 266 
to sending and receiving only those communications that are explicitly required for each device 267 
to fulfill its purpose 268 

Five builds that will serve as examples of how to onboard IoT devices using the protocols described in 269 

NIST SP 1800-36B, as well as the factory provisioning builds, are being implemented and will be 270 

demonstrated as part of this project. The remainder of this practice guide provides step-by-step 271 

instructions on how to reproduce all builds. 272 

1.2.1 Reference Architecture Summary 273 

The builds described in this document are instantiations of the trusted network-layer onboarding and 274 

lifecycle management logical reference architecture that is described in NIST SP 1800-36B. This 275 

architecture is organized according to five high-level processes: Device Manufacture and Factory 276 

Provisioning, Device Ownership and Bootstrapping Information Transfer, Trusted Network-Layer 277 

Onboarding, Trusted Application-Layer Onboarding, and Continuous Verification. For a full explanation 278 

of the architecture, please see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 279 

1.2.2 Physical Architecture Summary 280 

Figure 1-1 depicts the high-level physical architecture of the NCCoE IoT Onboarding laboratory 281 

environment in which the five trusted IoT device network-layer onboarding project builds and the two 282 

factory provisioning builds are being implemented. The NCCoE provides virtual machine (VM) resources 283 

and physical infrastructure for the IoT Onboarding lab. As depicted, the NCCoE IoT Onboarding 284 

laboratory hosts collaborator hardware and software for the builds. The NCCoE also provides 285 

connectivity from the IoT Onboarding lab to the NIST Data Center, which provides connectivity to the 286 

internet and public IP spaces (both IPv4 and IPv6). Access to and from the NCCoE network is protected 287 

by a firewall. 288 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

Access to and from the IoT Onboarding lab is protected by a pfSense firewall, represented by the brick 289 

box icon in Figure 1-1. This firewall has both IPv4 and IPv6 (dual stack) configured. The IoT Onboarding 290 

lab network infrastructure includes a shared virtual environment that houses a domain controller and a 291 

vendor jumpbox. These components are used across builds where applicable. It also contains five 292 

independent virtual local area networks (VLANs), each of which houses a different trusted network-layer 293 

onboarding build. 294 

The IoT Onboarding laboratory network has access to cloud components and services provided by the 295 

collaborators, all of which are available via the internet. These components and services include Aruba 296 

Central and the UXI Cloud (Build 1), SEALSQ INeS (Build 1), Platform Controller (Build 2), a MASA server 297 

(Build 3), Kudelski IoT keySTREAM application-layer onboarding service and AWS IoT (Build 4), and a 298 

Manufacturer Provisioning Root (Build 5). 299 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

Figure 1-1 NCCoE IoT Onboarding Laboratory Physical Architecture 300 

 

 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

All five network-layer onboarding laboratory environments, as depicted in the diagram, have been 301 

installed: 302 

▪ Build 1 (i.e., the Wi-Fi Easy Connect, Aruba/HPE build) network infrastructure within the NCCoE 303 
lab consists of two components: the Aruba Access Point and the Cisco Switch. Build 1 also 304 
requires support from Aruba Central for network-layer onboarding and the UXI Cloud for 305 
application-layer onboarding. These components are in the cloud and accessed via the internet. 306 
The IoT devices that are onboarded using Build 1 include the UXI Sensor and the Raspberry Pi. 307 

▪ Build 2 (i.e., the Wi-Fi Easy Connect, CableLabs, OCF build) network infrastructure within the 308 
NCCoE lab consists of a single component: the Gateway Access Point. Build 2 requires support 309 
from the Platform Controller, which also hosts the IoTivity Cloud Service. The IoT devices that 310 
are onboarded using Build 2 include three Raspberry Pis. 311 

▪ Build 3 (i.e., the BRSKI, Sandelman Software Works build) network infrastructure components 312 
within the NCCoE lab include a Wi-Fi capable home router (including Join Proxy), a DMZ switch 313 
(for management), and an ESP32A Xtensa board acting as a Wi-Fi IoT device, as well as an 314 
nRF52840 board acting as an IEEE 802.15.4 device. A management system on a BeagleBone 315 
Green serves as a serial console. A registrar server has been deployed as a virtual appliance on 316 
the NCCoE private cloud system. Build 3 also requires support from a MASA server which is 317 
accessed via the internet. In addition, a Raspberry Pi 3 provides an ethernet/802.15.4 gateway, 318 
as well as a test platform. 319 

▪ Build 4 (i.e., the Thread, Silicon Labs, Kudelski IoT build) network infrastructure components 320 
within the NCCoE lab include an Open Thread Border Router, which is implemented using a 321 
Raspberry Pi, and a Silicon Labs Gecko Wireless Starter Kit, which acts as an 802.15.4 antenna. 322 
Build 4 also requires support from the Kudelski IoT keySTREAM service, which is in the cloud and 323 
accessed via the internet. The IoT device that is onboarded in Build 4 is the Silicon Labs Dev Kit 324 
(BRD2601A) with an EFR32MG24 System-on-Chip. The application service to which it onboards 325 
is AWS IoT. 326 

▪ Build 5 (i.e., the BRSKI over Wi-Fi, NquiringMinds build) includes 2 Raspberry Pi 4Bs running a 327 
Linux operating system. One Raspberry Pi acts as the pledge (or IoT Device) with an Infineon 328 
TPM connected. The other acts as the router, registrar and MASA all in one device. This build 329 
uses the open source TrustNetZ distribution, from which the entire build can be replicated 330 
easily. The TrustNetZ distribution includes source code for the IoT device, the router, the access 331 
point, the network onboarding component, the policy engine, the manufacturer services, the 332 
registrar and a demo application server. TrustNetZ makes use of NquiringMinds tdx Volt to issue 333 
and validate verifiable credentials. 334 

▪ The BRSKI factory provisioning build is deployed in the Build 5 environment. The IoT device in 335 
this build is a Raspberry Pi equipped with an Infineon Optiga SLB 9670 TPM 2.0, which gets 336 
provisioned with birth credentials (i.e., a public/private key pair and an IDevID). The BRSKI 337 
factory provisioning build also uses an external certificate authority hosted on the premises of 338 
NquiringMinds to provide the device certificate signing service. 339 

▪ The Wi-Fi Easy Connect factory provisioning build is deployed in the Build 1 environment. Its IoT 340 
devices are Raspberry Pis equipped with a SEALSQ VaultIC Secure Element, which gets 341 
provisioned with a DPP URI. The Secure Element can also be provisioned with an IDevID 342 
certificate signed by the SEALSQ INeS certification authority, which is independent of the DPP 343 
URI. Code for performing the factory provisioning is stored on an SD card. 344 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

1.3 Typographic Conventions 345 

The following table presents typographic conventions used in this volume. 346 

Typeface/Symbol Meaning Example 

Italics file names and path names; 
references to documents that are not 
hyperlinks; new terms; and 
placeholders 

For language use and style guidance, see 
the NCCoE Style Guide. 

Bold names of menus, options, command 
buttons, and fields 

Choose File > Edit. 

Monospace command-line input, onscreen 
computer output, sample code 
examples, and status codes 

mkdir 

Monospace Bold command-line user input contrasted 
with computer output 

service sshd start 

blue text link to other parts of the document, a 
web URL, or an email address 

All publications from NIST’s NCCoE are 
available at https://www.nccoe.nist.gov. 

2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) 347 

This section of the practice guide contains detailed instructions for installing and configuring all the 348 

products used to build an instance of the example solution. For additional details on Build 1’s logical and 349 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 350 

The network-layer onboarding component of Build 1 utilizes Wi-Fi Easy Connect, also known as the 351 

Device Provisioning Protocol (DPP). The Wi-Fi Easy Connect standard is maintained by the Wi-Fi Alliance 352 

[1]. The term “DPP” is used when referring to the network-layer onboarding protocol, and “Wi-Fi Easy 353 

Connect” is used when referring to the overall implementation of the network onboarding process. 354 

2.1 Aruba Central/Hewlett Packard Enterprise (HPE) Cloud 355 

This build utilized Aruba Central as a cloud management service that provided management and support 356 

for the Aruba Wireless Access Point (AP) and provided authorization and DPP onboarding capabilities for 357 

the wireless network. A cloud-based application programming interface (API) endpoint provided the 358 

ability to import the DPP Uniform Resource Identifiers (URIs) in the manner of a Supply Chain 359 

Integration Service. Due to this capability and Build 1’s support for Wi-Fi Easy Connect, Build 1’s 360 

infrastructure fully supported interoperable network-layer onboarding with Build 2’s Reference Clients 361 

(“IoT devices”) provided by CableLabs. 362 

2.2 Aruba Wireless Access Point 363 

Use of DPP is implicitly dependent on the Aruba Central cloud service. Aruba Central provides a cloud 364 

Infrastructure as a Service (IaaS) enabled architecture that includes initial support for DPP in Central 365 

2.5.6/ArubaOS (AOS) 10.4.0. Central and AOS support multiple deployment formats: 366 

1. As AP only, referred to as an underlay deployment, where traffic is bridged locally from the APs. 367 

https://www.nccoe.nist.gov/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

2. An overlay deployment, where all data is securely tunneled to an on-prem gateway where 368 

advanced services can route, inspect, and analyze the data before it’s either bridged locally or 369 

routed to its next hop. 370 

3. A mixed-mode deployment, which is a combination of the two where a returned ‘role/label’ is 371 

used to determine how the data is processed and forwarded. 372 

At the time of this publication, a user can leverage any 3xx, 5xx, or 6xx APs to support a DPP 373 

deployment, with a view that all future series APs will implicitly include support. For an existing or new 374 

user there is a prerequisite of the creation of a Service Set Identifier (SSID). Note that DPP today is not 375 

supported under Wi-Fi Protected Access 3 (WPA3); this is a roadmap item with no published timeline. 376 

Assuming there is an existing SSID or a new one is created based upon the above security restrictions, 377 

the next step is to enable DPP (as detailed below in Section 2.2.1) such that the SSID can support 378 

multiple authentication and key managements (AKMs) on a Basic Service Set (BSS). If the chosen security 379 

type is DPP, only a single AKM will exist for that BSS. 380 

A standards-compliant 802.3at port is the easiest method for providing the AP with power. An external 381 

power supply can also be used. 382 

Within this document, we do not cover the specifics of radio frequency (RF) design and placement of 383 

APs. Guidance and assistance is available within the Aruba community site, 384 

https://community.arubanetworks.com or the Aruba Support Portal, https://asp.arubanetworks.com. 385 

Additionally, we do not cover onboarding and licensing of Aruba Central hardware. Documentation can 386 

be found here: https://www.arubanetworks.com/techdocs/ArubaDocPortal/content/docportal.htm. 387 

2.2.1 Wi-Fi Network Setup and Configuration 388 

The following instructions detail the initial setup and configuration of the Wi-Fi network upon powering 389 

on and connecting the AP to an existing network. 390 

1. Navigate to the Aruba Central cloud management interface. 391 

2. On the sidebar, navigate under Global and choose the AP-Group you want to configure/modify. 392 

(This assumes you have already grouped your APs by location/functions.) 393 

3. Under Devices, click Config in the top right side. 394 

4. You will now be in the Access Points tab and WLANs tab. Do one of the following: 395 

a. If creating a new SSID, click on + Add SSID. After entering the Name (SSID) in Step 1 and 396 

configuring options as necessary in Step 2, when you get to Step 3 (Security), it will 397 

default on the slide-bar to the Personal Security Level; the alternative is the Enterprise 398 

Security Level. 399 

i. If you choose the Personal Security Level, under Key-Management ensure you 400 

select either DPP or WPA2-Personal. If you choose WPA2-Personal, expand the 401 

Advanced Settings section and enable the toggle button for DPP so that the SSID 402 

can broadcast the AKM. Note that this option is not available if choosing DPP for 403 

Key-Management. 404 

https://community.arubanetworks.com/
https://asp.arubanetworks.com/
https://www.arubanetworks.com/techdocs/ArubaDocPortal/content/docportal.htm


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

ii. If you choose the Enterprise Security Level, only WPA2-Enterprise Key-405 

Management currently supports DPP. Expand the Advanced Settings section and 406 

enable the toggle button for DPP so that the SSID can broadcast the AKM. 407 

b. If you plan to enable DPP on a previously created SSID: 408 

i. Ensure you are running version 10.4+ on your devices. You also need an SSID that 409 

is configured for WPA2-Personal or WPA2-Enterprise. 410 

ii. When ready, float your cursor over the previously created SSID name you wish to 411 

configure and click on the edit icon. 412 

iii. Edit the SSID, click on Security, and expand the Advanced Settings section and 413 

enable the toggle button for DPP. 414 

iv. Click Save Settings. 415 

For SSIDs that have been modified to add DPP AKM, it’s also necessary to enable DPP within the radio 416 

profile. 417 

1. Under the Access Point Tab, click Radios. 418 

2. It’s expected you’ll see a default radio-profile. If a custom one has been created, you’ll need to 419 

review your configuration before proceeding. 420 

3. Assuming a default radio-profile, click on the Edit icon, expand Show advanced settings, and 421 

scroll down to DPP Provisioning. You can selectively enable this for 2.4 GHz or 5.0 GHz. Support 422 

for DPP on 6.0 GHz is a roadmap item at this time and is not yet available. 423 

2.2.2 Wi-Fi Easy Connect Configuration 424 

Configuration of the Access Point occurred through the Aruba Central cloud management interface. 425 

Standard configurations were used to stand up the Build 1 wireless network. The instructions for 426 

enabling DPP capabilities for the overall wireless network are listed below: 427 

1. Navigate to the Aruba Central cloud management interface. 428 

2. On the sidebar, navigate to Security > Authentication and Policy > Config. 429 

3. In the Client Access Policy section, click Edit. 430 

4. Under the Wi-Fi Easy Connect™ Service heading, ensure that the name of your wireless network 431 

is selected. 432 

5. Click Save. 433 

2.3 Cisco Catalyst 3850-S Switch 434 

This build utilized a Cisco Catalyst 3850-S switch. This switch utilized a minimal configuration with two 435 

separate VLANs to allow for IoT device network segmentation and access control. The switch also 436 

provided Power-over-Ethernet support for the Aruba Wireless AP. 437 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

2.3.1 Configuration 438 

The switch was configured with two VLANs, and a trunk port dedicated to the Aruba Wireless AP. You 439 

can find the relevant portions of the Cisco iOS configuration below: 440 

interface Vlan1 441 

 no ip address 442 

interface Vlan2 443 

 no ip address 444 

interface GigabitEthernet1/0/1 445 

 switchport mode trunk 446 

interface GigabitEthernet1/0/2 447 

 switchport mode access 448 

 switchport access vlan 1 449 

interface GigabitEthernet1/0/3 450 

 switchport mode access 451 

 switchport access vlan 2 452 

2.4 Aruba User Experience Insight (UXI) Sensor 453 

This build utilized an Aruba UXI Sensor as a Wi-Fi Easy Connect-capable IoT device. Models G6 and G6C 454 

support Wi-Fi Easy Connect, and all available G6 and G6C models support Wi-Fi Easy Connect within 455 

their software image. This sensor successfully utilized the network-layer onboarding mechanism 456 

provided by the wireless network and completed onboarding to the application-layer UXI cloud service. 457 

The network-layer onboarding process is automatically initiated by the device on boot. 458 

2.4.1 Configuration 459 

All of Aruba’s available G6 and G6C UXI sensors support the ability to complete network-layer and 460 

application-layer onboarding. No specific configuration of the physical sensor is required. As part of the 461 

supply-chain process, the cryptographic public key for your sensor(s) will be available within the cloud 462 

tenant. This public/private keypair for each device is created as part of the manufacturing process. The 463 

public key effectively identifiers the sensor to the network and as part of the Wi-Fi Easy Connect/DPP 464 

onboarding process. This allows unprovisioned devices straight from the factory to be onboarded and 465 

subsequently connect to the UXI sensor cloud to obtain their network-layer configuration. An 466 

administrator will have to define the ‘tasks’ the UXI sensor is going to perform such as monitoring SSIDs, 467 

performing reachability tests to on-prem or cloud services, and making the results of these tests 468 

available within the UXI user/administrator portal. 469 

2.5 Raspberry Pi 470 

In this build, the Raspberry Pi 3B+ acts as a DPP enrollee. In setting up the device for this build, a DPP-471 

capable wireless adapter, the Alfa AWUS036NHA network dongle, was connected to enable the Pi to 472 

send and receive DPP frames. Once fully configured, the Pi can onboard with the Aruba AP. 473 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

2.5.1 Configuration 474 

The following steps were completed for the Raspberry Pi to complete DPP onboarding: 475 

1. Set the management IP for the Raspberry Pi to an IP address in the Build 1 network. To do this, 476 

add the following lines to the file dhcpcd.conf located at /etc/dhcpcd.conf. For this build, the IP 477 

address was set to 192.168.10.3. 478 

 

2. Install Linux Libraries using the apt package manager. The following packages were installed: 479 

a. autotools-dev 480 

b. automake 481 

c. libcurl4-openssl-dev 482 

d. libnl-genl-3-dev 483 

e. libavahi-client-dev 484 

f. libavahi-core-dev 485 

g. aircrack-ng 486 

h. openssl-1.1.1q 487 

3. Install the DPP utilities. These utilities were installed from the GitHub repository 488 

https://github.com/HewlettPackard/dpp using the following command: 489 

git clone https://github.com/HewlettPackard/dpp 490 

2.5.2 DPP Onboarding 491 

This section describes the steps for using the Raspberry Pi as a DPP enrollee. The Pi uses a DPP utility to 492 

send out chirps to make its presence known to available DPP configurators. Once the Pi is discovered, 493 

the DPP configurator (Aruba Wireless AP) initiates the DPP authentication protocol. During this phase, 494 

DPP connectors are created to onboard the device to the network. As soon as the Pi is fully 495 

authenticated, it is fully enrolled and can begin normal network communication. 496 

1. Navigate to the DPP utilities directory which was installed during setup: 497 

cd dpp/linux 498 

2. From the DPP utilities directory, run the following command to initiate a DPP connection: 499 

sudo ./sss -I wlan1 -r -e sta -k respp256.pem -B respbkeys.txt -a -t -d 255 500 

https://github.com/HewlettPackard/dpp


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

 

3. Once the enrollee has found a DPP configurator, the DPP authentication protocol is initiated. 501 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

 

2.6 Certificate Authority 502 

The function of the certificate authority (CA) in this build is to issue network credentials for use in the 503 

network-layer onboarding process. 504 

2.6.1 Private Certificate Authority 505 

A private CA was provided as a part of the DPP demonstration utilities in the HPE GitHub repository. For 506 

demonstration purposes, the Raspberry Pi is used as the configurator and the enrollee. 507 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

2.6.1.1 Installation and Configuration 508 

The following instructions detail the initial setup and configuration of the private CA using the DPP 509 

demonstration utilities and certificates located at https://github.com/HewlettPackard/dpp. 510 

1. Navigate to the DPP utilities directory on the Raspberry Pi: ~dpp/linux 511 

cd dpp/linux/ 512 

2. The README in the GitHub repository 513 

(https://github.com/HewlettPackard/dpp/blob/master/README) references a text file called 514 

configakm which contains information about the network policies for a configurator to provision 515 

on an enrollee. The format is: <akm> <EAP server> <ssid>. Current AKMs that are supported 516 

are DPP, dot1x, sae, and psk. For this build, DPP is used. For DPP, an Extensible Authentication 517 

Protocol (EAP) server is not used. 518 

3. Configure the file configakm located in ~/dpp/linux/. This file instructs the configurator on how 519 

to deploy a DPP connector (network credential) from the configurator to the enrollee. As shown 520 

below, the configakm file is filled with the following fields:  521 

dpp unused Build1-IoTOnboarding. 522 

 

4. The file csrattrs.conf contains attributes to construct an Abstract Syntax Notation One (ASN.1) 523 

string. This string allows the configurator to tell the enrollee how to generate a certificate 524 

signing request (CSR). The following fields were used for this demonstration: 525 

asn1 = SEQUENCE: seq_section 526 

[seq_section] 527 

field1 = OID:challengePassword 528 

field2 = SEQUENCE:ecattrs 529 

field3 = SEQUENCE:extnd 530 

field4 = OID:ecdsa-with-SHA256 531 

 

[ecattrs] 532 

field1 = OID:id-ecPublicKey 533 

field2 = SET:curve 534 

 

[curve] 535 

field1 = OID:prime256v1 536 

 

https://github.com/HewlettPackard/dpp
https://github.com/HewlettPackard/dpp/blob/master/README


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

[extnd] 537 

field1 = OID:extReq 538 

field2 = SET:extattrs 539 

 

[extattrs] 540 

field1 = OID:serialNumber 541 

field2 = OID:favouriteDrink 542 

 

2.6.1.2 Operation and Demonstration 543 

Once setup and configuration have been completed, the following steps can be used to demonstrate 544 

utilizing the private CA to issue credentials to a requesting device. 545 

1. Open three terminals on the Raspberry Pi: one to start the certificate program, one to show the 546 

configurator’s point of view, and one to show the enrollee’s point of view. 547 

2. The demonstration uses an OpenSSL certificate. To run the program from the first terminal, 548 

navigate to the following directory: ~/dpp/ecca/, and run the command: 549 

./ecca. 550 

 

3. On the second terminal, start the configurator using the following command: 551 

sudo ./sss -I lo -r -c signp256.pem -k respp256.pem -B resppbkeys.txt -d 255 552 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

 

As shown in the terminal where the ecca program is running, the configurator contacts the CA 553 

and asks for the certificate. 554 

 

4. On the third terminal, start the enrollee using the following command: 555 

sudo ./sss -I lo -r -e sta -k initp256.pem -B initbkeys.txt -t -a -q -d 255 556 

From the enrollee’s perspective, it will send chirps on different channels until it finds the 557 

configurator. Once found, it sends its certificate to the CA for signing. The snippet below is of 558 

the enrollee generating the CSR. 559 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

 

5. In the ecca terminal, the certificate from the enrollee is shown 560 

 

2.6.2 SEALSQ INeS 561 

The SEALSQ INeS Certificate Management System provides CA and certificate management capabilities 562 

for Build 1. Implementation of this system provides Build 1 with a trusted, public CA to support issuing 563 

network credentials. 564 

2.6.2.1 Setup and Configuration 565 

To support this build, a custom software agent was deployed on a Raspberry Pi in the Build 1 network. 566 

This agent interacted with the cloud-based CA in SEALSQ INeS via API to sign network credentials. 567 

Network-level onboarding of IoT devices was completed via DPP, with network credentials being 568 

successfully requested from and issued by SEALSQ INeS. 569 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

Additional information on interacting with the SEALSQ INeS API can be found at 570 

https://inesdev.certifyiddemo.com/. Access can be requested directly from SEALSQ via their contact 571 

form: https://www.sealsq.com/contact. 572 

2.7 UXI Cloud 573 

The UXI Cloud is a web-based application that serves as a monitoring hub for the UXI sensor. It provides 574 

visibility into the data captured by the performance monitoring that the UXI sensor conducts. For the 575 

purposes of this build, the dashboard was used to demonstrate application-layer onboarding, which 576 

occurs once the UXI sensor has completed network-layer onboarding. Once application-layer 577 

onboarding was completed and the application configuration had been applied to the device, our 578 

demonstration concluded. 579 

2.8 Wi-Fi Easy Connect Factory Provisioning Build 580 

This Factory Provisioning Build included many of the components listed above, including Aruba Central, 581 

SEALSQ INeS, the Aruba Access Point, and Raspberry Pi IoT devices. A SEALSQ VaultIC Secure Element 582 

was also included in the build and provided secure generation and storage of the key material and 583 

certificates provisioned to the device. 584 

2.8.1 SEALSQ VaultIC Secure Element 585 

The SEALSQ VaultIC Secure Element was connected to a Raspberry Pi via the built-in GPIO pins present 586 

on the Pi. SEALSQ provided demonstration code that generates a public/private keypair within the 587 

secure element, creates a Certificate Signing Request, and uses that CSR to obtain an IDevID certificate 588 

from SEALSQ INeS. This code supports the Raspberry Pi OS Bullseye. The demonstration code can be 589 

found at the official GitHub repository. 590 

HPE also provided a custom DPP-based implementation of the SEALSQ code, which generates 591 

supporting material within the secure element, and then generates a DPP URI. This DPP URI is available 592 

in a string format, PNG (QR Code), and ASCII (QR Code). The DPP URI can then be used for network 593 

onboarding, as described in the rest of the Build 1 section. This code is included in the demonstration 594 

code located at the repository linked above. 595 

2.8.1.1 Installation and Configuration 596 

Full instructions for installation and configuration can be found in the INSTALL.txt file from the SEALSQ 597 

demonstration code mentioned above. A general set of steps for preparing to run the demonstration 598 

code is included below. 599 

1. Install prerequisites on Raspberry Pi 600 

a. cmake 601 

b. git 602 

c. gcc 603 

2. On the Raspberry Pi, run the sudo raspi-update command to update drivers 604 

https://inesdev.certifyiddemo.com/
https://www.sealsq.com/contact
https://github.com/sclark-wisekey/NCCoE.factory.pub


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

3. Before plugging VaultIC Secure Element into the Raspberry Pi connector, configure the jumpers: 605 

a. Set _VCC_ jumper 606 

i. CTRL = VaultIC power controlled by GPIO25 (default) 607 

ii. 3V3 = VaultIC power always on 608 

b. Set J1&J2 to select I2C or SPI 609 

i. If using SPI, set J1 to SS and J2 to SEL (default) 610 

ii. If using I2C, set J1 to SCL and J2 to SDA 611 

4. Using the raspi-config command, enable the SPI or I2C interface on the Raspberry Pi 612 

5. Run git clone https://github.com/sclark-wisekey/NCCoE.factory.pub to pull down the 613 

demonstration code. 614 

2.8.1.2 Running the demonstration code 615 

1. Navigate to the folder containing the demonstration code. Inside that folder, navigate to the 616 

VaultIC/demos folder. 617 

2. Edit the file config.cfg and change the value of VAULTIC_COMM to match with the jumpers 618 

configured during setup. 619 

3. The demonstrations are available with wolfSSL stacks and organized in dedicated folders. The 620 

README.TXT file in each demonstration subfolder explains how to run the demonstrations. 621 

3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) 622 

This section of the practice guide contains detailed instructions for installing and configuring all of the 623 

products used to build an instance of the example solution. For additional details on Build 2’s logical and 624 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 625 

The network-layer onboarding component of Build 2 utilizes Wi-Fi Easy Connect, also known as the 626 

Device Provisioning Protocol (DPP). The Wi-Fi Easy Connect standard is maintained by the Wi-Fi Alliance 627 

[1]. The term “DPP” is used when referring to the network-layer onboarding protocol, and “Wi-Fi Easy 628 

Connect” is used when referring to the overall implementation of the network onboarding process. 629 

3.1 CableLabs Platform Controller 630 

The CableLabs Platform Controller provides an architecture and reference implementation of a cloud-631 

based service that provides management capability for service deployment groups, access points with 632 

the deployment groups, registration and lifecycle of user services, and the secure onboarding and 633 

lifecycle management of users’ Wi-Fi devices. The controller also exposes APIs for integration with third-634 

party systems for the purpose of integrating various business flows (e.g., integration with manufacturing 635 

process for device management). 636 

https://github.com/sclark-wisekey/NCCoE.factory.pub


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

The Platform Controller would typically be hosted by the network operator or a third-party service 637 

provider. It can be accessed via web interface. Additional information for this deployment can be 638 

accessed at the official CableLabs repository. 639 

3.1.1 Operation and Demonstration 640 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 641 

operation can commence. Instructions for this are located at the official CableLabs repository. 642 

3.2 CableLabs Custom Connectivity Gateway 643 

In this deployment, the gateway software is running on a Raspberry Pi 3B+, which acts as a router, 644 

firewall, wireless access point, Open Connectivity Foundation (OCF) Diplomat, and OCF Onboarding Tool. 645 

The gateway is also connected to the CableLabs Platform Controller, which manages much of the 646 

configuration and functions of the gateway. Due to Build 2’s infrastructure and support of Wi-Fi Easy 647 

Connect, Build 2 fully supported interoperable network-layer onboarding with Build 1’s IoT devices. 648 

3.2.1 Installation and Configuration 649 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 650 

gateway can be found at the official CableLabs repository. 651 

3.2.2 Integration with CableLabs Platform Controller 652 

Once initial configuration has occurred, the gateway can be integrated with the CableLabs Platform 653 

Controller. Instructions can be found at the official CableLabs repository. 654 

3.2.3 Operation and Demonstration 655 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 656 

operation can commence. Instructions for this are located at the official CableLabs repository. 657 

3.3 Reference Clients/IoT Devices 658 

Three reference clients were deployed in this build, each on a Raspberry Pi 3B+. They were each 659 

configured to emulate either a smart light switch or a smart lamp. The software deployed also included 660 

the capability to perform network-layer onboarding via Wi-Fi Easy Connect (or DPP) and application-661 

layer onboarding using the OCF onboarding method. These reference clients were fully interoperable 662 

with network-layer onboarding to Build 1. 663 

3.3.1 Installation and Configuration 664 

Hardware requirements, pre-installation, installation, and configuration steps for the reference clients 665 

are detailed in the official CableLabs repository. 666 

3.3.2 Operation and Demonstration 667 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 668 

operation can commence. Instructions for this are located at the official CableLabs repository. 669 

https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

For interoperability with Build 1, the IoT device’s DPP URI was provided to Aruba Central, which allowed 670 

Build 1 to successfully complete network-layer onboarding with the Build 2 IoT devices. 671 

4 Build 3 (BRSKI, Sandelman Software Works) 672 

This section of the practice guide contains detailed instructions for installing and configuring all of the 673 

products used to build an instance of the example solution. For additional details on Build 3’s logical and 674 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 675 

The network-layer onboarding component of Build 3 utilizes the Bootstrapping Remote Secure 676 

Infrastructure (BRSKI) protocol. Build 3 is representative of a typical home or small office network. 677 

4.1 Onboarding Router/Join Proxy 678 

The onboarding router quarantines the IoT device attempting to join the network until the BRSKI 679 

onboarding process is complete. The router in this build is a Turris MOX device, which is based on the 680 

Linux OpenWrt version 4 operating system (OS). The Raspberry Pi 3 contains software to function as the 681 

Join Proxy for pledges to the network. If another brand of device is used, a different source of compiled 682 

Join Proxy might be required. 683 

4.1.1 Setup and Configuration 684 

The router needs to be IPv6 enabled. In the current implementation, the join package operates on an 685 

unencrypted network. 686 

4.2 Minerva Join Registrar Coordinator 687 

The purpose of the Join Registrar is to determine whether a new device is allowed to join the network. 688 

The Join Registrar is located on a virtual machine running Devuan Linux 4 within the network. 689 

4.2.1 Setup and Configuration 690 

The Minerva Fountain Join Registrar/Coordinator is available as a Docker container and as a VM in OVA 691 

format at the Minerva fountain page. Further setup and configuration instructions are available on the 692 

Sandelman website on the configuration page. 693 

For the Build 3 demonstration, the VM deployment was installed onto a VMware vSphere system. 694 

A freshly booted VM image will do the following on its own: 695 

▪ Configure a database 696 

▪ Configure a local certificate authority (fountain:s0\_setup\_jrc) 697 

▪ Configure certificates for the database connection 698 

▪ Configure certificates for the Registrar https interface 699 

▪ Configure certificates for use with the Bucardo database replication system 700 

▪ Configure certificates for LDevID certification authority (fountain:s2\_create\_registrar) 701 

https://minerva.sandelman.ca/fountain/
https://minerva.sandelman.ca/fountain/configuration/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

▪ Start the JRC 702 

The root user is permitted to log in on the console ("tty0") using the password “root” but is immediately 703 

forced to set a new password. 704 

The new registrar will announce itself with the name minerva-fountain.local in mDNS. 705 

The logs for this are put into /var/log/configure-fountain-12345.log (where 12345 is a new number 706 

based upon the PID of the script). 707 

4.3 Reach Pledge Simulator 708 

The Reach Pledge Simulator acts as an IoT device in Build 3. The pledge is acting as an IoT device joining 709 

the network and is hosted on a Raspberry Pi 3. More information is available on the Sandelman website 710 

on the Reach page. 711 

4.3.1 Setup and Configuration 712 

While the functionality of this device is to act as an IoT device, it runs on the same software as the Join 713 

Registrar Coordinator. This software is available in both VM and Docker container format. Please see 714 

Section 4.2.1 for installation instructions. 715 

When setting up the Reach Pledge Simulator, the address of the Join Registrar Coordinator is 716 

automatically determined by the pledge. 717 

Currently, the Reach Pledge Simulator obtains its IDevID using the following steps: 718 

1. View the available packages by visiting the Sandelman website. 719 

 

2. Open a terminal on the Raspberry Pi device and navigate to the Reach directory by entering: 720 

cd reach 721 

https://minerva.sandelman.ca/reach/
https://honeydukes.sandelman.ca/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

 

3. Enter the following command while substituting the URL for one of the available zip files 722 

containing the IDevID of choice on the Sandelman website. 723 

wget https://honeydukes.sandelman.ca/product_00-D0-E5-02-00-42.zip 724 

 

4. Unzip the file by entering the following command, substituting the name of your zip file (the 725 

IDevID is the device.crt file): 726 

unzip product_00-D0-E5-02-00-42.zip 727 

 

Typically, this would be accomplished through a provisioning process involving a Certificate Authority, as 728 

demonstrated in the Factory Provisioning builds. 729 

4.4 Serial Console Server 730 

The serial console server does not participate in the onboarding process but provides direct console 731 

access to the IoT devices. The serial console server has been attached to a multi-port USB hub and USB 732 

connectors and/or USB2TTL adapters connected to each device. The ESP32 and the nRF52840 are both 733 

connected to the serial console and receive power from the USB hub. Power to the console and IoT 734 

devices is also provided via the USB hub. A BeagleBone Green device was used as the serial console, 735 

using the "screen" program as the telecom device. 736 

4.5 Minerva Highway MASA Server 737 

In the current implementation of the build, the MASA server provides the Reach Pledge Simulator with 738 

an IDevID Certificate and a public/private keypair for demonstration purposes. Typically, this would be 739 

accomplished through a factory provisioning process involving a Certificate Authority, as demonstrated 740 

in the Factory Provisioning builds. 741 

4.5.1 Setup and Configuration 742 

Installation of the Minerva Highway MASA is described at the Highway configuration page. Additional 743 

configuration details are available at the Highway development page. 744 

https://honeydukes.sandelman.ca/
https://minerva.sandelman.ca/highway/configuration/
https://minerva.sandelman.ca/openssl/2022/06/10/configuring-highway-development.html


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

Availability of VMs and containers is described at the following Minerva page. 745 

5 Build 4 (Thread, Silicon Labs, Kudelski IoT) 746 

This section of the practice guide contains detailed instructions for installing and configuring all of the 747 

products used to build an instance of the example solution. For additional details on Build 4’s logical and 748 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 749 

This build utilizes the Thread protocol and performs application-layer onboarding using the Kudelski 750 

keySTREAM service to provision a device to the AWS IoT Core. 751 

5.1 Open Thread Border Router 752 

The Open Thread Border Router forms the Thread network and acts as the router on this build. The 753 

Open Thread Border Router is run as software on a Raspberry Pi 3B. The Silicon Labs Gecko Wireless 754 

Devkit is attached to the Raspberry Pi via USB and acts as the 802.15.4 antenna for this build. 755 

5.1.1 Installation and Configuration 756 

On the Raspberry Pi, run the following commands from a terminal to install and configure the Open 757 

Thread Border Router software: 758 

git clone https://github.com/openthread/ot-br-posix 759 

sudo NAT64=1 DNS64=1 WEB_GUI=1 ./script/bootstrap 760 

sudo NAT64=1 DNS64=1 WEB_GUI=1 ./script/setup 761 

5.1.2 Operation and Demonstration 762 

Once initial configuration has occurred, the OpenThread Border Router should be functional and 763 

operated through the web GUI. 764 

1. To open the OpenThread Border Router GUI enter the following IP in a web browser: 765 

127.0.0.1 766 

2. In the Form tab, enter the details for the Thread network being formed. For demonstration 767 

purposes we only updated the credentials field. 768 

https://minerva.sandelman.ca/containers/2018/11/14/minerva-lxd-update.html


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

 

5.2 Silicon Labs Dev Kit (BRD2601A) 769 

The Silicon Labs Dev Kit acts as the IoT device for this build. It is controlled using the Simplicity Studio v5 770 

Software available at the official Simplicity Studio page and connected to a computer running Windows 771 

or Linux via USB. Our implementation leveraged a Linux machine running Simplicity Studio. Custom 772 

firmware for the Dev Kit leveraged in this use case was made by Silicon Labs. 773 

5.2.1 Setup and Configuration 774 

The Dev Kit custom firmware image works in conjunction with the Kudelski keySTREAM service. More 775 

information is available by contacting Silicon Labs through their contact form. Once the custom 776 

firmware has been acquired the Dev Kit can be configured using the following steps. 777 

1. Connect the Dev Kit via USB to the machine running Simplicity Studio. 778 

2. The firmware is installed onto the Dev Kit using the Simplicity Commander tool within Simplicity 779 

Studio. 780 

https://www.silabs.com/developers/simplicity-studio
https://www.silabs.com/about-us/contact-us


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

 

After selecting the firmware file, click Flash to flash the firmware the Dev Kit. 781 

3. Open the device console in the Tools tab and then select the Serial 1 tab. 782 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

 

4. Enter the following command to create a new join passphrase in the Serial 1 command line: 783 

new-join-passphrase 784 

5. Enter the output of the previous command in the Commission tab in the OpenThread Border 785 

Router GUI and click Start Commission. 786 

 

6. In the Simplicity Commander Device Console, enter the following command to begin the joining 787 

process from the Thunderboard: 788 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

 join-with-curr-phrase 789 

7. Press the Reset button on the Dev Kit and the device will join the thread network and reach out 790 

to the Kudelski keySTREAM service. You should see the following output in the Simplicity 791 

Commander Device Console: 792 

 

5.3 Kudelski keySTREAM Service 793 

In this section we describe the Kudelski keySTREAM service which this build utilizes to provision 794 

certificates for connecting to the AWS IoT core. More information on keySTREAM is available at the 795 

keySTREAM page. 796 

5.3.1 Setup and Configuration 797 

The Kudelski keySTREAM service provides two certificates for the device: a CA certificate and a Proof of 798 

Possession (POP) certificate that is generated using a code from the AWS server. This section describes 799 

the steps to download these certificates. 800 

1. Locate the Chip UID for the Silicon Labs Dev Kit in Simplicity Studio by right clicking on the 801 

Device Adapters tab at the bottom and selecting Device Configuration. 802 

 

https://www.kudelski-iot.com/services-and-systems/keystream-iot-security-system


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

2. On the Security Settings tab, take the last 16 characters of the serial number and remove the 803 

‘FFFE’ characters from the 7th – 11th positions. 804 

 

3. In the Kudelski keySTREAM service, claim your device by entering the chip UID from Simplicity 805 

Studio and clicking Commit. 806 

 

4. The device will now be visible in the My Devices tab. A device can be removed from the 807 

keySTREAM service by scrolling to the right and clicking the Refurbish button. 808 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

 

5. Open the System Management tab on the left side: 809 

 

6. Click the cloud icon to download the CA Certificate and the POP certificate, the POP certificate 810 

will require a code that is obtained from the AWS IoT Core which will be generated in Section 811 

5.4.1. 812 

 

5.4 AWS IoT Core 813 

The Silicon Labs Dev Kit will connect to the AWS MQTT test client using the certificates provisioned from 814 

the Kudelski keySTREAM service. 815 

5.4.1 Setup and Configuration 816 

Application-layer onboarding for this build is performed using the AWS MQTT test client. Certificates 817 

provisioned from the Kudelski keySTREAM service are uploaded to an AWS instance and the device will 818 

demonstrate its ability to successfully send a message to AWS. 819 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

1. Within the AWS IoT Core, open the Security drop-down menu, click on Certificate authorities, 820 

and click the Register CA certificate button on the right. 821 

 

2. Select the radio button for Register CA in Single-account mode and copy the registration code 822 

to use as the Proof of Possession Code in the Kudelski keySTREAM service and download the 823 

POP certificate. 824 

 

3. After downloading the POP certificate, upload the CA certificate and the POP (verification) 825 

certificate, and select the radio buttons for Active under CA Status and On under Automatic 826 

Certificate Registration. Then click Register. 827 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

 

4. In the Security drop down menu, click on Policies and add the policies shown below. Then, click 828 

Create. 829 

 

5. In the All devices drop-down menu, click on Things and click Create things. 830 

 

6. Click the Create single thing radio button and click Next. 831 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

 

7. Enter a Thing name and click Next. 832 

 

8. Select the Skip creating a certificate at this time radio button and click Create thing. 833 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

 

9. In the Security drop-down menu, click on Certificates and click the Certificate ID of the 834 

certificate that you created. 835 

10. In the Policies tab at the bottom, click Attach policies and add the policy that you created. 836 

 

11. In the Things tab, click Attach to things and add the thing that you created. 837 

 

12. Click the MQTT test client on the left side of the page and click the Publish to a topic tab. 838 

 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

13. Create a message of your choosing and click Publish. On the Subscribe to a topic tab, make sure 839 

that you are subscribed to the topic that you just created. 840 

 

5.4.2 Testing 841 

Information sent and received by the Silicon Labs Dev Kit to the MQTT test client will be displayed in the 842 

device console in Simplicity Commander. This section describes testing the communication between the 843 

MQTT test client and the device. 844 

1. On the Thunderboard, press Button 0. This will begin the connection to the MQTT test client. 845 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

 

6 Build 5 (BRSKI over Wi-Fi, NquiringMinds) 846 

This section of the practice guide contains detailed instructions for installing and configuring all of the 847 

products used to build an instance of the example solution. For additional details on Build 5’s logical and 848 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 849 

The network-layer onboarding component of Build 5 utilizes the BRSKI protocol. 850 

6.1 Pledge 851 

The Pledge acts as the IoT device which is attempted to onboard onto the secure network. It 852 

implements the pledge functionality as per the IETF BRSKI specification. It consists of software provided 853 

by NquiringMinds running on a Raspberry Pi Model 4B. 854 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

6.1.1 Installation and Configuration 855 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 856 

pledge device can be found at the official NquiringMinds repository. 857 

6.1.2 Operation and Demonstration 858 

To demonstrate the onboarding and offboarding functionality, NquiringMinds has provided a web 859 

application which runs on the pledge device. It features a button one can use to manually run the 860 

onboarding script and display the output of the onboarding process, as well as a button for offboarding. 861 

It also features a button to ping an IP address, which is configured to ping the designated address via the 862 

wireless network interface. 863 

 

6.2 Router and Logical Services 864 

The router and logical services were hosted on a Raspberry Pi Model 4B equipped with 2 external Wi-Fi 865 

adapters. These additional Wi-Fi adapters are needed to support VLAN tagging which is a hardware 866 

dependent feature. The details of the physical setup and all connections are provided in the official 867 

NquiringMinds documentation. 868 

6.2.1 Installation and Configuration 869 

All of the services described in the next section can be installed on a Raspberry Pi using the installer 870 

provided by NquiringMinds. 871 

https://github.com/nqminds/trustnetz/tree/main/debian-brski
https://github.com/nqminds/trustnetz/tree/main/debian-brski
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-setup/
https://github.com/nqminds/nist-brski/tree/main/brski-server/installer
https://github.com/nqminds/nist-brski/tree/main/brski-server/installer


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

The demonstration services can also be built from source code, if needed. The following links provide 872 

the instructions for building each of those services: 873 

▪ BRSKI Demo Setup 874 

▪ EAP Config 875 

▪ MDNS publishing services 876 

6.2.2 Logical services 877 

The following logical services are installed on the Registrar and services device. The implementation of 878 

these services are to be found at the following repository links: NIST BRSKI implementation and BRSKI. 879 

Figure 6-1 below describes how these entities and logical services fit together to perform the BRSKI flow, 880 

and a top-level view of how information is transmitted throughout the services to onboard the pledge. 881 

Figure 6-1 Logical Services for Build 5 882 

 

https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-setup/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/eap-config
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/eap-config
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/mdns-publish
https://github.com/nqminds/nist-brski
https://github.com/nqminds/brski


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

6.2.2.1 MASA 883 

The MASA currently resides as a local service on the registrar. In practice, this service would be located 884 

on an external server managed by the manufacturer. The MASA verifies that the IDevID is authentic, and 885 

that the IDevID was produced by the manufacturer’s MPR. 886 

6.2.2.2 Manufacturer Provisioning Root (MPR) 887 

The MPR sits on an external server and provides the IDevID (X.509 Certificate) for the device to initialize 888 

it after production and notarize it with a unique identity. The address of the MPR is built into the 889 

firmware of the device at build time. 890 

6.2.2.3 Registrar 891 

Build 5’s BRSKI Domain Registrar runs the BRSKI protocol modified to work over Wi-Fi and functions as 892 

the Domain Registrar to authenticate the IoT devices, receive and transfer voucher requests and 893 

responses to and from the MASA and ultimately determines whether network-layer onboarding of the 894 

device is authorized to take place on the respective network. NquiringMinds has developed a stateful 895 

non-persistent Linux app for android that serves this purpose. 896 

The registrar is responsible for verifying if the IDevID certificate provided by the pledge is authentic, by 897 

verifying it with the MASA and verifying that the policy for a pledge to be allowed onto the closed secure 898 

network has been met. It also runs continuous assurance periodically to ensure that the device still 899 

meets the policy requirements, revoking the pledge’s access if at a later time it doesn’t meet the policy 900 

requirements. Signed verifiable credential claims may be submitted to the registrar to communicate 901 

information about entities, which it uses to update its database used to determine if the policy is met, 902 

the tdx Volt is used to facilitate signing and verification of verifiable credentials. In the demonstrator 903 

system the MASA and router are integrated into the same physical device. 904 

6.2.2.3.1 Radius server (Continuous Assurance Client) 905 
To provide continuous assurance capabilities for connected IoT devices, the registrar includes a Radius 906 

server that integrates with the Continuous Assurance Server. 907 

The continuous assurance policy is enforced by a script which periodically runs to check that the policy 908 

conditions are met. It accomplishes this by querying the Registrar's SQLite database. For the 909 

demonstration, the defined policy is: 910 

▪ The manufacturer and device must be trusted by a user with appropriate privileges 911 

▪ The device must have a device type associated 912 

▪ The vulnerability score of the SBOM for the device type must be lower than 6 913 

▪ The device must not have contacted a denylisted IP address within the last 2 minutes 914 

If the device fails any of these checks, the device will be offboarded. 915 

6.2.2.4 Continuous Assurance Server 916 

The registrar runs several services used to power the continuous assurance flow. 917 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

6.2.2.4.1 Verifiable Credential Server 918 
The verifiable credential server is used to sign verifiable credentials submitted through the Demo web 919 

app and verify verifiable credentials submitted to the registrar, it is powered by the functionality of the 920 

tdx Volt, a local instance of which is run on the registrar. 921 

The code for the Verifiable Credential Server is hosted at the GitHub repository. 922 

6.2.2.4.2 Registrar Continuous Assurance Server 923 
The registrar hosts a REST API which is used to interface with the registrar’s SQLite database which 924 

stores information about the entities the registrar knows of. This server utilizes the verifiable credential 925 

server to verify submitted verifiable credential claims submitted to it. 926 

The code for the Registrar Continuous Assurance Server is hosted at the GitHub repository. 927 

6.2.2.4.3 Demo Web Application 928 
The demo web application is used as an interactive user-friendly way to administer the registrar. Users 929 

can view the list of verifiable credentials submitted to the registrar. The application also displays the 930 

state of the manufacturers, devices, device types and Manufacturer Usage Description (MUD). There are 931 

buttons provided which allow you to trust or distrust a manufacturer, trust or distrust a device, set the 932 

device type for a device, set if a device type is vulnerable or not and set the MUD file associated with the 933 

device type. All of these operations are performed by generating a verifiable credential containing the 934 

claim being made, which is then submitted to the verifiable credential server to sign the credential. The 935 

signed verifiable credential is then sent to the registrar continuous assurance server to be verified and 936 

used to update the SQLite database on the registrar. 937 

The code for the Demo Web Application is hosted at the GitHub repository. 938 

https://github.com/nqminds/trustnetz/tree/main/packages/nist_vc_rest_server
https://github.com/nqminds/trustnetz/tree/main/packages/registrar_demo_app
https://github.com/nqminds/trustnetz/tree/main/packages/registrar_demo_app


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

 

6.2.2.5 Application server 939 

The application server sits on a remote server and represents the server for an application which should 940 

consume data from the pledge device. The pledge device uses the IDevID certificate to establish a secure 941 

TLS connection to onboard onto the application server and begin sending data autonomously, currently 942 

OpenSSL s_client is used from the pledge to establish a TLS session with the application server, running 943 

on a server off-site, and the date and CPU temperature are sent to be logged on the application server, 944 

as a proof of principle. 945 

6.2.2.5.1 Installation/Configuration 946 
Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 947 

router can be found at the official NquiringMinds repository. 948 

6.2.2.5.2 Operation/Demonstration 949 
The instructions to use this factory use case code to provision an IDevID onto your pledge are also 950 

located at the official NquiringMinds repository in the above section. 951 

6.3 Onboarding Demonstration 952 

6.3.1 Prerequisites 953 

Prior to beginning the demonstration, the router and pledge devices must be connected to power, and 954 

to the network via their ethernet port. On boot, both devices should start the services required to 955 

demonstrate the BRSKI flow. 956 

https://github.com/nqminds/trustnetz/blob/app_onboarding/packages/app_onboarding/README.md
https://github.com/nqminds/trustnetz/blob/app_onboarding/packages/app_onboarding/README.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

Figure 6-2 Diagram of Physical/Logical Components Used to Demonstrate BRSKI Flow 957 

 

To support the demo and debug features the pledge and the registrar need to be connected to physical 958 

ethernet, ideally with internet access. They should still function without an internet connection, but the 959 

vulnerability scores of the SBOMs will not be updated and the demo web apps will only be accessible on 960 

the local network. 961 

The detailed networking setup details are available in the NquiringMinds NIST Trusted Onboarding 962 

Build-5. 963 

6.3.2 Onboarding Demonstration 964 

Once configuration of the devices and the prerequisite conditions have been achieved, the onboarding 965 

demonstration can be executed following NquiringMinds Demo Continuous Assurance Workflow. 966 

6.3.3 Continuous Assurance Demonstration 967 

The instructions to demonstrate the continuous assurance workflow are contained in the official 968 

NquiringMinds documentation. 969 

6.4 BRSKI Factory Provisioning Build 970 

This Factory Provisioning Build includes many of the components listed in Section 6.2, including the 971 

Pledge, Registrar, and other services. An Infineon Secure Element was also included in the build and 972 

provides secure generation and storage of the key material and certificates provisioned to the device. 973 

https://nist.nqm.ai/
https://nist.nqm.ai/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/user-instructions/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-workflow/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 43 

6.4.1 Pledge 974 

The Pledge acts as the IoT device which is attempting to onboard onto the secure network. It 975 

implements the pledge functionality as per the IETF BRSKI specification. It consists of a Raspberry Pi 976 

Model 4B equipped with an Infineon Optiga SLB 9670 TPM 2.0 Secure Element. The Infineon Secure 977 

Element was connected to a Raspberry Pi via the built-in GPIO pins present on the Pi. 978 

6.4.1.1 Factory Use Case - IDevID provisioning 979 

NquiringMinds provided demonstration code that generates a public/private keypair within the secure 980 

element, creates a CSR, and uses that CSR to obtain an IDevID certificate from tdx Volt. The 981 

demonstration process can be found at the official NquiringMinds documentation. 982 

Initially, it generates a CSR using the TPM secure element to sign it, it then sends the CSR to the MPR 983 

server which is the manufacturer’s IDevID Certificate Authority and is bootstrapped in the vanilla 984 

firmware on the pledge’s creation in the factory. The MPR sends back a unique IDevID for the pledge 985 

which it stores in its secure element. 986 

The code for this is hosted at the official NquiringMinds repository. 987 

6.4.2 Installation and Configuration 988 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 989 

pledge can be found at the official NquiringMinds repository referenced above. 990 

6.4.3 Operation and Demonstration 991 

The instructions to use this factory provisioning use case code to provision an IDevID onto the pledge is 992 

also located in the official NquiringMinds repository referenced above.   993 

https://nist.nqm.ai/docs/Factory%20provisioning/factory-intro/
https://github.com/nqminds/nist-brski/blob/factory_use_case/packages/factory_use_case/README.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 44 

994 Appendix A List of Acronyms 
AKM Authentication and Key Management 

AOS ArubaOS 

AP Access Point 

API Application Programming Interface 

ASN.1 Abstract Syntax Notation One 

AWS Amazon Web Services 

BRSKI Bootstrapping Remote Secure Key Infrastructure 

BSS Basic Service Set 

CA Certificate Authority 

CRADA Cooperative Research and Development Agreement 

CSR Certificate Signing Request 

DMZ Demilitarized Zone 

DPP Device Provisioning Protocol (Wi-Fi Easy Connect) 

EAP Extensible Authentication Protocol 

GPIO General Purpose Input/Output 

GUI Graphical User Interface 

HPE Hewlett Packard Enterprise 

IaaS Infrastructure as a Service 

IDevID Initial Device Identifier 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

IPv4 Internet Protocol Version 4 

IPv6 Internet Protocol Version 6 

LDevID Locally Significant Device Identifier 

MASA Manufacturer Authorized Signing Authority 

MPR Manufacturer Provisioning Root 

MUD Manufacturer Usage Description 

MQTT MQ Telemetry Transport 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 45 

NCCoE National Cybersecurity Center of Excellence 

NIST National Institute of Standards and Technology 

OCF Open Connectivity Foundation 

OS Operating System 

OTBR Open Thread Border Router 

PNG Portable Network Graphics 

POP Proof of Possession 

QR Quick-Response 

RF Radio Frequency 

SBOM Software Bill of Materials 

SP Special Publication 

SoC System-on-Chip 

SSID Service Set Identifier 

TPM Trusted Platform Module 

UID Unique Identifier 

URI Uniform Resource Identifier 

USB Universal Serial Bus 

UXI User Experience Insight 

VLAN Virtual Local Area Network 

VM Virtual Machine 

WLAN Wireless Local Area Network 

WPA2 Wi-Fi Protected Access 2 

WPA3 Wi-Fi Protected Access 3 

 

  



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 46 

995 Appendix B References 
[1] Wi-Fi Alliance. Wi-Fi Easy Connect. Available: https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-996 

connect. 997 

https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect


   
 

   
 

NIST SPECIAL PUBLICATION 1800-36D 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management 
Enhancing Internet Protocol-Based IoT Device and Network Security 
 
 
Volume D: 
Functional Demonstrations 
 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 

Andy Dolan 
Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs,  
Louisville, Colorado 

Brecht Wyseur 
Kudelski IoT, Cheseaux-sur-Lausanne, 
Switzerland 

Nick Allott 
Ashley Setter 
Nquiring Minds 
Southampton, United Kingdom 

 

Michael Richardson 
Sandleman Software Works 
Ontario, Canada 
 
Mike Dow 
Steve Egerter 
Silicon Labs,  
Austin, Texas 

Chelsea Deane 
Joshua Klosterman 
Blaine Mulugeta 
Charlie Rearick 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 

 
May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 
experimental procedure or concept adequately. Such identification is not intended to imply special 4 
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 
intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 
for the purpose. 7 

 

National Institute of Standards and Technology Special Publication 1800-36D, Natl. Inst. Stand. Technol. 8 
Spec. Publ. 1800-36D, 51 pages, May 2024, CODEN: NSPUE2 9 

 

FEEDBACK 10 

You can improve this guide by contributing feedback. As you review and adopt this solution for your 11 
own organization, we ask you and your colleagues to share your experience and advice with us.  12 

Comments on this publication may be submitted to: iot-onboarding@nist.gov.  13 

Public comment period: May 31, 2024 through July 30, 2024 14 

 

 

National Cybersecurity Center of Excellence 15 
National Institute of Standards and Technology 16 

100 Bureau Drive 17 
Mailstop 2002 18 

Gaithersburg, MD 20899 19 
Email: nccoe@nist.gov   20 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 21 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 22 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 23 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 24 
public-private partnership enables the creation of practical cybersecurity solutions for specific 25 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 26 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 27 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 28 
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 29 
solutions using commercially available technology. The NCCoE documents these example solutions in 30 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 31 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 32 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 33 
Maryland. 34 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 35 
https://www.nist.gov. 36 

NIST CYBERSECURITY PRACTICE GUIDES 37 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 38 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 39 
adoption of standards-based approaches to cybersecurity. They show members of the information 40 
security community how to implement example solutions that help them align with relevant standards 41 
and best practices, and provide users with the materials lists, configuration files, and other information 42 
they need to implement a similar approach. 43 

The documents in this series describe example implementations of cybersecurity practices that 44 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 45 
or mandatory practices, nor do they carry statutory authority.  46 

KEYWORDS 47 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 48 
(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect.  49 

  

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

ACKNOWLEDGMENTS 50 

We are grateful to the following individuals for their generous contributions of expertise and time. 51 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Dan Harkins Aruba, a Hewlett Packard Enterprise company 

Danny Jump Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

Eliot Lear  Cisco 

Peter Romness  Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT  

Faith Ryan The MITRE Corporation  

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors  

Mihai Chelalau NXP Semiconductors  

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor  NXP Semiconductors 

Michael Richardson Sandelman Software Works 

Karen Scarfone Scarfone Cybersecurity 

Steve Clark SEALSQ, a subsidiary of WISeKey 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 
The Technology Partners/Collaborators who participated in this build submitted their capabilities in 52 
response to a notice in the Federal Register. Respondents with relevant capabilities or product 53 
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 54 
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 55 

Technology Collaborators 
Aruba, a Hewlett Packard 
Enterprise company 

Kudelski IoT Sandelman Software Works 

CableLabs NquiringMinds Silicon Labs 
Cisco NXP Semiconductors SEALSQ, a subsidiary of 

WISeKey 
Foundries.io Open Connectivity Foundation 

(OCF) 
 

 
DOCUMENT CONVENTIONS  56 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 57 
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 58 
among several possibilities, one is recommended as particularly suitable without mentioning or 59 
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 60 
the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 61 
“may” and “need not” indicate a course of action permissible within the limits of the publication. The 62 
terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 63 

https://www.arubanetworks.com/
https://www.kudelski-iot.com/
https://www.sandelman.ca/
https://www.cablelabs.com/
https://nquiringminds.com/
https://www.silabs.com/
https://www.cisco.com/
https://www.nxp.com/
https://www.sealsq.com/
https://foundries.io/
https://openconnectivity.org/
https://openconnectivity.org/


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

CALL FOR PATENT CLAIMS 

This public review includes a call for information on essential patent claims (claims whose use would be 64 
required for compliance with the guidance or requirements in this Information Technology Laboratory 65 
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 66 
or by reference to another publication. This call also includes disclosure, where known, of the existence 67 
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 68 
unexpired U.S. or foreign patents. 69 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 70 
written or electronic form, either: 71 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 72 
currently intend holding any essential patent claim(s); or 73 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 74 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 75 
publication either: 76 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 77 
or  78 

2. without compensation and under reasonable terms and conditions that are demonstrably free 79 
of any unfair discrimination.  80 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 81 
behalf) will include in any documents transferring ownership of patents subject to the assurance, 82 
provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 83 
and that the transferee will similarly include appropriate provisions in the event of future transfers with 84 
the goal of binding each successor-in-interest.  85 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 86 
whether such provisions are included in the relevant transfer documents.  87 

Such statements should be addressed to: iot-onboarding@nist.gov. 88 

  

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 89 

1 Introduction ........................................................................................ 190 

1.1 How to Use This Guide ................................................................................................. 1 91 

2 Functional Demonstration Playbook ................................................... 392 

2.1 Scenario 0: Factory Provisioning .................................................................................. 3 93 

2.2 Scenario 1: Trusted Network-Layer Onboarding .......................................................... 4 94 

2.3 Scenario 2: Trusted Application-Layer Onboarding ...................................................... 5 95 

2.4 Scenario 3: Re-Onboarding a Device ............................................................................ 6 96 

2.5 Scenario 4: Ongoing Device Validation ........................................................................ 7 97 

2.6 Scenario 5: Establishment and Maintenance of Credential and Device Security 98 
Posture Throughout the Lifecycle ................................................................................ 8 99 

3 Functional Demonstration Results ...................................................... 9100 

3.1 Build 1 Demonstration Results ..................................................................................... 9 101 

3.2 Build 2 Demonstration Results ................................................................................... 16 102 

3.3 Build 3 Demonstration Results ................................................................................... 22 103 

3.4 Build 4 Demonstration Results ................................................................................... 28 104 

3.5 Build 5 Demonstration Results ................................................................................... 34 105 

Appendix A References ......................................................................... 42106 

List of Tables 107 

Table 2-1 Scenario 0 Factory Provisioning Capabilities That May Be Demonstrated .............................. 4 108 

Table 2-2 Scenario 1 Trusted Network-Layer Onboarding Capabilities That May Be Demonstrated ...... 5 109 

Table 2-3 Scenario 2 Trusted Application-Layer Onboarding Capabilities That May Be Demonstrated .. 6 110 

Table 2-4 Scenario 3 Re-Onboarding Capabilities That May Be Demonstrated ...................................... 6 111 

Table 2-5 Scenario 4 Ongoing Device Validation Capabilities That May Be Demonstrated .................... 7 112 

Table 2-6 Scenario 5 Credential and Device Posture Establishment and Maintenance Capabilities That 113 
May Be Demonstrated ......................................................................................................................... 8 114 

Table 3-1 Build 1 Capabilities Demonstrated ........................................................................................ 9 115 

Table 3-2 Build 2 Capabilities Demonstrated ...................................................................................... 16 116 

Table 3-3 Build 3 Capabilities Demonstrated ...................................................................................... 22 117 

Table 3-4 Build 4 Capabilities Demonstrated ...................................................................................... 28 118 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

Table 3-5 Build 5 Capabilities Demonstrated ...................................................................................... 35 119 

 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 120 

In this project, the National Cybersecurity Center of Excellence (NCCoE) is applying standards, 121 
recommended practices, and commercially available technology to demonstrate various mechanisms for 122 
trusted network-layer onboarding of IoT devices and lifecycle management of those devices. We show 123 
how to provision network credentials to IoT devices in a trusted manner and maintain a secure posture 124 
throughout the device lifecycle.  125 

This volume of the NIST Cybersecurity Practice Guide describes functional demonstration scenarios that 126 
are designed to showcase the security capabilities and characteristics supported by trusted IoT device 127 
network-layer onboarding and lifecycle management solutions. Section 2, Functional Demonstration 128 
Playbook, defines the scenarios and lists the capabilities that can be showcased in each one. Section 3, 129 
Functional Demonstration Results, reports which capabilities have been demonstrated by each of the 130 
project’s implemented solutions. 131 

1.1 How to Use This Guide 132 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 133 
implementing trusted IoT device network-layer onboarding and lifecycle management and describes 134 
various example implementations of this reference design. Each of these implementations, which are 135 
known as builds, is standards-based and is designed to help provide assurance that networks are not put 136 
at risk as new IoT devices are added to them, and also to help safeguard IoT devices from being taken 137 
over by unauthorized networks. The reference design described in this practice guide is modular and can 138 
be deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 139 
onboarding and lifecycle management into their legacy environments according to goals that they have 140 
prioritized based on risk, cost, and resources.  141 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 142 
possible rather than delaying release until all volumes are completed.  143 

This guide contains five volumes: 144 

 NIST SP 1800-36A: Executive Summary – why we wrote this guide, the challenge we address, 145 
why it could be important to your organization, and our approach to solving this challenge 146 

 NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 147 

 NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 148 
including all the security-relevant details that would allow you to replicate all or parts of this 149 
project 150 

 NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 151 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 152 
and the results of demonstrating these use cases with each of the example implementations 153 
(you are here)  154 

 NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 155 
device network-layer onboarding and lifecycle management security characteristics to 156 
cybersecurity standards and recommended practices  157 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

Depending on your role in your organization, you might use this guide in different ways: 158 

Business decision makers, including chief security and technology officers, will be interested in the 159 
Executive Summary, NIST SP 1800-36A, which describes the following topics: 160 

 challenges that enterprises face in migrating to the use of trusted IoT device network-layer 161 
onboarding 162 

 example solutions built at the NCCoE 163 

 benefits of adopting the example solution 164 

Technology or security program managers who are concerned with how to identify, understand, assess, 165 
and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why.  166 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 167 
components of the general trusted IoT device network-layer onboarding and lifecycle management 168 
reference design to security characteristics listed in various cybersecurity standards and recommended 169 
practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 170 
Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 171 
(NIST SP 800-53).  172 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 173 
them understand the importance of using standards-based trusted IoT device network-layer onboarding 174 
and lifecycle management implementations. 175 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 176 
can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 177 
in our lab. The how-to portion of the guide provides specific product installation, configuration, and 178 
integration instructions for implementing the example solution. We do not re-create the product 179 
manufacturers’ documentation, which is generally widely available. Rather, we show how we 180 
incorporated the products together in our environment to create an example solution. Also, you can use 181 
Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 182 
showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 183 
and the results of demonstrating these use cases with each of the example implementations. Finally, 184 
NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 185 
build provide. 186 

This guide assumes that IT professionals have experience implementing security products within the 187 
enterprise. While we have used a suite of commercial products to address this challenge, this guide does 188 
not endorse these particular products. Your organization can adopt this solution or one that adheres to 189 
these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 190 
parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 191 
organization’s security experts should identify the products that will best integrate with your existing 192 
tools and IT system infrastructure. We hope that you will seek products that are congruent with 193 
applicable standards and recommended practices.  194 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 195 
feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 196 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-197 
onboarding@nist.gov. 198 

2 Functional Demonstration Playbook 199 

Six scenarios have been defined that demonstrate capabilities related to various aspects of trusted IoT 200 
device network-layer onboarding, application-layer onboarding, and device lifecycle management. 201 
These scenarios are as follows: 202 

 Scenario 0: Factory Provisioning 203 

 Scenario 1: Trusted Network-Layer Onboarding 204 

 Scenario 2: Trusted Application-Layer Onboarding 205 

 Scenario 3: Re-Onboarding a Device 206 

 Scenario 4: Ongoing Device Validation  207 

 Scenario 5: Establishment and Maintenance of Credential and Device Security Posture 208 
Throughout the Lifecycle 209 

We executed the factory provisioning scenario (Scenario 0) using both a Bootstrapping Remote Secure 210 
Key Infrastructure (BRSKI) Factory Provisioning Build and a Wi-Fi Easy Connect Factory Provisioning Build 211 
that have been implemented as part of this project. We executed the trusted network-layer onboarding 212 
and lifecycle management scenarios using each of the onboarding builds that have been implemented 213 
as part of this project. The capabilities that were demonstrated depend both on the features of the 214 
network-layer onboarding protocol (i.e., Wi-Fi Easy Connect) that the build supports and on any 215 
additional mechanisms the build may have integrated (e.g., application-layer onboarding). 216 

Section 2.1 defines the factory provisioning scenario (Scenario 0). Sections 2.2 through Section 2.6 217 
define each of the five onboarding scenarios. 218 

2.1 Scenario 0: Factory Provisioning 219 

This scenario, which simulates the IoT device factory provisioning process, is designed to represent 220 
some steps that must be performed in the factory before the device is put into the supply chain. These 221 
steps are performed by the device manufacturer or integrator to provision a device with the information 222 
it requires to be able to participate in trusted network-layer onboarding and lifecycle management. The 223 
device is assumed to have been equipped with secure storage and with the software or firmware 224 
needed to support a specific network-layer onboarding protocol (e.g., Wi-Fi Easy Connect or BRSKI). 225 
Scenario 0 includes initial provisioning of the IoT device with its birth credential (e.g., its private key and 226 
initial device identifier (IDevID) [1]), where it is stored in secure storage to prevent tampering or 227 
disclosure. This process includes generation of the credential (e.g., a private key and other information), 228 
signing of this credential (if applicable, depending on what onboarding protocol the device is designed 229 
to support), and transfer of the device bootstrapping information (e.g., a DPP URI or the device’s IDevID 230 
) to the appropriate destination to ensure that it will be available for use during the network layer 231 
onboarding process. Following provisioning, the birth credential may be used for network-layer or 232 
application-layer onboarding. Table 2-1 lists the capabilities that may be demonstrated in this factory 233 
provisioning scenario. 234 

mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

Table 2-1 Scenario 0 Factory Provisioning Capabilities That May Be Demonstrated  235 

Demo 
ID 

Capability Description 

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth credentials are generated within or generated and 
provisioned into secure storage on the IoT device. The content and 
format of the credential are appropriate to the onboarding protocol 
(e.g., Wi-Fi Easy Connect [2] or BRSKI [3]) that the device is designed 
to support: 

• For BRSKI, the credential is a private key, a signed certificate 
(IDevID), a trust anchor for the manufacturer’s certificate 
authority (CA), and the location of a trusted manufacturer 
authorized signing authority (MASA). 

• For Wi-Fi Easy Connect, the credential is a private key and a 
public bootstrapping key. 

S0.C2 Birth Credential 
Signing 

The credential is signed by a trusted CA. 

S0.C3 Bootstrapping 
Information 
Availability 

The bootstrapping information required for onboarding the device is 
made available as needed. The format and content of the 
bootstrapping information depends on the onboarding protocol that 
the device is designed to support:  

• For BRSKI, the bootstrapping information is the certificate 
and ownership information that is sent to the MASA. 

• For Wi-Fi Easy Connect, the bootstrapping information is the 
Device Provisioning Protocol (DPP) uniform resource 
identifier (URI) (which contains the public key, and optionally 
other information such as device serial number).  

2.2 Scenario 1: Trusted Network-Layer Onboarding  236 

This scenario involves trusted network-layer onboarding of an authorized IoT device to a local network 237 
that is operated by the owner of the IoT device. The device is assumed to have been manufactured to 238 
support the type of network-layer onboarding protocol (e.g., Wi-Fi Easy Connect or BRSKI) that is being 239 
used by the local network. The device is also assumed to have been provisioned with its birth credential 240 
in a manner similar to that described in Scenario 0: Factory Provisioning, including transfer of the 241 
device’s bootstrapping information (e.g., its public key) to the operator of the local network to ensure 242 
that this information will be available to support authentication of the device during the initial phase of 243 
the trusted network-layer onboarding process. Onboarding is performed after the device has booted up 244 
and is placed in onboarding mode. Because the organization that is operating the local network is the 245 
owner of the IoT device, the device is authorized to onboard to the network and the network is 246 
authorized to onboard the device. In this scenario, after the identities of the device and the network are 247 
authenticated, a network onboarding component—a logical component authorized to onboard devices 248 
on behalf of the network—authenticates the device and provisions unique network credentials to the 249 
device over a secure channel. These network credentials are not just specific to the device; they are also 250 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

specific to the local network. The device then uses these credentials to connect to the network. Table 251 
2-2 lists the capabilities that may be demonstrated in this scenario. 252 

Table 2-2 Scenario 1 Trusted Network-Layer Onboarding Capabilities That May Be Demonstrated  253 

Demo 
ID 

Capability Description 

S1.C1 Device 
Authentication 

The onboarding mechanism authenticates the device’s identity. 

S1.C2 Device Authorization The onboarding mechanism verifies that the device is authorized to 
onboard to the network. 

S1.C3 Network 
Authentication 

The device can verify the network’s identity. 

S1.C4 Network 
Authorization 

The device can verify that the network is authorized to take control 
of it. 

S1.C5 Secure Local 
Credentialing 

The onboarding mechanism securely provisions local network 
credentials to the device. 

S1.C6 Secure Storage The local network credentials are provisioned to secure hardware-
backed storage on the device. 

S1.C7 Network Selection The onboarding mechanism provides the IoT device with the 
identifier of the network to which the device should onboard. 

S1.C8 Interoperability The network-layer onboarding mechanism can onboard a minimum 
of two types of IoT devices (e.g., different device vendors and 
models). 

2.3 Scenario 2: Trusted Application-Layer Onboarding 254 

This scenario involves trusted application-layer onboarding that is performed automatically on an IoT 255 
device after the device connects to a network. As a result, this scenario can be thought of as a series of 256 
steps that would be performed as an extension of Scenario 1, assuming the device has been designed 257 
and provisioned to support application-layer onboarding. As part of these steps, the device 258 
automatically mutually authenticates with a trusted application-layer onboarding service and establishes 259 
an encrypted connection to that service so the service can provision the device with application-layer 260 
credentials. The application-layer credentials could, for example, enable the device to securely connect 261 
to a trusted lifecycle management service to check for available updates or patches. For the application-262 
layer onboarding mechanism to be trusted, it must establish an encrypted connection to the device 263 
without exposing any information that must be protected to ensure the confidentiality of that 264 
connection. Two types of application-layer onboarding are defined in NIST SP 1800-36B: streamlined and 265 
independent. Table 2-3 lists the capabilities that may be demonstrated in this scenario, including both 266 
types of application-layer onboarding. 267 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

Table 2-3 Scenario 2 Trusted Application-Layer Onboarding Capabilities That May Be Demonstrated  268 

Demo 
ID 

Capability Description 

S2.C1 Automatic Initiation 
of Streamlined 
Application-Layer 
Onboarding  

The device can automatically (i.e., with no manual intervention 
required) initiate trusted application-layer onboarding after 
performing network-layer onboarding and connecting to the 
network. In this case, the application-layer onboarding bootstrapping 
information has been securely conveyed to the device during the 
network-layer onboarding process. 

S2.C2 Automatic Initiation 
of Independent 
Application-Layer 
Onboarding  

The device can automatically (i.e., with no manual intervention 
required) initiate trusted application-layer onboarding after 
performing network-layer onboarding and connecting to the 
network. In this case, the application-layer onboarding bootstrapping 
information has been pre-provisioned to the device by the device 
manufacturer or integrator (e.g., as part of an application that was 
installed on the device during the manufacturing process). 

S2.C3 Trusted Application-
Layer Onboarding 

The device and a trusted application service can establish an 
encrypted connection without exposing any information that must 
be protected to ensure the confidentiality of the connection. They 
can then use that secure association to exchange application-layer 
information. 

2.4 Scenario 3: Re-Onboarding a Device 269 

This scenario involves re-onboarding an IoT device to a network after deleting its network credentials so 270 
that the device can be re-credentialed and reconnected. If the device also supports application-layer 271 
onboarding, application-layer onboarding should also be performed again after the device reconnects to 272 
the network. This scenario assumes that the device has been able to successfully demonstrate trusted 273 
network-layer onboarding as defined in Scenario 1: Trusted Network-Layer Onboarding. If application-274 
layer re-onboarding is to be demonstrated as well, the scenario assumes that the device has also been 275 
able to successfully demonstrate at least one method of application-layer onboarding as defined in 276 
Scenario 2: Trusted Application-Layer Onboarding. Table 2-4 lists the capabilities that may be 277 
demonstrated in this scenario. 278 

Table 2-4 Scenario 3 Re-Onboarding Capabilities That May Be Demonstrated  279 

Demo 
ID 

Capability Description 

S3.C1 Credential Deletion  The device’s network credential can be deleted. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s network credential has been deleted, the device is 
not able to connect to or communicate on the network securely. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s network credential has been deleted, the network-
layer onboarding mechanism can securely re-provision a network 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

Demo 
ID 

Capability Description 

credential to the device, which the device can then use to connect to 
the network securely. 

S3.C4 Re-Onboarding 
(application layer) 

After the device’s network and application-layer credentials have 
been deleted and the device has been re-onboarded at the network 
layer and reconnected to the network, the device can again perform 
trusted application-layer onboarding. 

2.5 Scenario 4: Ongoing Device Validation  280 

This scenario involves ongoing validation of a device, not only as part of a trusted boot or attestation 281 
process prior to permitting the device to undergo network-layer onboarding, but also after the device 282 
has connected to the network. It may involve one or more security mechanisms that are designed to 283 
evaluate, validate, or respond to device trustworthiness using methods such as examining device 284 
behavior, ensuring device authenticity and integrity, and assigning the device to a specific network 285 
segment based on its conformance to policy criteria. Table 2-5 lists the capabilities that may be 286 
demonstrated in this scenario. None of these capabilities are integral to trusted network-layer 287 
onboarding; however, they may be used in conjunction with, or subsequent to, trusted network-layer 288 
onboarding to enhance device and network security. 289 

Table 2-5 Scenario 4 Ongoing Device Validation Capabilities That May Be Demonstrated  290 

Demo 
ID 

Capability Description 

S4.C1 Device Attestation 
(initial) 

The network-layer onboarding mechanism requires successful device 
attestation prior to permitting the device to be onboarded. 

S4.C2 Device Attestation 
(application layer) 

The application-layer onboarding mechanism requires successful 
device attestation prior to permitting the device to be onboarded. 

S4.C3 Device Attestation 
(ongoing) 

Successful device attestation is required prior to permitting the 
device to perform some operation (e.g., accessing a high-value 
resource). 

S4.C4 Local Network 
Segmentation (initial) 

Upon connection, the IoT device is assigned to some local network 
segment in accordance with policy, which may include an assessment 
of its security posture. 

S4.C5 Behavioral Analysis Device behavior is observed to determine whether the device meets 
the policy criteria required to be permitted to perform a given 
operation (e.g., to access a high-value resource or be placed on a 
given network segment). 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be reassigned to a different network segment 
based on ongoing assessments of its conformance to policy criteria. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the IoT device’s identity is periodically 
reauthenticated in order to maintain network access. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

Demo 
ID 

Capability Description 

S4.C8 Periodic Device 
Reauthorization 

After connection, the IoT device’s authorization to access the 
network is periodically reconfirmed in order to maintain network 
access. 

2.6 Scenario 5: Establishment and Maintenance of Credential and Device 291 

Security Posture Throughout the Lifecycle 292 

This scenario involves steps used to help establish and maintain the security posture of both the device’s 293 
network credentials and the device itself. It includes the capability to download and validate the device’s 294 
most recent firmware updates, securely integrate with a device communications intent enforcement 295 
mechanism (e.g., Manufacturer Usage Description (MUD) [4]), keep the device updated and patched, 296 
and establish and maintain the device’s network credentials by provisioning X.509 certificates or DPP 297 
Connectors to the device and updating expired network credentials. Table 2-6 lists the capabilities that 298 
may be demonstrated in this scenario. None of these capabilities are integral to trusted network-layer 299 
onboarding; however, they may be used in conjunction with or subsequent to trusted network-layer 300 
onboarding to enhance device and network security. 301 

Table 2-6 Scenario 5 Credential and Device Posture Establishment and Maintenance Capabilities That 302 
May Be Demonstrated  303 

Demo 
ID 

Capability Description 

S5.C1 Trusted Firmware 
Updates 

The device can download the most recent firmware update and 
verify its signature before it is installed. 

S5.C2 Credential Certificate 
Provisioning 

The onboarding mechanism can interact with a certificate authority 
to sign a device’s X.509 certificate and provision it onto the device. 

S5.C3 Credential Update The device’s network credential can be updated after it expires. 

S5.C4 Server Attestation Successful server attestation is required prior to permitting the 
server to perform some operation on the device (e.g., prior to 
downloading and installing updates onto the device). 

S5.C5 Secure Integration 
with MUD  

The network-layer onboarding mechanism can convey necessary 
device communications intent information (e.g., the IoT device’s 
MUD URL) to the network in encrypted form, thereby securely 
binding this information to the device and ensuring its confidentiality 
and integrity. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a lifecycle management service and can automatically 
establish a secure association with it after performing network-layer 
onboarding and connecting to the network. 

 

  



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

3 Functional Demonstration Results 304 

This section records the capabilities that were demonstrated for each of the builds. 305 

3.1 Build 1 Demonstration Results 306 

Table 3-1 lists the capabilities that were demonstrated by Build 1. 307 

Table 3-1 Build 1 Capabilities Demonstrated 308 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 0: Factory Provisioning  

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth 
credentials are 
generated within or 
generated and 
provisioned into secure 
storage on the IoT 
device. 
For Wi-Fi Easy Connect, 
the credential is a 
private key and a 
public bootstrapping 
key. 

Yes Public/private key-pair is 
generated within the 
SEALSQ VaultIC secure 
element. 

S0.C2 Birth Credential 
Signing 

The credential is signed 
by a trusted CA. 

No There is no requirement to 
support this capability in 
this build. Birth credentials 
for devices supporting Wi-
Fi Easy Connect onboarding 
do not need to be signed.  

S0.C3 Bootstrapping 
Information 
Availability 
 
 

The bootstrapping 
information required 
for onboarding the 
device is made 
available as needed. 
For Wi-Fi Easy Connect, 
the bootstrapping 
information is the 
Device Provisioning 
Protocol (DPP) uniform 
resource identifier 
(URI) (which contains 
the public key, and 
optionally other 
information such as 
device serial number).  

Yes The device’s DPP URI is 
generated using the 
public/private keypair that 
was generated in the 
device’s secure element. 
This DPP URI is encoded in 
a QR code that is written to 
a Portable Network 
Graphics (PNG) file and 
may be transferred from a 
vendor cloud upon 
acquisition of the device. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes DPP performs device 
authentication. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes When the device’s URI is 
found on the HPE cloud 
service, this verifies that 
the device is authorized to 
onboard to the network. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

No This could be supported by 
providing the IoT device 
with the DPP URI of the 
network, but the Aruba 
User Experience Insight 
(UXI) sensor used in this 
build lacks the user 
interface needed to do so. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The network that possesses 
the device’s public key is 
implicitly authorized to 
onboard the device by 
virtue of its knowledge of 
the device’s public key. 
While this is not 
cryptographic, it does 
provide a certain level of 
assurance that the “wrong” 
network doesn’t take 
control of the device. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes DPP provisions the device’s 
network credentials over 
an encrypted channel. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No The bootstrapping 
credentials are stored in a 
Trusted Platform Module 
(TPM) 2.0 hardware 
enclave, but the local 
network credentials are not 

S1.C7 Network Selection The onboarding 
mechanism provides 

Yes The network responds to 
device chirps. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes IoT devices from Build 2 
were successfully 
onboarded in Build 1. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process. 

No Not supported in this build. 

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 

Yes Once onboarded, the UXI 
sensor automatically 
initiates application-layer 
onboarding to the UXI 
application. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process). 

S2.C3 Trusted 
Application- Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information. 

Yes Once onboarded, the UXI 
sensor establishes a secure 
connection with the UXI 
cloud, which provisions the 
sensor with its credentials 
for the UXI application. 
Later, the sensor uploads 
data to the UXI application 
securely.  

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Factory reset and manual 
credential removal were 
leveraged. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely. 

Yes Observed. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

connect to the network 
securely.  

S3.C4 Re-Onboarding 
(application layer) 

After the device’s 
network and 
application-layer 
credentials have been 
deleted and the device 
has been re-onboarded 
at the network layer 
and re-connected to 
the network, the 
device can again 
perform trusted 
application-layer 
onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device Attestation 
(application layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded.  

No Not supported in this build. 

S4.C3 Device Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform 
some operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 

No  Not demonstrated in this 
phase. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

include an assessment 
of its security posture. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., 
to access a high-value 
resource or be placed 
on a given network 
segment). 

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments 
of its conformance to 
policy criteria. 

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 

S5.C1 Trusted Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority to 
sign a device’s X.509 
certificate and 
provision it onto the 
device. 

Yes This capability has been 
successfully demonstrated 
with the SEALSQ INeS CA. 

S5.C3 Credential Update The device’s network 
credential can be 
updated after it 
expires. 

No Not demonstrated in this 
phase. 

S5.C4 Server Attestation Successful server 
attestation is required 
prior to permitting the 
server to perform 
some operation on the 
device (e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure Integration 
with MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by DPP, but not 
demonstrated because 
Build 1 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

3.2 Build 2 Demonstration Results 309 

Table 3-2 lists the capabilities that were demonstrated by Build 2. 310 

Table 3-2 Build 2 Capabilities Demonstrated 311 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes DPP performs device 
authentication. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes Only devices that have been 
added/approved by the 
administrator are 
onboarded. When the 
device’s URI is found, the 
controller authorizes the 
device to join the network. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

No This could be supported by 
providing the IoT device 
with the DPP URI of the 
network, but this is not 
currently implemented. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The network that possesses 
the device’s public key is 
implicitly authorized to 
onboard the device by 
virtue of its knowledge of 
the device’s public key. 
While this is not 
cryptographic, it does 
provide a certain level of 
assurance that the “wrong” 
network doesn’t take 
control of the device. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 

Yes DPP provisions the device’s 
network credentials over an 
encrypted channel. 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

connecting to the 
network. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network credentials to 
the device. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No  The IoT device does not 
have secure hardware-
backed storage. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

Yes Network responds to device 
chirps. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes Build 2 was able to onboard 
the IoT devices from Build 1. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process. 

Yes This has been demonstrated 
with the OCF Iotivity [5] 
custom extension. Iotivity is 
an open-source software 
framework that implements 
OCF standards and enables 
seamless device-to-device 
connectivity. 

S2.C2 Automatic 
Initiation of 
Independent 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Application-Layer 
Onboarding  

trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process). 

S2.C3 Trusted 
Application- 
Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information. 

Yes Once the device is 
onboarded to the network 
using DPP, the credentials 
for the application layer 
onboarding are sent over 
the secure channel and 
provisioned by the 
onboarding tool (OBT). 

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Supports factory reset. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely. 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.  

Yes Observed. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network and 
application-layer 
credentials have been 
deleted and the device 
has been re-onboarded 
at the network layer 
and re-connected to 
the network, the device 
can again perform 
trusted application-
layer onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform 
some operation (e.g., 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

accessing a high-value 
resource). 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture. 

Yes  When the device is 
connected to the network, 
the gateway places it in a 
restricted network segment 
based on policy. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., 
to access a high-value 
resource or be placed 
on a given network 
segment). 

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria. 

Yes Device can be moved to 
new network segments 
programmatically. The 
policy to do this is not 
defined in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority to 
sign a device’s X.509 
certificate and 
provision it onto the 
device. 

No Not supported in this build. 

S5.C3 Credential 
Update 

The device’s network 
credential can be 
updated after it 
expires. 

No Not demonstrated in this 
phase. 

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the 
device (e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by DPP, but not 
demonstrated because 
Build 2 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this build. 

3.3 Build 3 Demonstration Results 312 

Table 3-3 lists the capabilities that were demonstrated by Build 3. 313 

Table 3-3 Build 3 Capabilities Demonstrated 314 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes The local domain registrar 
receives the voucher 
request. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes The registrar verifies that 
the device is from an 
authorized manufacturer.  

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

Yes Demonstrated by the 
voucher. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The registrar examines the 
new voucher and passes it 
to the device for 
onboarding. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes A local device identifier 
(LDevID) (i.e., the device’s 
network credential) [1] is 
provisioned to the device 
after the device 
authentication and 
authorization process. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No Not demonstrated in this 
phase. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

No Not demonstrated in this 
build. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

No Supported by BRSKI, but not 
demonstrated in this build. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process.  

No  Not supported in this build.  

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding   

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process).  

S2.C3 Trusted 
Application-Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information.  

No Not supported in this build. 

Scenario 3: Re-Onboarding a Device  

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Observed. 

S3.C2 De-Credentialed 
Device Cannot 
Connect  

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely.  

Yes Observed. 

S3.C3 Re-Onboarding 
(network-layer) 

After the device’s 
network credential has 
been deleted, the 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.   

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network credentials 
have been deleted and 
the device has been re-
onboarded at the 
network layer and re-
connected to the 
network, the device can 
perform application-
layer onboarding 
automatically. 

No Not supported in this build. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform some 
operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture.  

No Not supported in this build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., to 
access a high-value 
resource or be placed 
on a given network 
segment).  

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria.  

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establish and Maintain Credential and Device Security Posture Throughout the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware update 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

and verify its signature 
before it is installed.  

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can interact 
with a certificate 
authority to sign a 
device’s X.509 
certificate and 
provision it onto the 
device.  

Yes A vendor-installed X.509 
certificate and a vendor’s 
authorizing service use link-
local connectivity to 
provision device credentials. 

S5.C3 Credential 
Update 

The device’s network 
credential (e.g., its 
LDevID or X.509 
certificate) can be 
updated after it 
expires. 

No Will be demonstrated in a 
future implementation of 
this build. 

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the device 
(e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by BRSKI, but not 
demonstrated because 
Build 3 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

3.4 Build 4 Demonstration Results 315 

Table 3-4 lists the capabilities that were demonstrated by Build 4. 316 

Table 3-4 Build 4 Capabilities Demonstrated 317 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to 
onboard to the 
network. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s 
identity. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials 
to the device. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to 
secure hardware-
backed storage on 
the device. 

Yes The local network 
credentials are stored in 
the Silicon Labs Secure 
Vault on the 
Thunderboard. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with 
the identifier of the 
network to which 
the device should 
onboard. 

No The device generates a 
pre-shared key that is 
manually entered in the 
OpenThread Border 
Router [6]. 

S1.C8 Interoperability The network-layer 
onboarding 
mechanism can 
onboard a minimum 
of two types of IoT 
devices (e.g., 
different device 
vendors and 
models). 

No Not supported in this 
build. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-
Layer 
Onboarding 

The device can 
automatically (i.e., 
with no manual 
intervention 
required) initiate 
trusted application-
layer onboarding 
after performing 
network-layer 
onboarding and 
connecting to the 
network. In this 
case, the 
application-layer 
onboarding 
bootstrapping 
information has 
been securely 
conveyed to the 
device during the 
network-layer 
onboarding process. 

No Not supported in this 
build. 

S2.C2 Automatic 
Initiation of 
Independent 
Application-

The device can 
automatically (i.e., 
with no manual 
intervention 
required) initiate 

Yes Trusted application-layer 
onboarding using 
Kudelski keySTREAM is 
configured to proceed 
automatically pending 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Layer 
Onboarding  

trusted application-
layer onboarding 
after performing 
network-layer 
onboarding and 
connecting to the 
network. In this 
case, the 
application-layer 
onboarding 
bootstrapping 
information has 
been pre-
provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as 
part of an 
application that was 
installed on the 
device during the 
manufacturing 
process). 

confirmation from a user 
(through the press of a 
button). 

S2.C3 Trusted 
Application- 
Layer 
Onboarding 

The device and a 
trusted application 
service can establish 
an encrypted 
connection without 
exposing any 
information that 
must be protected 
to ensure the 
confidentiality of the 
connection. They 
can then use that 
secure association to 
exchange 
application-layer 
information. 

Yes Application Layer 
Onboarding via Kudelski 
keySTREAM GUI / AWS 
IoT Core and through the 
Silicon Labs Simplicity 
Studio Device Console  

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s 
network credential 
can be deleted. 

Yes The device can be 
removed from the 
network via the Open 
Thread Border Router 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

GUI and cannot rejoin 
without entering a new 
pre-shared key. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential 
has been deleted, 
the device is not 
able to connect to or 
communicate on the 
network securely. 

Yes Observed. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential 
has been deleted, 
the network-layer 
onboarding 
mechanism can 
security re-provision 
a network credential 
to the device, which 
the device can then 
use to connect to 
the network 
securely.  

Yes Observed. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network and 
application-layer 
credentials have 
been deleted and 
the device has been 
re-onboarded at the 
network layer and 
re-connected to the 
network, the device 
can again perform 
trusted application-
layer onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding 
mechanism requires 
successful device 
attestation prior to 
permitting the 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

device to be 
onboarded. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding 
mechanism requires 
successful device 
attestation prior to 
permitting the 
device to be 
onboarded.  

No Not supported in this 
build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is 
required prior to 
permitting the 
device to perform 
some operation 
(e.g., accessing a 
high-value resource). 

No Not supported in this 
build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, 
the IoT device is 
assigned to some 
local network 
segment in 
accordance with 
policy, which may 
include an 
assessment of its 
security posture. 

No  Not supported in this 
build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to 
determine whether 
the device meets the 
policy criteria 
required to be 
permitted to 
perform a given 
operation (e.g., to 
access a high-value 
resource or be 
placed on a given 
network segment). 

No Not supported in this 
build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can 
be reassigned to a 
different network 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

segment based on 
ongoing assessments 
of its conformance 
to policy criteria. 

S4.C7 Periodic Device 
Reauthentication 

After connection, 
the IoT device’s  
identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this 
build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, 
the IoT device’s 
authorization to 
access the network 
is periodically 
reconfirmed in order 
to maintain network 
access. 

No Not supported in this 
build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this 
build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority 
to sign a device’s 
X.509 certificate and 
provision it onto the 
device. 

No Not supported in this 
build.  

S5.C3 Credential 
Update 

The device’s 
network credential 
can be updated after 
it expires. 

No Not supported in this 
build. 

S5.C4 Server 
Attestation 

Successful server 
attestation is 
required prior to 
permitting the 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

  

3.5 Build 5 Demonstration Results 318 

Table 3-5 lists the capabilities that were demonstrated by Build 5. 319 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

server to perform 
some operation on 
the device (e.g., 
prior to downloading 
and installing 
updates onto the 
device). 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding 
mechanism can 
convey necessary 
device 
communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in 
encrypted form, 
thereby securely 
binding this 
information to the 
device and ensuring 
its confidentiality 
and integrity. 

No Not supported in this 
build. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle 
management service 
and can 
automatically 
establish a secure 
association with it 
after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

Table 3-5 Build 5 Capabilities Demonstrated 320 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 0: Factory Provisioning  

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth 
credentials are 
generated within or 
generated and 
provisioned into secure 
storage on the IoT 
device. 
For BRSKI, the 
credential is an IDevID 
certificate. 

Yes Supporting public/private 
keypair is generated within 
the secure element, and 
signed IDevID certificate is 
placed into the secure 
element. 

S0.C2 Birth Credential 
Signing 

The credential is signed 
by a trusted CA. 

Yes The IDevID certificate is 
signed by the Build 5 
Manufacturer Provisioning 
Root (MPR). 

S0.C3 Bootstrapping 
Information 
Availability 
 
 

The bootstrapping 
information required 
for onboarding the 
device is made 
available as needed. 
For BRSKI, the 
bootstrapping 
information is the 
IDevID certificate 
provisioned into the 
device’s secure 
element.  

Yes The device’s IDevID 
certificate is generated 
using the public/private 
keypair that was generated 
in the device’s secure 
element. This IDevID 
certificate is presented to 
verify the device’s identity 
during network-layer 
onboarding. 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes The device is authenticated 
using its provisioned IDevID. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes The device is implicitly 
granted authorization 
during the onboarding 
process within the registrar 
implementation. However, 
this authorization is 
contingent upon the device 
satisfying the policy 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

requirements for 
onboarding. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

Yes Demonstrated by the 
voucher. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The device authenticates to 
the network using EAP-TLS. 
The registrar gets a voucher 
from the MASA verifying 
that the network is 
authorized to onboard the 
device and it passes this 
voucher to the device so the 
device can verify that the 
network is authorized to 
onboard it. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes A local device identifier 
(LDevID) (i.e., the device’s 
network credential) [1] is 
provisioned to the device as 
the culmination of the 
network-layer onboarding 
process. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No The IDevID (birth credential) 
keys are generated with a 
TPM secure element. The 
EAP-TLS negotiation is 
configured to use keys from 
the secure element. The 
local network credentials 
(LDevID) are not scored in 
secure storage. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

Yes The identifier of the 
network is passed back in 
the common name field of 
the LDevID X.509 certificate.  

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes Supported by BRSKI over 
IEEE 802.11 [7], but not 
demonstrated in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process.  

No Not supported in this build 

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding   

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process).  

Yes The pledge can use its 
IDevID and the private key 
in the secure element to 
automatically establish a 
TLS connection to an 
application server using 
OpenSSL s_client. The 
address of the application 
server has been pre-
provisioned to the device by 
the manufacturer. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S2.C3 Trusted 
Application-Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information.  

Yes The pledge can use its 
IDevID and the private key 
in the secure element to 
automatically establish a 
TLS connection to an 
application server using 
OpenSSL s_client. The 
address of the application 
server has been pre-
provisioned to the device by 
the manufacturer. 

Scenario 3: Re-Onboarding a Device  

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes The device is removed from 
Radius server by revoking its 
voucher.  

S3.C2 De-Credentialed 
Device Cannot 
Connect  

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely.  

Yes If credential is removed 
from the registrar/radius 
server, the device will not 
connect. 
 
Certificate revocation 
through CRL is also 
implemented. 

 
S3.C3 Re-Onboarding 

(network-layer) 
After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can securely re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.   

Yes Upon a voucher being 
revoked, the LDevID is 
invalidated. The pledge can 
then perform the 
onboarding process again 
with a newly generated 
LDevID. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network credentials 
have been deleted and 
the device has been re-
onboarded at the 

Yes After re-establishing a 
network connection, 
application onboarding 
happens automatically. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network layer and re-
connected to the 
network, the device can 
perform application-
layer onboarding 
automatically. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform some 
operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture.  

No  Not supported in this build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., to 
access a high-value 

Yes Real time network events 
are propagated from the 
gateway(s) to the policy 
engine. When suspicious 
behavior is identified (e.g., 
contact denylisted IP 
address) device network 
access is revoked.  



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

resource or be placed 
on a given network 
segment).  

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria.  

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication  

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

Yes The continuous assurance 
policy is checked 
periodically, every 30 
seconds in the demo. The 
policy sets the requirements 
for a device to be 
authorized to have access to 
the network. If a device fails 
this check, its voucher is 
revoked, invalidating the 
device’s LDevID. 

Scenario 5: Establish and Maintain Credential and Device Security Posture Throughout the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware update 
and verify its signature 
before it is installed.  

No Not supported in this build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can interact 
with a certificate 
authority to sign a 
device’s X.509 
certificate and 
provision it onto the 
device.  

Yes In the BRSKI flows, the 
onboarding process results 
in an LDevID (X.509) 
certificate being provisioned 
on the device, after the 
trustworthiness checks have 
been completed. This 
LDevID certificate is signed 
by the Domain CA. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C3 Credential 
Update 

The device’s network 
credential (e.g., its 
LDevID or X.509 
certificate) can be 
updated after it 
expires. 

Yes Device will automatically 
generate a new LDevID and 
re-onboard if LDevID 
expires.  

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the device 
(e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

Yes The continuous assurance 
policy engine sporadically 
resolves the MUD 
document of each unique 
connected device using all 
information available. In 
this build we use the D3DB 
method of resolution, which 
resolves using chained 
verifiable credentials; 
specifically, the MUD 
document is bound to the 
device ID using a simulated 
managed firmware service. 
This provides a verifiable 
credential binding a device 
identifier (IDevID) to a full 
MUD document.   

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this build. 
 

 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

321 Appendix A References 
[1] IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity, IEEE Std 322 

802.1AR-2018 (Revision of IEEE Std 802.1AR-2009), 2 Aug. 2018, 73 pp. Available: 323 
https://ieeexplore.ieee.org/document/8423794 324 

[2] Wi-Fi Alliance, Wi-Fi Easy Connect™ Specification Version 3.0, 2022. Available:325 
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf326 

[3] M. Pritikin, M. Richardson, T.T.E. Eckert, M.H. Behringer, and K.W. Watsen, Bootstrapping327 
Remote Secure Key Infrastructure (BRSKI), IETF Request for Comments (RFC) 8995, October328 
2021. Available: https://datatracker.ietf.org/doc/rfc8995/329 

[4] E. Lear, R. Droms, and D. Romascanu, Manufacturer Usage Description Specification, IETF330 
Request for Comments (RFC) 8520, March 2019. Available: https://tools.ietf.org/html/rfc8520331 

[5] Open Connectivity Foundation (OCF) Iotivity: https://iotivity.org/332 

[6] Thread 1.1.1 Specification, February 13, 2017.333 

[7] O. Friel, E. Lear, M. Pritikin, and M. Richardson, BRSKI over IEEE 802.11, IETF Internet-Draft334 
(Individual), July 2018. Available: https://datatracker.ietf.org/doc/draft-friel-brski-over-335 
802dot11/01/336 

https://ieeexplore.ieee.org/document/8423794
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf
https://datatracker.ietf.org/doc/rfc8995/
https://tools.ietf.org/html/rfc8520
https://iotivity.org/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/


NIST SPECIAL PUBLICATION 1800-36 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and 
Network Security 
 
 
Includes Executive Summary (A); Approach, Architecture, and Security Characteristics (B);  
How-To Guides (C); Functional Demonstrations (D) and Compliance and Risk Management (E) 

 
 

Michael Fagan 
Jeffrey Marron 
Paul Watrobski 
Murugiah Souppaya 
William Barker 
Chelsea Deane 
Joshua Klosterman 
Charlie Rearick 
Blaine Mulugeta 
Susan Symington 

Dan Harkins 
Danny Jump 
Andy Dolan 
Kyle Haefner 
Craig Pratt 
Darshak Thakore 
Peter Romness 
Tyler Baker 
David Griego 
Brecht Wyseur 

Alexandru Mereacre 
Nick Allott 
Ashley Setter 
Julien Delplancke 
Michael Richardson 
Steve Clark 
Mike Dow 
Steve Egerter 

 

May 2024 
 

DRAFT 
 
This publication is available free of charge from  
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management  

 

 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


NIST SPECIAL PUBLICATION 1800-36 
 

Trusted Internet of Things (IoT) Device Network-Layer 
Onboarding and Lifecycle Management: 

Enhancing Internet Protocol-Based IoT Device and Network 
Security 

 
Includes Executive Summary (A); Approach, Architecture, and Security Characteristics (B); 

How-To Guides (C); Functional Demonstrations (D) and Compliance and Risk Management (E) 

 
Michael Fagan 
Jeffrey Marron 
Paul Watrobski 

Murugiah Souppaya 
National Cybersecurity Center of Excellence 

Information Technology Laboratory 
 

William Barker 
Dakota Consulting 

Silver Spring, Maryland 
 

Chelsea Deane 
Joshua Klosterman 

Charlie Rearick 
Blaine Mulugeta 

Susan Symington 
The MITRE Corporation 

McLean, Virginia 
 

Dan Harkins 
Danny Jump 

Aruba, a Hewlett Packard Enterprise Company 
San Jose, California

Andy Dolan 
Kyle Haefner 

Craig Pratt 
Darshak Thakore 

CableLabs 
Louisville, Colorado 

 

Peter Romness 
Cisco 

San Jose, California 
 

Tyler Baker 
David Griego 

Foundries.io 
London, United Kingdom 

 

Brecht Wyseur 
Kudelski IoT 

Cheseaux-sur-Lausanne, 
Switzerland 

 

Alexandru Mereacre 
Nick Allott 

Ashley Setter 
NquiringMinds 

Southampton, United Kingdom 
 

Julien Delplancke 
NXP Semiconductors 

Mougins, France 
 

Michael Richardson 
Sandelman Software Works 

Ontario, Canada 
 

Steve Clark 
SEALSQ, a subsidiary of 

WISeKey 
Geneva, Switzerland 

 

Mike Dow 
Steve Egerter 

Silicon Labs 
Austin, Texas 

 
DRAFT 

 
May 2024 

 

 

 
U.S. Department of Commerce 

Gina M. Raimondo, Secretary 

 
National Institute of Standards and Technology 

Laurie Locasio, Under Secretary of Commerce for Standards and Technology & Director, National Institute of 
Standards and Technology 



NIST SPECIAL PUBLICATION 1800-36A 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and 
Network Security 

Volume A: 
Executive Summary 

Michael Fagan 
Jeffrey Marron 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence 
Information Technology Laboratory 

Blaine Mulugeta 
Susan Symington  
The MITRE Corporation 
McLean, Virginia 

Dan Harkins 
Aruba, a Hewlett Packard Enterprise company 
San Jose, California 

William Barker 
Dakota Consulting 
Silver Spring, Maryland 

Michael Richardson 
Sandelman Software Works 
Ottawa, Ontario 

May 2024 

DRAFT 

This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-
management  

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Executive Summary 

Establishing trust between a network and an Internet of Things (IoT) device (as defined in NIST Internal 2 

Report 8425) prior to providing the device with the credentials it needs to join the network is crucial for 3 

mitigating the risk of potential attacks. There are two possibilities for attack. One happens when a 4 

device is convinced to join an unauthorized network, which would take control of the device. The other 5 

occurs when a network is infiltrated by a malicious device. Trust is achieved by attesting and verifying 6 

the identity and posture of the device and the network before providing the device with its network 7 

credentials—a process known as network-layer onboarding. In addition, scalable, automated 8 

mechanisms are needed to safely manage IoT devices throughout their lifecycles, such as safeguards 9 

that verify the security posture of a device before the device is permitted to execute certain operations. 10 

In this practice guide, the National Cybersecurity Center of Excellence (NCCoE) applies standards, best 11 

practices, and commercially available technology to demonstrate various mechanisms for trusted 12 

network-layer onboarding of IoT devices in Internet Protocol based environments. This guide shows how 13 

to provide network credentials to IoT devices in a trusted manner and maintain a secure device posture 14 

throughout the device lifecycle, thereby enhancing IoT security in alignment with the IoT Cybersecurity 15 

Improvement Act of 2020.  16 

CHALLENGE 17 

With 40 billion IoT devices expected to be connected worldwide by 2025, it is unrealistic to onboard or 18 

manage these devices by manually interacting with each device. In addition, providing local network 19 

credentials at the time of manufacture requires the manufacturer to customize network-layer 20 

onboarding on a build-to-order basis, which prevents the manufacturer from taking full advantage of the 21 

economies of scale that could result from building identical devices for its customers. 22 

There is a need to have a scalable, automated mechanism to securely manage IoT devices throughout 23 

their lifecycles and, in particular, a trusted mechanism for providing IoT devices with their network 24 

credentials and access policy at the time of deployment on the network. It is easy for a network to 25 

falsely identify itself, yet many IoT devices onboard to networks without verifying the network’s identity 26 

and ensuring that it is their intended target network. Also, many IoT devices lack user interfaces, making 27 

it cumbersome to manually input network credentials. Wi-Fi is sometimes used to provide credentials 28 

over an open (i.e., unencrypted) network, but this onboarding method risks credential disclosure. Most 29 

home networks use a single password shared among all devices, so access is controlled only by the 30 

device’s possession of the password and does not consider a unique device identity or whether the 31 

device belongs on the network. This method also increases the risk of exposing credentials to 32 

unauthorized parties. Providing unique credentials to each device is more secure, but providing unique 33 

credentials manually would be resource-intensive and error-prone, would risk credential disclosure, and 34 

cannot be performed at scale.  35 

Once a device is connected to the network, if it becomes compromised, it can pose a security risk to 36 

both the network and other connected devices. Not keeping such a device current with the most recent 37 

software and firmware updates may make it more susceptible to compromise. The device could also be 38 

attacked through receipt of malicious payloads. Once compromised, it may be used to attack other 39 

devices on the network.  40 

https://doi.org/10.6028/NIST.IR.8425
https://doi.org/10.6028/NIST.IR.8425


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

OUTCOME 41 

The outcome of this project is development of example trusted onboarding solutions, demonstration 42 

that they support various scenarios, and publication of the findings in this practice guide, a NIST Special 43 

Publication (SP) 1800 that is composed of multiple volumes targeting different audiences. 44 

This practice guide can help IoT device users: 

Understand how to onboard their IoT devices in a trusted manner to: 

▪ Ensure that their network is not put at risk as new IoT devices are added to it

▪ Safeguard their IoT devices from being taken over by unauthorized networks

▪ Provide IoT devices with unique credentials for network access

▪ Provide, renew, and replace device network credentials in a secure manner

▪ Support ongoing protection of IoT devices throughout their lifecycles

This practice guide can help manufacturers and vendors of semiconductors, secure 
storage components, IoT devices, and network onboarding equipment: 

Understand the desired security properties for supporting trusted network-layer 

onboarding and explore their options with respect to recommended practices for: 

▪ Providing unique credentials into secure storage on IoT devices at the time of

manufacture to mitigate supply chain risks (i.e., device credentials)

▪ Installing onboarding software onto IoT devices

▪ Providing IoT device purchasers with information needed to onboard the IoT

devices to their networks (i.e., device bootstrapping information)

▪ Integrating support for network-layer onboarding with additional security

capabilities to provide ongoing protection throughout the device lifecycle

SOLUTION 45 

The NCCoE recommends the use of trusted network-layer onboarding to provide scalable, automated, 46 

trusted ways to provide IoT devices with unique network credentials and manage devices throughout 47 

their lifecycles to ensure that they remain secure. The NCCoE is collaborating with technology providers 48 

and other stakeholders to implement example trusted network-layer onboarding solutions for IoT 49 

devices that: 50 

▪ provide each device with unique network credentials,51 

▪ enable the device and the network to mutually authenticate,52 

▪ send devices their credentials over an encrypted channel,53 

▪ do not provide any person with access to the credentials, and54 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

▪ can be performed repeatedly throughout the device lifecycle.  55 

The capabilities demonstrated include: 56 

▪ trusted network-layer onboarding of IoT devices, 57 

▪ repeated trusted network-layer onboarding of devices to the same or a different network, 58 

▪ trusted application-layer onboarding (i.e., automatic establishment of an encrypted connection 59 
between an IoT device and a trusted application service after the IoT device has performed 60 
trusted network-layer onboarding and used its credentials to connect to the network), and 61 

▪ software-based methods to provide device credentials in the factory and transfer device 62 
bootstrapping information from device manufacturer to device purchaser.  63 

Future capabilities may include demonstrating the integration of trusted network-layer onboarding with 64 

zero trust-inspired [Note: See NIST SP 800-207] mechanisms such as ongoing device authorization, 65 

renewal of device network credentials, device attestation to ensure that only trusted IoT devices are 66 

permitted to be onboarded, device lifecycle management, and enforcement of device communications 67 

intent. 68 

This demonstration follows an agile methodology of building implementations (i.e., builds) iteratively 69 

and incrementally, starting with network-layer onboarding and gradually integrating additional 70 

capabilities that improve device and network security throughout a managed device lifecycle. This 71 

includes factory builds that simulate activities performed to securely provide device credentials during 72 

the manufacturing process, and five network-layer onboarding builds that demonstrate the Wi-Fi Easy 73 

Connect, Bootstrapping Remote Secure Key Infrastructure (BRSKI), and Thread Commissioning protocols. 74 

These builds also demonstrate both streamlined and independent trusted application-layer onboarding 75 

approaches, along with policy-based continuous assurance and authorization. The example 76 

implementations use technologies and capabilities from our project collaborators (listed below).  77 

Collaborators 78 

Aruba, a Hewlett Packard 79 

Enterprise company 80 

CableLabs 81 

Cisco 82 

Foundries.io 83 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity 

Foundation (OCF)

Sandelman Software Works 

SEALSQ, a subsidiary of 

WISeKey 

Silicon Labs 

While the NCCoE uses a suite of commercial products, services, and proof-of-concept technologies to 84 

address this challenge, this guide does not endorse these particular products, services, and technologies, 85 

nor does it guarantee compliance with any regulatory initiatives. Your organization's information 86 

security experts should identify the products and services that will best integrate with your existing 87 

tools, IT and IoT system infrastructure, and operations. Your organization can adopt these solutions or 88 

one that adheres to these guidelines in whole, or you can use this guide as a starting point for tailoring 89 

and implementing parts of a solution. 90 

https://csrc.nist.gov/pubs/sp/800/207/final
https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36A: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

HOW TO USE THIS GUIDE 91 

Depending on your role in your organization, you might use this guide in different ways: 92 

Business decision makers, such as chief information security, product security, and technology 93 

officers, can use this part of the guide, NIST SP 1800-36A: Executive Summary, to understand the 94 

project’s challenges and outcomes, as well as our solution approach. 95 

Technology, security, and privacy program managers who are concerned with how to identify, 96 

understand, assess, and mitigate risk can use NIST SP 1800-36B: Approach, Architecture, and Security 97 

Characteristics. This part of the guide describes the architecture and different implementations. Also, 98 

NIST SP 1800-36E: Risk and Compliance Management, maps components of the trusted onboarding 99 

reference architecture to security characteristics in broadly applicable, well-known cybersecurity 100 

guidelines and practices. 101 

IT professionals who want to implement an approach like this can make use of NIST SP 1800-36C: How-102 

To Guides. It provides product installation, configuration, and integration instructions for building 103 

example implementations, allowing them to be replicated in whole or in part. They can also use NIST SP 104 

1800-36D: Functional Demonstrations, which provides the use cases that have been defined to 105 

showcase trusted network-layer onboarding and lifecycle management security capabilities and the 106 

results of demonstrating these capabilities with each of the example implementations. These use cases 107 

may be helpful when developing requirements for systems being developed. 108 

SHARE YOUR FEEDBACK 109 

You can view or download the preliminary draft guide at https://www.nccoe.nist.gov/projects/building-110 

blocks/iot-network-layer-onboarding. NIST is adopting an agile process to publish this content. Each 111 

volume is being made available as soon as possible rather than delaying release until all volumes are 112 

completed. 113 

Help the NCCoE make this guide better by sharing your thoughts with us as you read the guide. As 114 

example implementations continue to be developed, you can adopt this solution for your own 115 

organization. If you do, please share your experience and advice with us. We recognize that technical 116 

solutions alone will not fully enable the benefits of our solution, so we encourage organizations to share 117 

lessons learned and recommended practices for transforming the processes associated with 118 

implementing this guide. 119 

To provide comments, join the community of interest, or learn more by arranging a demonstration of 120 

these example implementations, contact the NCCoE at iot-onboarding@nist.gov. 121 

122 

COLLABORATORS 123 

Collaborators participating in this project submitted their capabilities in response to an open call in the 124 

Federal Register for all sources of relevant security capabilities from academia and industry (vendors 125 

and integrators). Those respondents with relevant capabilities or product components signed a 126 

Cooperative Research and Development Agreement (CRADA) to collaborate with NIST in a consortium to 127 

build this example solution.  128 

https://www.nccoe.nist.gov/projects/building-blocks/iot-network-layer-onboarding
https://www.nccoe.nist.gov/projects/building-blocks/iot-network-layer-onboarding
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36A: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

Certain commercial entities, equipment, products, or materials may be identified by name or company 129 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 130 

experimental procedure or concept adequately. Such identification is not intended to imply special 131 

status or relationship with NIST or recommendation or endorsement by NIST or the NCCoE; neither is it 132 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 133 

for the purpose. 134 



NIST SPECIAL PUBLICATION 1800-36B 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and 
Network Security 
 
 

Volume B: 
Approach, Architecture, and Security Characteristics 
 
Michael Fagan 
Jeffrey Marron 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 
 

William Barker 
Dakota Consulting 
Silver Spring, Maryland 
 

Chelsea Deane 
Joshua Klosterman 
Charlie Rearick 
Blaine Mulugeta 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 
 

Dan Harkins 
Danny Jump 
Aruba, a Hewlett Packard Enterprise Company 
San Jose, California

Andy Dolan 
Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs 
Louisville, Colorado 
 

Peter Romness 
Cisco 
San Jose, California 
 

Tyler Baker 
David Griego 
Foundries.io 
London, United Kingdom 
 

Brecht Wyseur 
Kudelski IoT 
Cheseaux-sur-Lausanne, 
Switzerland 
 

Alexandru Mereacre 
Nick Allott 
Ashley Setter 
NquiringMinds 
Southampton, United Kingdom 
 

Julien Delplancke 
NXP Semiconductors 
Mougins, France 
 

Michael Richardson 
Sandelman Software Works 
Ontario, Canada 
 

Steve Clark 
SEALSQ, a subsidiary of WISeKey 
Geneva, Switzerland 
 

Mike Dow 
Steve Egerter 
Silicon Labs 
Austin, Texas 

 

 

May 2024 
 

DRAFT 

 
This publication is available free of charge from 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 

 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 

experimental procedure or concept adequately. Such identification is not intended to imply special 4 

status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 

for the purpose. 7 

National Institute of Standards and Technology Special Publication 1800-36B, Natl. Inst. Stand. Technol. 8 

Spec. Publ. 1800-36B, 114 pages, May 2024, CODEN: NSPUE2 9 

FEEDBACK 10 

You can improve this guide by contributing feedback regarding which aspects of it you find helpful as 11 

well as suggestions on how it might be improved. Should we provide guidance summaries that target 12 

specific audiences? What trusted IoT device onboarding protocols and related features are most 13 

important to you? Is there some content that is not included in this document that we should cover? Are 14 

we missing anything in terms of technologies or use cases? In what areas would it be most helpful for us 15 

to focus our future related efforts? For example, should we consider implementing builds that onboard 16 

devices supporting Matter and/or the Fast Identity Online (FIDO) Alliance application onboarding 17 

protocol? Should we implement builds that integrate security mechanisms such as lifecycle 18 

management, supply chain management, attestation, or behavioral analysis? As you review and adopt 19 

this solution for your own organization, we ask you and your colleagues to share your experience and 20 

advice with us. 21 

Comments on this publication may be submitted to: iot-onboarding@nist.gov. 22 

Public comment period: May 31, 2024 through July 30, 2024 23 

All comments are subject to release under the Freedom of Information Act. 24 

National Cybersecurity Center of Excellence 25 

National Institute of Standards and Technology 26 

100 Bureau Drive 27 

Mailstop 2002 28 

Gaithersburg, MD 20899 29 

Email: nccoe@nist.gov  30 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 31 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 32 

and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 33 

academic institutions work together to address businesses’ most pressing cybersecurity issues. This 34 

public-private partnership enables the creation of practical cybersecurity solutions for specific 35 

industries, as well as for broad, cross-sector technology challenges. Through consortia under 36 

Cooperative Research and Development Agreements (CRADAs), including technology partners—from 37 

Fortune 50 market leaders to smaller companies specializing in information technology security—the 38 

NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 39 

solutions using commercially available technology. The NCCoE documents these example solutions in 40 

the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 41 

and details the steps needed for another entity to re-create the example solution. The NCCoE was 42 

established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 43 

Maryland. 44 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 45 

https://www.nist.gov. 46 

NIST CYBERSECURITY PRACTICE GUIDES 47 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 48 

challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 49 

adoption of standards-based approaches to cybersecurity. They show members of the information 50 

security community how to implement example solutions that help them align with relevant standards 51 

and best practices, and provide users with the materials lists, configuration files, and other information 52 

they need to implement a similar approach. 53 

The documents in this series describe example implementations of cybersecurity practices that 54 

businesses and other organizations may voluntarily adopt. These documents do not describe regulations 55 

or mandatory practices, nor do they carry statutory authority. 56 

KEYWORDS 57 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 58 

(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 59 

ACKNOWLEDGMENTS 60 

We are grateful to the following individuals for their generous contributions of expertise and time. 61 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

Name Organization 

Eliot Lear Cisco 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT 

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors 

Mihai Chelalau NXP Semiconductors 

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor NXP Semiconductors 

Karen Scarfone Scarfone Cybersecurity 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 62 

response to a notice in the Federal Register. Respondents with relevant capabilities or product 63 

components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 64 

NIST, allowing them to participate in a consortium to build this example solution. We worked with: 65 

Technology Collaborators 66 

Aruba, a Hewlett Packard 67 

Enterprise company 68 

CableLabs 69 

Cisco 70 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

DOCUMENT CONVENTIONS 71 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 72 

publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 73 

among several possibilities, one is recommended as particularly suitable without mentioning or 74 

excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 75 

the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 76 

“may” and “need not” indicate a course of action permissible within the limits of the publication. The 77 

terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal.  78 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

CALL FOR PATENT CLAIMS 79 

This public review includes a call for information on essential patent claims (claims whose use would be 80 

required for compliance with the guidance or requirements in this Information Technology Laboratory 81 

(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 82 

or by reference to another publication. This call also includes disclosure, where known, of the existence 83 

of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 84 

unexpired U.S. or foreign patents. 85 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 86 

written or electronic form, either: 87 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 88 

currently intend holding any essential patent claim(s); or 89 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 90 

to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 91 

publication either: 92 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or 93 

2. without compensation and under reasonable terms and conditions that are demonstrably free of 94 

any unfair discrimination. 95 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 96 

behalf) will include in any documents transferring ownership of patents subject to the assurance, 97 

provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 98 

and that the transferee will similarly include appropriate provisions in the event of future transfers with 99 

the goal of binding each successor-in-interest. 100 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 101 

whether such provisions are included in the relevant transfer documents. 102 

Such statements should be addressed to: iot-onboarding@nist.gov. 103 

   

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 104 

1 Summary ............................................................................................. 1 105 

1.1 Challenge ....................................................................................................................... 1 106 

1.2 Solution.......................................................................................................................... 2 107 

1.3 Benefits .......................................................................................................................... 3 108 

2 How to Use This Guide ......................................................................... 3 109 

2.1 Typographic Conventions .............................................................................................. 5 110 

3 Approach ............................................................................................. 5 111 

3.1 Audience ........................................................................................................................ 7 112 

3.2 Scope ............................................................................................................................. 8 113 

3.3 Assumptions and Definitions......................................................................................... 8 114 

3.3.1 Credential Types ........................................................................................................... 8 115 

3.3.2 Integrating Security Enhancements ........................................................................... 10 116 

3.3.3 Device Limitations ...................................................................................................... 12 117 

3.3.4 Specifications Are Still Improving ............................................................................... 12 118 

3.4 Collaborators and Their Contributions ........................................................................ 12 119 

3.4.1 Aruba, a Hewlett Packard Enterprise Company ......................................................... 14 120 

3.4.2 CableLabs .................................................................................................................... 16 121 

3.4.3 Cisco ............................................................................................................................ 17 122 

3.4.4 Foundries.io ................................................................................................................ 17 123 

3.4.5 Kudelski IoT ................................................................................................................. 18 124 

3.4.6 NquiringMinds ............................................................................................................ 18 125 

3.4.7 NXP Semiconductors .................................................................................................. 20 126 

3.4.8 Open Connectivity Foundation (OCF) ......................................................................... 21 127 

3.4.9 Sandelman Software Works ....................................................................................... 21 128 

3.4.10 SEALSQ, a subsidiary of WISeKey ............................................................................... 22 129 

3.4.11 VaultIC408 .................................................................................................................. 23 130 

3.4.12 Silicon Labs.................................................................................................................. 23 131 

4 Reference Architecture ...................................................................... 25 132 

4.1 Device Manufacture and Factory Provisioning Process .............................................. 26 133 

4.2 Device Ownership and Bootstrapping Information Transfer Process ........................ 28 134 

4.3 Trusted Network-Layer Onboarding Process .............................................................. 31 135 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

4.4 Trusted Application-Layer Onboarding Process .......................................................... 32 136 

4.5 Continuous Verification ............................................................................................... 35 137 

5 Laboratory Physical Architecture ....................................................... 37 138 

5.1 Shared Environment .................................................................................................... 40 139 

5.1.1 Domain Controller ...................................................................................................... 40 140 

5.1.2 Jumpbox...................................................................................................................... 40 141 

5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture ................................. 41 142 

5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture ....................... 42 143 

5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture .......................... 43 144 

5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture ........................... 44 145 

5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture .............................. 46 146 

5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture ................................................ 47 147 

5.6.1 BRSKI Factory Provisioning Build Physical Architecture ............................................. 48 148 

6 General Findings ................................................................................ 49 149 

6.1 Wi-Fi Easy Connect ...................................................................................................... 49 150 

6.1.1 Mutual Authentication ............................................................................................... 50 151 

6.1.2 Mutual Authorization ................................................................................................. 50 152 

6.1.3 Secure Storage ............................................................................................................ 50 153 

6.2 BRSKI ............................................................................................................................ 50 154 

6.2.1 Reliance on the Device Manufacturer ........................................................................ 51 155 

6.2.2 Mutual Authentication ............................................................................................... 51 156 

6.2.3 Mutual Authorization ................................................................................................. 51 157 

6.2.4 Secure Storage ............................................................................................................ 51 158 

6.3 Thread.......................................................................................................................... 51 159 

6.4 Application-Layer Onboarding .................................................................................... 52 160 

6.4.1 Independent Application-Layer Onboarding .............................................................. 52 161 

6.4.2 Streamline Application-Layer Onboarding ................................................................. 52 162 

7 Additional Build Considerations ......................................................... 53 163 

7.1 Network Authentication .............................................................................................. 53 164 

7.2 Device Communications Intent ................................................................................... 53 165 

7.3 Network Segmentation ............................................................................................... 54 166 

7.4 Integration with a Lifecycle Management Service ...................................................... 54 167 

7.5 Network Credential Renewal ...................................................................................... 54 168 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ix 

7.6 Integration with Supply Chain Management Tools..................................................... 54 169 

7.7 Attestation ................................................................................................................... 54 170 

7.8 Mutual Attestation ...................................................................................................... 54 171 

7.9 Behavioral Analysis ...................................................................................................... 55 172 

7.10 Device Trustworthiness Scale ...................................................................................... 55 173 

7.11 Resource Constrained Systems ................................................................................... 55 174 

Appendix A List of Acronyms ................................................................. 56 175 

Appendix B Glossary .............................................................................. 59 176 

Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE) ............................. 60 177 

C.1 Technologies ................................................................................................................ 60 178 

C.2 Build 1 Architecture ..................................................................................................... 62 179 

C.2.1 Build 1 Logical Architecture ........................................................................................ 62 180 

C.2.2 Build 1 Physical Architecture ...................................................................................... 64 181 

Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) ...................... 65 182 

D.1 Technologies ................................................................................................................ 65 183 

D.2 Build 2 Architecture ..................................................................................................... 67 184 

D.2.1 Build 2 Logical Architecture ........................................................................................ 67 185 

D.2.2 Build 2 Physical Architecture ...................................................................................... 70 186 

Appendix E Build 3 (BRSKI, Sandelman Software Works) ....................... 71 187 

E.1 Technologies ................................................................................................................ 71 188 

E.2 Build 3 Architecture ..................................................................................................... 73 189 

E.2.1 Build 3 Logical Architecture ........................................................................................ 73 190 

E.2.2 Build 3 Physical Architecture ...................................................................................... 75 191 

Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski KeySTREAM) 76 192 

F.1 Technologies ................................................................................................................ 76 193 

F.2 Build 4 Architecture ..................................................................................................... 78 194 

F.2.1 Build 4 Logical Architecture ........................................................................................ 78 195 

F.2.2 Build 4 Physical Architecture ...................................................................................... 83 196 

Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds) .......................... 84 197 

G.1 Technologies ................................................................................................................ 84 198 

G.2 Build 5 Architecture ..................................................................................................... 86 199 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management x 

G.2.1 Build 5 Logical Architecture ........................................................................................ 86 200 

G.2.2 Build 5 Physical Architecture ...................................................................................... 89 201 

Appendix H Factory Provisioning Process ............................................... 90 202 

H.1 Factory Provisioning Process ....................................................................................... 90 203 

H.1.1 Device Birth Credential Provisioning Methods .......................................................... 90 204 

H.2 Factory Provisioning Builds – General Provisioning Process ....................................... 92 205 

H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ)................................ 93 206 

H.3.1 BRSKI Factory Provisioning Build Technologies .......................................................... 93 207 

H.3.2 BRSKI Factory Provisioning Build Logical Architectures ............................................. 95 208 

H.3.3 BRSKI Factory Provisioning Build Physical Architectures ........................................... 98 209 

H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and Aruba/HPE).................. 98 210 

H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies .................................... 98 211 

H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture ......................... 99 212 

H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture ..................... 100 213 

Appendix I References ........................................................................ 101 214 

 

List of Figures 215 

Figure 3-1 Aruba/HPE DPP Onboarding Components......................................................................... 16 216 

Figure 3-2 Components for Onboarding an IoT Device that Communicates Using Thread to AWS IoT .. 24 217 

Figure 4-1 Trusted IoT Device Network-Layer Onboarding and Lifecycle Management Logical  218 

Reference Architecture .................................................................................................................... 25 219 

Figure 4-2 IoT Device Manufacture and Factory Provisioning Process................................................. 27 220 

Figure 4-3 Device Ownership and Bootstrapping Information Transfer Process .................................. 29 221 

Figure 4-4 Trusted Network-Layer Onboarding Process ..................................................................... 31 222 

Figure 4-5 Trusted Streamlined Application-Layer Onboarding Process .............................................. 33 223 

Figure 4-6 Continuous Verification .................................................................................................... 35 224 

Figure 5-1 NCCoE IoT Onboarding Laboratory Physical Architecture ................................................... 38 225 

Figure 5-2 Physical Architecture of Build 1 ........................................................................................ 42 226 

Figure 5-3 Physical Architecture of Wi-Fi Easy Connect Factory Provisioning Build.............................. 43 227 

Figure 5-4 Physical Architecture of Build 2 ........................................................................................ 44 228 

Figure 5-5 Physical Architecture of Build 3 ........................................................................................ 45 229 

Figure 5-6 Physical Architecture of Build 4 ........................................................................................ 47 230 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management xi 

Figure 5-7 Physical Architecture of Build 5 ........................................................................................ 48 231 

Figure 5-8 Physical Architecture of BRSKI Factory Provisioning Build.................................................. 49 232 

Figure C-1 Logical Architecture of Build 1 .......................................................................................... 63 233 

Figure D-1 Logical Architecture of Build 2 .......................................................................................... 68 234 

Figure E-1 Logical Architecture of Build 3 .......................................................................................... 73 235 

Figure F-1 Logical Architecture of Build 4: Device Preparation ........................................................... 80 236 

Figure F-2 Logical Architecture of Build 4: Connection to the OpenThread Network ........................... 81 237 

Figure F-3 Logical Architecture of Build 4: Application-Layer Onboarding using the Kudelski 238 

keySTREAM Service .......................................................................................................................... 82 239 

Figure G-1 Logical Architecture of Build 5 .......................................................................................... 87 240 

Figure H-1 Logical Architecture of the First Version of the BRSKI Factory Provisioning Build ............... 97 241 

Figure H-2 Logical Architecture of the Second Version of the BRSKI Factory Provisioning Build ........... 98 242 

Figure H-3 Logical Architecture of the Wi-Fi Easy Connect Factory Provisioning Build ....................... 100 243 

List of Tables 244 

Table 3-1 Capabilities and Components Provided by Each Technology Partner/Collaborator .............. 13 245 

Table 5-1 Build 1 Products and Technologies ..................................................................................... 40 246 

Table C-1 Build 1 Products and Technologies..................................................................................... 60 247 

Table E-1 Build 3 Products and Technologies ..................................................................................... 71 248 

Table F-1 Build 4 Products and Technologies ..................................................................................... 76 249 

Table G-1 Build 5 Products and Technologies .................................................................................... 84 250 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Summary 251 

IoT devices are typically connected to a network. As with any other device needing to communicate on a 252 

network securely, an IoT device needs credentials that are specific to that network to help ensure that 253 

only authorized devices can connect to and use the network. A typical commercially available, mass-254 

produced IoT device cannot be pre-provisioned with local network credentials by the manufacturer 255 

during the manufacturing process. Instead, the local network credentials will be provisioned to the 256 

device at the time of its deployment. This practice guide is focused on trusted methods of providing IoT 257 

devices with the network-layer credentials and policy they need to join a network upon deployment, a 258 

process known as network-layer onboarding. 259 

Establishing trust between a network and an IoT device (as defined in NIST Internal Report 8425) prior to 260 

providing the device with the credentials it needs to join the network is crucial for mitigating the risk of 261 

potential attacks. There are two possibilities for attack. One is where a device is convinced to join an 262 

unauthorized network, which would take control of the device. The other is where a network is 263 

infiltrated by a malicious device. Trust is achieved by attesting and verifying the identity and posture of 264 

the device and the network before providing the device with its network credentials—a process known 265 

as network-layer onboarding. In addition, scalable, automated mechanisms are needed to safely manage 266 

IoT devices throughout their lifecycles, such as safeguards that verify the security posture of a device 267 

before the device is permitted to execute certain operations. 268 

In this practice guide, the National Cybersecurity Center of Excellence (NCCoE) applies standards, best 269 

practices, and commercially available technology to demonstrate various mechanisms for trusted 270 

network-layer onboarding of IoT devices. This guide shows how to provide network credentials to IoT 271 

devices in a trusted manner and maintain a secure device posture throughout the device lifecycle. 272 

1.1 Challenge 273 

With 40 billion IoT devices expected to be connected worldwide by 2025 [1], it is unrealistic to onboard 274 

or manage these devices by visiting each device and performing a manual action. While it is possible for 275 

devices to be securely provided with their local network credentials at the time of manufacture, this 276 

requires the manufacturer to customize network-layer onboarding on a build-to-order basis, which 277 

prevents the manufacturer from taking full advantage of the economies of scale that could result from 278 

building identical devices for all its customers. 279 

The industry lacks scalable, automatic mechanisms to safely manage IoT devices throughout their 280 

lifecycles and lacks a trusted mechanism for providing IoT devices with their network credentials and 281 

policy at the time of deployment on the network. It is easy for a network to falsely identify itself, yet 282 

many IoT devices onboard to networks without verifying the network’s identity and ensuring that it is 283 

their intended target network. Also, many IoT devices lack user interfaces, making it cumbersome to 284 

manually input network credentials. Wi-Fi is sometimes used to provide credentials over an open (i.e., 285 

unencrypted) network, but this onboarding method risks credential disclosure. Most home networks use 286 

a single password shared among all devices, so access is controlled only by the device’s possession of 287 

the password and does not consider a unique device identity or whether the device belongs on the 288 

network. This method also increases the risk of exposing credentials to unauthorized parties. Providing 289 

https://doi.org/10.6028/NIST.IR.8425


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

unique credentials to each device is more secure, but doing so manually would be resource-intensive 290 

and error-prone, would risk credential disclosure, and cannot be performed at scale. 291 

Once a device is connected to the network, if it becomes compromised, it can pose a security risk to 292 

both the network and other connected devices. Not keeping such a device current with the most recent 293 

software and firmware updates may make it more susceptible to compromise. The device could also be 294 

attacked through the receipt of malicious payloads. Once compromised, it may be used to attack other 295 

devices on the network. 296 

1.2 Solution 297 

We need scalable, automated, trusted mechanisms to safely manage IoT devices throughout their 298 

lifecycles to ensure that they remain secure, starting with secure ways to provision devices with their 299 

network credentials, i.e., beginning with network-layer onboarding. Onboarding is a particularly 300 

vulnerable point in the device lifecycle because if it is not performed in a secure manner, then both the 301 

device and the network are at risk. Networks are at risk of having unauthorized devices connect to them, 302 

and devices are at risk of being taken over by networks that are not authorized to onboard or control 303 

them. 304 

The NCCoE has adopted the trusted network-layer onboarding approach to promote automated, trusted 305 

ways to provide IoT devices with unique network credentials and manage devices throughout their 306 

lifecycles to ensure that they remain secure. The NCCoE is collaborating with CRADA consortium 307 

technology providers in a phased approach to develop example implementations of trusted network-308 

layer onboarding solutions. We define a trusted network-layer onboarding solution to be a mechanism 309 

for provisioning network credentials to a device that: 310 

▪ provides each device with unique network credentials, 311 

▪ enables the device and the network to mutually authenticate, 312 

▪ sends devices their network credentials over an encrypted channel, 313 

▪ does not provide any person with access to the network credentials, and 314 

▪ can be performed repeatedly throughout the device lifecycle to enable: 315 

• the device’s network credentials to be securely managed and replaced as needed, and 316 

• the device to be securely onboarded to other networks after being repurposed or resold. 317 

The use cases designed to be demonstrated by this project’s implementations include: 318 

▪ trusted network-layer onboarding of IoT devices 319 

▪ repeated trusted network-layer onboarding of devices to the same or a different network 320 

▪ automatic establishment of an encrypted connection between an IoT device and a trusted 321 
application service (i.e., trusted application-layer onboarding) after the IoT device has 322 
performed trusted network-layer onboarding and used its credentials to connect to the network 323 

▪ policy-based ongoing device authorization 324 

▪ software-based methods to provision device birth credentials in the factory  325 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

▪ mechanisms for IoT device manufacturers to provide IoT device purchasers with information 326 
needed to onboard the IoT devices to their networks (i.e., device bootstrapping information) 327 

1.3 Benefits 328 

This practice guide can benefit both IoT device users and IoT device manufacturers. The guide can help 329 

IoT device users understand how to onboard IoT devices to their networks in a trusted manner to: 330 

▪ Ensure that their network is not put at risk as IoT devices are added to it 331 

▪ Safeguard their IoT devices from being taken over by unauthorized networks 332 

▪ Provide IoT devices with unique credentials for network access 333 

▪ Provide, renew, and replace device network credentials in a secure manner 334 

▪ Ensure that IoT devices can automatically and securely perform application-layer onboarding 335 
after performing trusted network-layer onboarding and connecting to a network 336 

▪ Support ongoing protection of IoT devices throughout their lifecycles 337 

This guide can help IoT device manufacturers, as well as manufacturers and vendors of semiconductors, 338 

secure storage components, and network onboarding equipment, understand the desired security 339 

properties for supporting trusted network-layer onboarding and demonstrate mechanisms for: 340 

▪ Placing unique credentials into secure storage on IoT devices at time of manufacture (i.e., device 341 
birth credentials) 342 

▪ Installing onboarding software onto IoT devices 343 

▪ Providing IoT device purchasers with information needed to onboard the IoT devices to their 344 
networks (i.e., device bootstrapping information) 345 

▪ Integrating support for network-layer onboarding with additional security capabilities to provide 346 
ongoing protection throughout the device lifecycle 347 

2 How to Use This Guide 348 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 349 

implementing trusted IoT device network-layer onboarding and lifecycle management and describes 350 

various example implementations of this reference design. Each of these implementations, which are 351 

known as builds, is standards-based and is designed to help provide assurance that networks are not put 352 

at risk as new IoT devices are added to them and help safeguard IoT devices from connecting to 353 

unauthorized networks. The reference design described in this practice guide is modular and can be 354 

deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 355 

onboarding and lifecycle management into their legacy environments according to goals that they have 356 

prioritized based on risk, cost, and resources. 357 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 358 

possible rather than delaying release until all volumes are completed. 359 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

This guide contains five volumes: 360 

▪ NIST Special Publication (SP) 1800-36A: Executive Summary – why we wrote this guide, the 361 
challenge we address, why it could be important to your organization, and our approach to 362 
solving this challenge 363 

▪ NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 364 
(you are here) 365 

▪ NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 366 
including all the security-relevant details that would allow you to replicate all or parts of this 367 
project 368 

▪ NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 369 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 370 
and the results of demonstrating these use cases with each of the example implementations 371 

▪ NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 372 
device network-layer onboarding and lifecycle management security characteristics to 373 
cybersecurity standards and recommended practices 374 

Depending on your role in your organization, you might use this guide in different ways: 375 

Business decision makers, including chief security and technology officers, will be interested in the 376 

Executive Summary, NIST SP 1800-36A, which describes the following topics: 377 

▪ challenges that enterprises face in migrating to the use of trusted IoT device network-layer 378 
onboarding 379 

▪ example solutions built at the NCCoE 380 

▪ benefits of adopting the example solution 381 

Technology or security program managers who are concerned with how to identify, understand, assess, 382 

and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 383 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 384 

components of the general trusted IoT device network-layer onboarding and lifecycle management 385 

reference design to security characteristics listed in various cybersecurity standards and recommended 386 

practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 387 

Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 388 

(NIST SP 800-53). 389 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 390 

them understand the importance of using standards-based implementations for trusted IoT device 391 

network-layer onboarding and lifecycle management. 392 

IT professionals who want to implement similar solutions will find all volumes of the practice guide 393 

useful. You can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the 394 

builds created in our lab. The how-to portion of the guide provides specific product installation, 395 

configuration, and integration instructions for implementing the example solution. We do not re-create 396 

the product manufacturers’ documentation, which is generally widely available. Rather, we show how 397 

we incorporated the products together in our environment to create an example solution. Also, you can 398 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

use Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined 399 

to showcase trusted IoT device network-layer onboarding and lifecycle management security 400 

capabilities and the results of demonstrating these use cases with each of the example 401 

implementations. Finally, NIST SP 1800-36E will be helpful in explaining the security functionality that 402 

the components of each build provide. 403 

This guide assumes that IT professionals have experience implementing security products within the 404 

enterprise. While we have used a suite of commercial products to address this challenge, this guide does 405 

not endorse these particular products. Your organization can adopt this solution or one that adheres to 406 

these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 407 

parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 408 

organization’s security experts should identify the products that will best integrate with your existing 409 

tools and IT system infrastructure. We hope that you will seek products that are congruent with 410 

applicable standards and recommended practices. 411 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 412 

feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 413 

stories will improve subsequent versions of this guide. Please contribute your thoughts to  414 

iot-onboarding@nist.gov. 415 

2.1 Typographic Conventions 416 

The following table presents typographic conventions used in this volume. 417 

Typeface/Symbol Meaning Example 

Italics file names and path names; 
references to documents that are 
not hyperlinks; new terms; and 
placeholders 

For language use and style guidance, see 
the NCCoE Style Guide. 

Bold names of menus, options, command 
buttons, and fields 

Choose File > Edit. 

Monospace command-line input, onscreen 
computer output, sample code 
examples, and status codes 

mkdir 

Monospace Bold command-line user input contrasted 
with computer output 

service sshd start 

blue text link to other parts of the document, 
a web URL, or an email address 

All publications from NIST’s NCCoE are 
available at https://www.nccoe.nist.gov. 

3 Approach 418 

This project builds on the document-based research presented in the NIST Draft Cybersecurity White 419 

Paper, Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management [2]. 420 

That paper describes key security and other characteristics of a trusted network-layer onboarding 421 

solution as well as the integration of onboarding with related technologies such as device attestation, 422 

device communications intent [3][4], and application-layer onboarding. The security and other 423 

mailto:iot-onboarding@nist.gov
https://www.nccoe.nist.gov/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

attributes of the onboarding process that are cataloged and defined in that paper can provide assurance 424 

that the network is not put at risk as new IoT devices are added to it and also that IoT devices are 425 

safeguarded from being taken over by unauthorized networks. 426 

To kick off this project, the NCCoE published a Federal Register Notice [5] inviting technology providers 427 

to participate in demonstrating approaches to deploying trusted IoT device network-layer onboarding 428 

and lifecycle management in home and enterprise networks, with the objective of showing how trusted 429 

IoT device network-layer onboarding can practically and effectively enhance the overall security of IoT 430 

devices and, by extension, the security of the networks to which they connect. The Federal Register 431 

Notice invited technology providers to provide products and/or expertise to compose prototypes. 432 

Components sought included network onboarding components and IoT devices that support trusted 433 

network-layer onboarding protocols; authorization services; supply chain integration services; access 434 

points, routers, or switches; components that support device communications intent management; 435 

attestation services; controllers or application services; IoT device lifecycle management services; and 436 

asset management services. Cooperative Research and Development Agreements (CRADAs) were 437 

established with qualified respondents, and teams of collaborators were assembled to build a variety of 438 

implementations. 439 

NIST is following an agile methodology of building implementations iteratively and incrementally, 440 

starting with network-layer onboarding and gradually integrating additional capabilities that improve 441 

device and network security throughout a managed device lifecycle. The project team began by 442 

designing a general, protocol-agnostic reference architecture for trusted network-layer onboarding (see 443 

Section 4) and establishing a laboratory infrastructure at the NCCoE to host implementations (see 444 

Section 5). 445 

Five build teams were established to implement trusted network-layer onboarding prototypes, and a 446 

sixth build team was established to demonstrate multiple builds for factory provisioning activities 447 

performed by an IoT device manufacturer to enable devices to support trusted network-layer 448 

onboarding. Each of the build teams fleshed out the initial architectures of their example 449 

implementations. They then used technologies, capabilities, and components from project collaborators 450 

to begin creating the builds: 451 

▪ Build 1 (Wi-Fi Easy Connect, Aruba/HPE) uses components from Aruba, a Hewlett Packard 452 
Enterprise company, to support trusted network-layer onboarding using the Wi-Fi Alliance’s Wi-453 
Fi Easy Connect Specification, Version 2.0 [6] and independent (see Section 3.3.2) application-454 
layer onboarding to the Aruba User Experience Insight (UXI) cloud. 455 

▪ Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) uses components from CableLabs to support 456 
trusted network-layer onboarding using the Wi-Fi Easy Connect protocol that allows 457 
provisioning of per-device credentials and policy management for each device. Build 2 also uses 458 
components from the Open Connectivity Foundation (OCF) to support streamlined (see Section 459 
3.3.2) trusted application-layer onboarding to the OCF security domain. 460 

▪ Build 3 (BRSKI, Sandelman Software Works) uses components from Sandelman Software Works 461 
to support trusted network-layer onboarding using the Bootstrapping Remote Secure Key 462 
Infrastructure (BRSKI) [7] protocol and an independent, third-party Manufacturer Authorized 463 
Signing Authority (MASA). 464 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

▪ Build 4 (Thread [8], Silicon Labs, Kudelski IoT) uses components from Silicon Labs to support 465 
connection to an OpenThread [9] network using pre-shared credentials and components from 466 
Kudelski IoT to support trusted application-layer onboarding to the Amazon Web Services (AWS) 467 
IoT core. 468 

▪ Build 5 (BRSKI over Wi-Fi, NquiringMinds) uses components from NquiringMinds to support 469 
trusted network-layer onboarding using the BRSKI protocol over 802.11 [10]. Additional 470 
components from NquiringMinds support ongoing, policy-based, continuous assurance and 471 
authorization, as well as device communications intent enforcement. 472 

▪ The BRSKI Factory Provisioning Build uses components from NquiringMinds to implement the 473 
factory provisioning flows. The build is implemented on Raspberry Pi devices, where the IoT 474 
secure element is an integrated Infineon Optiga™ SLB 9670 TPM 2.0. The device certificate 475 
authority (CA) is externally hosted on NquiringMinds servers. This build demonstrates activities 476 
for provisioning IoT devices with their initial (i.e., birth—see Section 3.3) credentials for use with 477 
the BRSKI protocol and for making device bootstrapping information available to device owners. 478 

▪ The Wi-Fi Easy Connect Factory Provisioning Build uses Raspberry Pi devices and code from 479 
Aruba and secure storage elements, code, and a CA from SEALSQ, a subsidiary of WISeKey. This 480 
build demonstrates activities for provisioning IoT devices with their birth credentials for use with 481 
the Wi-Fi Easy Connect protocol and for making device bootstrapping information available to 482 
device owners. 483 

Each build team documented the architecture and design of its build (see Appendix C, Appendix D, 484 

Appendix E, Appendix F, Appendix G, and Appendix H). As each build progressed, its team also 485 

documented the steps taken to install and configure each component of the build (see NIST SP 1800-486 

36C). 487 

The project team then designed a set of use case scenarios designed to showcase the builds’ security 488 

capabilities. Each build team conducted a functional demonstration of its build by running the build 489 

through the defined scenarios and documenting the results (see NIST SP 1800-36D). 490 

The project team also conducted a risk assessment and a security characteristic analysis and 491 

documented the results, including mappings of the security capabilities of the reference solution to both 492 

the Framework for Improving Critical Infrastructure Cybersecurity (NIST Cybersecurity Framework) [11] 493 

and Security and Privacy Controls for Information Systems and Organizations (NIST SP 800-53 Rev. 5) 494 

(see NIST SP 1800-36E). 495 

Finally, the NCCoE worked with industry and standards-developing organization collaborators to distill 496 

their findings and consider potential enhancements to future support for trusted IoT device network-497 

layer onboarding (see Section 6 and Section 7). 498 

3.1 Audience 499 

The intended audience for this practice guide includes: 500 

▪ IoT device manufacturers, integrators, and vendors 501 

▪ Semiconductor manufacturers and vendors 502 

▪ Secure storage manufacturers 503 

https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

▪ Network equipment manufacturers 504 

▪ IoT device owners and users 505 

▪ Owners and administrators of networks (both home and enterprise) to which IoT devices 506 
connect 507 

▪ Service providers (internet service providers/cable operators and application platform 508 
providers) 509 

3.2 Scope 510 

This project focuses on the trusted network-layer onboarding of IoT devices in both home and 511 

enterprise environments. Enterprise, consumer, and industrial use cases for trusted IoT device network-512 

layer onboarding are all considered to be in scope at this time. The project encompasses trusted 513 

network-layer onboarding of IoT devices deployed across different Internet Protocol (IP) based 514 

environments using wired, Wi-Fi, and broadband networking technologies. The project addresses the 515 

onboarding of IP-based devices in the initial phase and will consider using technologies such as Zigbee or 516 

Bluetooth in future phases of this project. 517 

The project’s scope also includes security technologies that can be integrated with and enhanced by the 518 

trusted network-layer onboarding mechanism to protect the device and its network throughout the 519 

device’s lifecycle. Examples of these technologies include supply chain management, device attestation, 520 

trusted application-layer onboarding, device communications intent enforcement, device lifecycle 521 

management, asset management, the dynamic assignment of devices to various network segments, and 522 

ongoing device authorization. Aspects of these technologies that are relevant to their integration with 523 

network-layer onboarding are within scope. Demonstration of the general capabilities of these 524 

technologies independent of onboarding is not within the project’s scope. For example, demonstrating a 525 

policy that requires device attestation to be performed before the device will be permitted to be 526 

onboarded would be within scope. However, the details and general operation of the device attestation 527 

mechanism would be out of scope. 528 

3.3 Assumptions and Definitions 529 

This project is guided by a variety of assumptions, which are categorized by subsection below. 530 

3.3.1 Credential Types 531 

There are several different credentials that may be related to any given IoT device, which makes it 532 

important to be clear about which credential is being referred to. Two types of IoT device credentials are 533 

involved in the network-layer onboarding process: birth credentials and network credentials. Birth 534 

credentials are installed onto the device before it is released into the supply chain; trusted network-535 

layer onboarding solutions leverage birth credentials to authenticate devices and securely provision 536 

them with their network credentials. If supported by the device and the application service provider, 537 

application-layer credentials may be provisioned to the device after the device performs network-layer 538 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

onboarding and connects to the network, during the application-layer onboarding process. These 539 

different types of IoT device credentials are defined as follows: 540 

▪ Birth Credential: In order to participate in trusted network-layer onboarding, devices must be 541 
equipped with a birth credential, which is sometimes also referred to as a device birth identity 542 
or birth certificate. A birth credential is a unique, authoritative credential that is generated or 543 
installed into secure storage on the IoT device during the pre-market phase of the device’s 544 
lifecycle, i.e., before the device is released for sale. A manufacturer, integrator, or vendor 545 
typically generates or installs the birth credential onto an IoT device in the form of an Initial 546 
Device Identifier (IDevID) [12] and/or a public/private key pair. 547 

Birth credentials: 548 

• are permanent, and their value is independent of context; 549 

• enable the trusted network-layer onboarding process while keeping the device 550 
manufacturing process efficient; and 551 

• include a unique identity and a secret and can range from simple raw public and private 552 
keys to X.509 certificates that are signed by a trusted authority. 553 

▪ Network Credential: A network credential is the credential that is provisioned to an IoT device 554 
during network-layer onboarding. The network credential enables the device to connect to the 555 
local network securely. A device’s network credential may be changed repeatedly, as needed, by 556 
subsequent invocation of the trusted network-layer onboarding process. 557 

Additional types of credentials that may also be associated with an IoT device are: 558 

▪ Application-Layer Credential: An application-layer credential is a credential that is provisioned 559 
to an IoT device during application-layer onboarding. After an IoT device has performed 560 
network-layer onboarding and connected to a network, it may be provisioned with one or more 561 
application-layer credentials during the application-layer onboarding process. Each application-562 
layer credential is specific to a given application and is typically unique to the device, and it may 563 
be replaced repeatedly over the course of the device’s lifetime. 564 

▪ User Credential: An IoT device that permits authorized users to access it and restricts access 565 
only to authorized users will have one or more user credentials associated with it. These 566 
credentials are what the users present to the IoT device in order to gain access to it. The user 567 
credential is not relevant during network-layer onboarding and is generally not of interest within 568 
the scope of this project. We include it in this list only for completeness. Many IoT devices may 569 
not even have user credentials associated with them. 570 

In order to perform network- and application-layer onboarding, the device being onboarded must 571 

already have been provisioned with birth credentials. A pre-provisioned, unique, authoritative birth 572 

credential is essential for enabling the IoT device to be identified and authenticated as part of the 573 

trusted network-layer onboarding process, no matter what network the device is being onboarded to or 574 

how many times it is onboarded. The value of the birth credential is independent of context, whereas 575 

the network credential that is provisioned during network-layer onboarding is significant only with 576 

respect to the network to which the IoT device will connect. Each application-layer credential that is 577 

provisioned during application-layer onboarding is specific to a given application, and each user 578 

credential is specific to a given user. A given IoT device only ever has one birth credential over the 579 

course of its lifetime, and the value of this birth credential remains unchanged. However, that IoT device 580 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

may have any number of network, application-layer, and user credentials at any given point in time, and 581 

these credentials may be replaced repeatedly over the course of the device’s lifetime. 582 

3.3.2 Integrating Security Enhancements 583 

Integrating trusted network-layer IoT device onboarding with additional security mechanisms and 584 

technologies can help increase trust in both the IoT device and the network to which it connects. 585 

Examples of such security mechanism integrations demonstrated in this project include: 586 

▪ Trusted Application-Layer Onboarding: When supported, application-layer onboarding can be 587 
performed automatically after a device has connected to its local network. Trusted application-588 
layer onboarding enables a device to be securely provisioned with the application-layer 589 
credentials it needs to establish a secure association with a trusted application service. In many 590 
cases, a network’s IoT devices will be so numerous that manually onboarding devices at the 591 
application layer would not be practical; in addition, dependence on manual application-layer 592 
onboarding would leave the devices vulnerable to accidental or malicious misconfiguration. So, 593 
application-layer onboarding, like network-layer onboarding, is fundamental to ensuring the 594 
overall security posture of each IoT device. 595 

As part of the application-layer onboarding process, devices and the application services with 596 
which they interact perform mutual authentication and establish an encrypted channel over 597 
which the application service can download application-layer credentials and software to the 598 
device and the device can provide information to the application service, as appropriate. 599 
Application-layer onboarding is useful for ensuring that IoT devices are executing the most up-600 
to-date versions of their intended applications. It can also be used to establish a secure 601 
association between a device and a trusted lifecycle management service, which will ensure that 602 
the IoT device continues to be patched and updated with the latest firmware and software, 603 
thereby enabling the device to remain trusted throughout its lifecycle. 604 

Network-layer onboarding cannot be performed until after network-layer bootstrapping 605 
information has been introduced to the device and the network. This network-layer 606 
bootstrapping information enables the device and the network to mutually authenticate and 607 
establish a secure channel. Analogously, application-layer onboarding cannot be performed until 608 
after application-layer bootstrapping information has been introduced to the device and the 609 
application servers with which they will onboard. This application-layer bootstrapping 610 
information enables the device and the application server to mutually authenticate and 611 
establish a secure channel. 612 

• Streamlined Application-Layer Onboarding—One potential mechanism for introducing this 613 
application-layer bootstrapping information to the device and the application server is to 614 
use the network-layer onboarding process. The secure channel that is established during 615 
network-layer onboarding can serve as the mechanism for exchanging application-layer 616 
bootstrapping information between the device and the application server. By safeguarding 617 
the integrity and confidentiality of the application-layer bootstrapping information as it is 618 
conveyed between the device and the application server, the trusted network-layer 619 
onboarding mechanism helps to ensure that information that the device and the 620 
application server use to authenticate each other is truly secret and known only to them, 621 
thereby establishing a firm foundation for their secure association. In this way, trusted 622 
network-layer onboarding can provide a secure foundation for trusted application-layer 623 
onboarding. We call an application-layer onboarding process that uses network-layer 624 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

onboarding to exchange application-layer bootstrapping information streamlined 625 
application-layer onboarding. 626 

• Independent Application-Layer Onboarding—An alternative mechanism for introducing 627 
application-layer bootstrapping information to the device is to provide this information to 628 
the device during the manufacturing process. During manufacturing, the IoT device can be 629 
provisioned with software and associated bootstrapping information that enables the 630 
device to mutually authenticate with an application-layer service after it has connected to 631 
the network. This mechanism for performing application-layer onboarding does not rely on 632 
the network-layer onboarding process to provide application-layer bootstrapping 633 
information to the device. All that is required is that the device have connectivity to the 634 
application-layer onboarding service after it has connected to the network. We call an 635 
application-layer onboarding process that does not rely on network-layer onboarding to 636 
exchange application-layer bootstrapping information independent application-layer 637 
onboarding. 638 

▪ Segmentation: Upon connection to the network, a device may be assigned to a particular local 639 
network segment to prevent it from communicating with other network components, as 640 
determined by enterprise policy. The device can be protected from other local network 641 
components that meet or do not meet certain policy criteria. Similarly, other local network 642 
components may be protected from the device if it meets or fails to meet certain policy criteria. 643 
A trusted network-layer onboarding mechanism may be used to convey information about the 644 
device that can be used to determine to which network segment it should be assigned upon 645 
connection. By conveying this information in a manner that protects its integrity and 646 
confidentiality, the trusted network-layer onboarding mechanism helps to increase assurance 647 
that the device will be assigned to the appropriate network segment. Post-onboarding, if a 648 
device becomes untrustworthy, for example because it is found to have software that has a 649 
known vulnerability or misconfiguration, or because it is behaving in a suspicious manner, the 650 
device may be dynamically assigned to a different network segment as a means of quarantining 651 
it, or its network-layer credential can be revoked or deleted. 652 

▪ Ongoing Device Authorization: Once a device has been network-layer onboarded in a trusted 653 
manner and has possibly performed application-layer onboarding as well, it is important that as 654 
the device continues to operate on the network, it maintains a secure posture throughout its 655 
lifecycle. Ensuring the ongoing security of the device is important for keeping the device from 656 
being corrupted and for protecting the network from a potentially harmful device. Even though 657 
a device is authenticated and authorized prior to being onboarded, it is recommended that the 658 
device be subject to ongoing policy-based authentication and authorization as it continues to 659 
operate on the network. This may include monitoring device behavior and constraining 660 
communications to and from the device as needed in accordance with policy. In this manner, an 661 
ongoing device authorization service can ensure that the device and its operations continue to 662 
be authorized throughout the device’s tenure on the network. 663 

▪ Device Communications Intent Enforcement: Network-layer onboarding protocols can be used 664 
to securely transmit device communications intent information from the device to the network 665 
(i.e., to transmit this information in encrypted form with integrity protections). After the device 666 
has securely connected to the network, the network can use this device communications intent 667 
information to ensure that the device sends and receives traffic only from authorized locations. 668 
Secure conveyance of device communications intent information, combined with enforcement 669 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

of it, ensures that IoT devices are constrained to sending and receiving only those 670 
communications that are explicitly required for each device to fulfill its purpose. 671 

▪ Additional Security Mechanisms: Although not demonstrated in the implementations that have 672 
been built in this project so far, numerous additional security mechanisms can potentially be 673 
integrated with network-layer onboarding, beginning at device boot-up and extending through 674 
all phases of the device lifecycle. Examples of such mechanisms include integration with supply 675 
chain management tools, device attestation, automated lifecycle management, mutual 676 
attestation, and centralized asset management. Overall, application of these and other security 677 
protections can create a dependency chain of protections. This chain is based on a hardware 678 
root of trust as its foundation and extends up to support the security of the trusted network-679 
layer onboarding process. The trusted network-layer onboarding process in turn may enable 680 
additional capabilities and provide a foundation that makes them more secure, thereby helping 681 
to ensure the ongoing security of the device and, by extension, the network. 682 

3.3.3 Device Limitations 683 

The security capabilities that any onboarding solution will be able to support will depend in part on the 684 

hardware, processing power, cryptographic modules, secure storage capacity, battery life, human 685 

interface (if any), and other capabilities of the IoT devices themselves, such as whether they support 686 

verification of firmware at boot time, attestation, application-layer onboarding, and device 687 

communications intent enforcement; what onboarding and other protocols they support; and whether 688 

they are supported by supply-chain tools. The more capable the device, the more security capabilities it 689 

should be able to support and the more robustly it should be able to support them. Depending on both 690 

device and onboarding solution capabilities, different levels of assurance may be provided. 691 

3.3.4 Specifications Are Still Improving 692 

Ideally, trusted network-layer onboarding solutions selected for widespread implementation and use 693 

will be openly available and standards-based. Some potential solution specifications are still being 694 

improved. In the meantime, their instability may be a limiting factor in deploying operational 695 

implementations of the proposed capabilities. For example, the details of running BRSKI over Wi-Fi are 696 

not fully specified at this time. 697 

3.4 Collaborators and Their Contributions 698 

Organizations participating in this project submitted their capabilities in response to an open call in the 699 

Federal Register for all sources of relevant security capabilities from academia and industry (vendors 700 

and integrators). Listed below are the respondents with relevant capabilities or product components 701 

(identified as “Technology Partners/Collaborators” herein) who signed a CRADA to collaborate with NIST 702 

in a consortium to build example trusted IoT device network-layer onboarding solution. 703 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Technology Collaborators 704 

Aruba, a Hewlett Packard 705 

Enterprise company 706 

CableLabs 707 

Cisco 708 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Table 3-1 summarizes the capabilities and components provided, or planned to be provided, by each 709 

partner/collaborator. 710 

Table 3-1 Capabilities and Components Provided by Each Technology Partner/Collaborator  711 

Collaborator Security Capability or Component Provided 

Aruba Infrastructure for trusted network-layer onboarding using the Wi-Fi Easy 
Connect protocol and application-layer onboarding to the UXI cloud. IoT devices 
for use with both Wi-Fi Easy Connect network-layer onboarding and application-
layer onboarding. The UXI Dashboard provides for an “always-on” remote 
technician with near real-time data insights into network and application 
performance. 

CableLabs Infrastructure for trusted network-layer onboarding using the Wi-Fi Easy 
Connect protocol. IoT devices for use with both Wi-Fi Easy Connect network-
layer onboarding and application-layer onboarding to the OCF security domain. 

Cisco Networking components to support various builds. 

Foundries.io Factory software for providing birth credentials into secure storage on IoT 
devices and for transferring device bootstrapping information from device 
manufacturer to device purchaser. 

Kudelski IoT Infrastructure for trusted application-layer onboarding of a device to the AWS 
IoT core. The service comes with a cloud platform and a software agent that 
enables secure provisioning of AWS credentials into the secure storage of IoT 
devices. 

NquiringMinds Infrastructure for trusted network-layer onboarding using BRSKI over 802.11. 
Service that performs ongoing monitoring of connected devices to ensure their 
continued authorization (i.e., continuous authorization service), as well as 
device communications intent enforcement. 

NXP 
Semiconductors 

IoT devices with secure storage for use with both Wi-Fi Easy Connect and BRSKI 
network-layer onboarding. Service for provisioning credentials into secure 
storage of IoT devices. 

Open Connectivity 
Foundation (OCF) 

Infrastructure for trusted application-layer onboarding to the OCF security 
domain using IoTivity, an open-source software framework that implements the 
OCF specification. 

Sandelman 
Software Works 

Infrastructure for trusted network-layer onboarding using BRSKI. IoT devices for 
use with BRSKI network-layer onboarding. 

SEALSQ, a 
subsidiary of 
WISeKey 

Secure storage elements, code, and software that simulates factory provisioning 
of birth credentials to those secure elements on IoT devices in support of both 
Wi-Fi Easy Connect and BRSKI network-layer onboarding; certificate authority 
for signing device certificates. 

Silicon Labs Infrastructure for connection to a Thread network that has access to other 
networks for application-layer onboarding. IoT device with secure storage for 
use with Thread network connection and application-layer onboarding using 
Kudelski IoT. 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Each of these technology partners and collaborators has described the relevant products and 712 

capabilities it brings to this trusted onboarding effort in the following subsections. The NCCoE does not 713 

certify or validate products or services. We demonstrate the capabilities that can be achieved by using 714 

participants’ contributed technology. 715 

3.4.1 Aruba, a Hewlett Packard Enterprise Company 716 

Aruba, a Hewlett Packard Enterprise (HPE) company, provides secure, intelligent edge-to-cloud 717 

networking solutions that use artificial intelligence (AI) to automate the network, while harnessing data 718 

to drive powerful business outcomes. With Aruba ESP (Edge Services Platform) and as-a-service options 719 

as part of the HPE GreenLake family, Aruba takes a cloud-native approach to helping customers meet 720 

their connectivity, security, and financial requirements across campus, branch, data center, and remote 721 

worker environments, covering all aspects of wired, wireless local area networking (LAN), and wide area 722 

networking (WAN). Aruba ESP provides unified solutions for connectivity, visibility, and control 723 

throughout the IT-IoT workflow, with the objective of helping organizations accelerate IoT-driven digital 724 

transformation with greater ease, efficiency, and security. To learn more, visit Aruba at 725 

https://www.arubanetworks.com/. 726 

3.4.1.1 Device Provisioning Protocol 727 

Device Provisioning Protocol (DPP), certified under the Wi-Fi Alliance (WFA) as “Easy Connect,” is a 728 

standard developed by Aruba that allows IoT devices to be easily provisioned onto a secure network. 729 

DPP improves security by leveraging Wi-Fi Protected Access 3 (WPA3) to provide device-specific 730 

credentials, enhance certificate handling, and support robust, secure, and scalable provisioning of IoT 731 

devices in any commercial, industrial, government, or consumer application. Aruba implements DPP 732 

through a combination of on-premises hardware and cloud-based services as shown in Table 3-1. 733 

3.4.1.2 Aruba Access Point (AP) 734 

From their unique vantage as ceiling furniture, Aruba Wi-Fi 6 APs have an unobstructed overhead view 735 

of all nearby devices. Built-in Bluetooth Low Energy (BLE) and Zigbee 802.15.4 IoT radios, as well as a 736 

flexible USB port, provide IoT device connectivity that allows organizations to address a broad range of 737 

IoT applications with infrastructure already in place, eliminating the cost of gateways and IoT overlay 738 

networks while enhancing IoT security. 739 

Aruba’s APs enable a DPP network through an existing Service Set Identifier (SSID) enforcing DPP access 740 

control and advertising the Configurator Connectivity Information Element (IE) to attract unprovisioned 741 

clients (i.e., clients that have not yet been onboarded). Paired with Aruba’s cloud management service 742 

“Central”, the APs implement the DPP protocol. The AP performs the DPP network introduction protocol 743 

(Connector exchange) with provisioned clients and assigns network roles. 744 

3.4.1.3 Aruba Central 745 

Aruba Central is a cloud-based networking solution with AI-powered insights, workflow automation, and 746 

edge-to-cloud security that empowers IT teams to manage and optimize campus, branch, remote, data 747 

center, and IoT networks from a single point of visibility and control. Built on a cloud-native, 748 

microservices architecture, Aruba Central is designed to simplify IT and IoT operations, improve agility, 749 

and reduce costs by unifying management of all network infrastructure. 750 

https://www.arubanetworks.com/
https://www.arubanetworks.com/assets/so/SO_Device-Provisioning-Protocol.pdf
https://www.arubanetworks.com/products/wireless/access-points/
https://www.arubanetworks.com/products/network-management-operations/central/netconductor/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

Aruba’s “Central” Cloud DPP service exposes and controls many centralized functions to enable a 751 

seamless integrated end-to-end solution and act as a DPP service orchestrator. The cloud based DPP 752 

service selects an AP to authenticate unprovisioned enrollees (in the event that multiple APs receive the 753 

client chirps). The DPP cloud service holds the Configurator signing key and generates Connectors for 754 

enrollees authenticated through an AP. 755 

3.4.1.4 IoT Operations 756 

Available within Aruba Central, the IoT Operations service extends network administrators’ view into IoT 757 

devices and applications connected to the network. Organizations can gain critical visibility into 758 

previously invisible IoT devices, as well as reduce costs and complexity associated with deploying IoT 759 

applications. IoT Operations comprises three core elements: 760 

▪ IoT Dashboard, which provides a granular view of devices connected to Aruba APs, as well as IoT 761 
connectors and applications in use. 762 

▪ IoT App Store, a repository of click-and-go IoT applications that interface with IoT devices and 763 
their data. 764 

▪ IoT Connector, which provisions multiple applications to be computed at the edge for agile IoT 765 
application support. 766 

3.4.1.5 Client Insights 767 

Part of Aruba Central, AI-powered Client Insights automatically identifies each endpoint connecting to 768 

the network with up to 99% accuracy. Client Insights discovers and classifies all connected endpoints—769 

including IoT devices—using built-in machine learning and dynamic profiling techniques, helping 770 

organizations better understand what’s on their networks, automate access privileges, and monitor the 771 

behavior of each endpoint’s traffic flows to more rapidly spot attacks and act. 772 

3.4.1.6 Cloud Auth 773 

Cloud-native network access control (NAC) solution Cloud Auth delivers time-saving workflows to 774 

configure and manage onboarding, authorization, and authentication policies for wired and wireless 775 

networks. Cloud Auth integrates with an organization’s existing cloud identity store, such as Google 776 

Workspace or Azure Active Directory, to authenticate IoT device information and assign the right level of 777 

network access. 778 

Cloud Auth operates as the DPP Authorization server and is the repository for trusted DPP Uniform 779 

Resource Identifiers (URIs) of unprovisioned enrollees. It maintains role information for each 780 

unprovisioned DPP URI and provisioned devices based on unique per-device credential (public key 781 

extracted from Connector). Representational State Transfer (RESTful) application programming 782 

interfaces (APIs) provide extensible capabilities to support third parties, making an easy path for 783 

integration and collaborative deployments. 784 

3.4.1.7 UXI Sensor: DPP Enrollee 785 

User Experience Insight (UXI) sensors continuously monitor end-user experience on customer networks 786 

and provide a simple-to-use cloud-based dashboard to assess networks and applications. The UXI sensor 787 

is onboarded in a zero-touch experience using DPP. Once network-layer onboarding is complete, the UXI 788 

https://www.arubanetworks.com/resource/iot-operations-at-a-glance/
https://www.arubanetworks.com/products/security/visibility-and-profiling/
https://www.arubanetworks.com/resource/cloud-authentication-authorization/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

sensor performs application-layer onboarding to the Aruba cloud to download a customer-specific 789 

profile. This profile enables the UXI sensor to perform continuous network testing and monitoring, and 790 

to troubleshoot network issues that it finds. 791 

Figure 3-1 Aruba/HPE DPP Onboarding Components 792 

3.4.2 CableLabs 793 

CableLabs is an innovation lab for future-forward research and development (R&D)—a global meeting of 794 

minds dedicated to building and orchestrating emergent technologies. By convening peers and experts 795 

to share knowledge, CableLabs’ objective is to energize the industry ecosystem for speed and scale. Its 796 

research facilitates solutions with the goal of making connectivity faster, easier, and more secure, and 797 

its conferences and events offer neutral meeting points to gain consensus. 798 

As part of this project, CableLabs has provided the reference platform for its Custom Connectivity 799 

architecture for the purpose of demonstrating trusted network-layer onboarding of Wi-Fi devices using 800 

a variety of credentials. The following components are part of the reference platform. 801 

3.4.2.1 Platform Controller 802 

The controller provides interfaces and messaging for managing service deployment groups, access 803 

points with the deployment groups, registration and lifecycle of user services, and the secure 804 

onboarding and lifecycle management of users’ Wi-Fi devices. The controller also exposes APIs for 805 

integration with third-party systems for the purpose of integrating various business flows (e.g., 806 

integration with manufacturing process for device management). 807 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

3.4.2.2 Custom Connectivity Gateway Agent 808 

The Gateway Agent is a software component that resides on the Wi-Fi AP and gateway. It connects with 809 

the controller to coordinate the Wi-Fi and routing capabilities on the gateway. Specifically, it enforces 810 

the policies and configuration from the controller by managing the lifecycle of the Wi-Fi Extended 811 

Service Set/Basic Service Set (ESS/BSS) on the AP, authentication and credentials of the client devices 812 

that connect to the AP, and service management and routing rules for various devices. It also manages 813 

secure onboarding capabilities like Easy Connect, simple onboarding using a per-device pre-shared key 814 

(PSK), etc. The Gateway agent is provided in the form of an operational Raspberry Pi-based Gateway 815 

that also includes hostapd for Wi-Fi/DPP and open-vswitch for the creation of trust domains and 816 

routing. 817 

3.4.2.3 Reference Clients 818 

Three Raspberry Pi-based reference clients are provided. The reference clients have support for WFA 819 

Easy Connect-based onboarding as well as support for different Wi-Fi credentials, including per-device 820 

PSK and 802.1x certificates. One of the reference clients also has support for OCF-based streamlined 821 

application-layer onboarding. 822 

3.4.3 Cisco 823 

Cisco Systems, or Cisco, delivers collaboration, enterprise, and industrial networking and security 824 

solutions. The company’s cybersecurity team, Cisco Secure, is one of the largest cloud and network 825 

security providers in the world. Cisco’s Talos Intelligence Group, the largest commercial threat 826 

intelligence team in the world, is comprised of world-class threat researchers, analysts, and engineers, 827 

and supported by unrivaled telemetry and sophisticated systems. The group feeds rapid and actionable 828 

threat intelligence to Cisco customers, products, and services to help identify new threats quickly and 829 

defend against them. Cisco solutions are built to work together and integrate into your environment, 830 

using the “network as a sensor” and “network as an enforcer” approach to both make your team more 831 

efficient and keep your enterprise secure. Learn more about Cisco at https://www.cisco.com/go/secure. 832 

3.4.3.1 Cisco Catalyst Switch 833 

A Cisco Catalyst switch is provided to support network connectivity and network segmentation 834 

capabilities. 835 

3.4.4 Foundries.io 836 

Foundries.io helps organizations bring secure IoT and edge devices to market faster. The 837 

FoundriesFactory cloud platform offers DevOps teams a secure Linux-based firmware/operating system 838 

(OS) platform with device and fleet management services for connected devices, based on a fixed no-839 

royalty subscription model. Product development teams gain enhanced security from boot to cloud 840 

while reducing the cost of developing, deploying, and updating devices across their installed lifetime. 841 

The open-source platform interfaces to any cloud and offers Foundries.io customers maximum flexibility 842 

for hardware configuration, so organizations can focus on their intellectual property, applications, and 843 

value add. For more information, please visit https://foundries.io/. 844 

https://www.cisco.com/go/secure
https://nistgov.sharepoint.com/sites/nccoe/IOTOBLMP/Shared%20Documents/Practice%20Guide/Volume%20B
https://foundries.io/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

3.4.4.1 FoundriesFactory 845 

FoundriesFactory is a cloud-based software platform provided by Foundries.io that offers a complete 846 

development and deployment environment for creating secure IoT devices. It provides a set of tools and 847 

services that enable developers to create, test, and deploy custom firmware images, as well as manage 848 

the lifecycle of their IoT devices. 849 

Customizable components include open-source secure boot software, the open-source Linux 850 

microPlatform (LmP) distribution built with Yocto and designed for secure managed IoT and edge 851 

products, secure Over the Air (OTA) update facilities, and a Docker runtime for managing containerized 852 

applications and services. The platform is cross architecture (x86, Arm, and RISC-V) and enables secure 853 

connections to public and private cloud services. 854 

Leveraging open standards and open software, FoundriesFactory is designed to simplify and accelerate 855 

the process of developing, deploying, and managing IoT and edge devices at scale, while also ensuring 856 

that they are secure and up to date over the product lifetime. 857 

3.4.5 Kudelski IoT 858 

Kudelski IoT is the Internet of Things division of Kudelski Group and provides end-to-end IoT solutions, 859 

IoT product design, and full-lifecycle services to IoT semiconductor and device manufacturers, 860 

ecosystem creators, and end-user companies. These solutions and services leverage the group’s 30+ 861 

years of innovation in digital business model creation; hardware, software, and ecosystem design and 862 

testing; state-of-the-art security lifecycle management technologies and services; and managed 863 

operation of complex systems. 864 

3.4.5.1 Kudelski IoT keySTREAM™ 865 

Kudelski IoT keySTREAM is a device-to-cloud, end-to-end solution for securing all the key assets of an IoT 866 

ecosystem during its entire lifecycle. The system provides each device with a unique, immutable, 867 

unclonable identity that forms the foundation for critical IoT security functions like in-factory or in-field 868 

provisioning, data encryption, authentication, and secure firmware updates, as well as allowing 869 

companies to revoke network access for vulnerable devices if necessary. This ensures that the entire 870 

lifecycle of the device and its data can be managed. 871 

In this project, keySTREAM is used to enable trusted application-layer onboarding. It manages the 872 

attestation of devices, ownership, and provisioning of application credentials. 873 

3.4.6 NquiringMinds 874 

NquiringMinds provides intelligent trusted systems, combining AI-powered analytics with cyber security 875 

fundamentals. tdx Volt is the NquiringMinds general-purpose zero-trust services infrastructure platform, 876 

upon which it has built Cyber tdx, a cognitively enhanced cyber defense service designed for IoT. Both 877 

products are the latest iteration of the TDX product family. NquiringMinds is a UK company. Since 2010, 878 

it has been deploying its solutions into smart cities, health care, industrial, agricultural, financial 879 

technology, defense, and security sectors. 880 

NquiringMinds collaborates within the open-standards and open-source community. It focuses on the 881 

principle of continuous assurance: the ability to continually reassess security risk by intelligently 882 

https://www.kudelski-iot.com/services-and-systems/in-field-provisioning
https://www.kudelski-iot.com/services-and-systems/in-field-provisioning
https://www.kudelski-iot.com/services-and-systems/secure-firmware-update-fota
https://nquiringminds.com/cyber/volt/
https://nquiringminds.com/cyber/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

reasoning across the hard and soft information sources available. NquiringMinds’ primary contributions 883 

to this project, described in the subsections below, are being made available as open source. 884 

3.4.6.1 NquiringMinds’ BRSKI Protocol Implementation 885 

NquiringMinds has open sourced their software implementation of IETF’s Bootstrapping Remote Secure 886 

Key Infrastructure (BRSKI) protocol, which provides a solution for secure zero-touch (automated) 887 

bootstrap of new (unconfigured) devices. This implementation includes the necessary adaptations for 888 

BRKSI to work with Wi-Fi networks. 889 

The open source BRSKI implementation is available under an Apache 2.0 license at: 890 

https://github.com/nqminds/brski 891 

3.4.6.2 TrustNetZ 892 

NquiringMinds has open sourced the TrustNetZ (Zero Trust Networking) software stack which sits on top 893 

of their BRSKI implementation. TrustNetZ embodies the network onboarding and lifecycle management 894 

concepts into an easy to replicate demonstrator which includes the IoT device, the router, the router 895 

onboarding, the registrar, the manufacturer, the manufacturer provisioning, policy enforcement and 896 

continuous assurance servers. 897 

This software also encapsulates NquiringMinds’ continuous assurance capability, enhancing the security 898 

of the network by continually assessing whether connected IoT devices meet the policy requirements of 899 

the network. The software also includes a flexible, verifiable credential-based policy framework, which 900 

can rapidly be adapted to model different security and business model scenarios. The implementation 901 

models networking onboarding flows with EAP-TLS Wi-Fi certificates. 902 

The open source TrustNetZ implementation is available under an Apache 2.0 license at: 903 

https://github.com/nqminds/trustnetz 904 

3.4.6.3 edgeSEC 905 

edgeSEC is an open-source, OpenWrt-based implementation of an intelligent secure router. It 906 

implements, on an open stack, the key components needed to implement both trusted onboarding and 907 

continuous assurance of devices. It contains an implementation of the Internet Engineering Task Force 908 

(IETF) BRSKI protocols, with the necessary adaptations for wireless onboarding, fully integrated into an 909 

open operational router. It additionally implements device communications intent constraints (IETF 910 

Manufacturer Usage Description [MUD]) and behavior monitoring (IoTSF ManySecured) that support 911 

some of the more enhanced trusted onboarding use cases. EdgeSEC additionally provides the platform 912 

for an asynchronous control plane for the continuous management of multiple routers and a general-913 

purpose policy evaluation point, which can be used to demonstrate the breadth of onboarding and 914 

monitoring use cases that can be supported. 915 

EdgeSEC is not directly used in the build that was demonstrated for this project, but it contains critical 916 

pieces of code that have been adapted in a simplified manner for the TrustNetZ implementation. 917 

The open source edgeSEC implementation is available under an Apache 2.0 license at: 918 

https://github.com/nqminds/edgesec 919 

https://github.com/nqminds/brski
https://github.com/nqminds/trustnetz
https://edgesec.info/
https://github.com/nqminds/edgesec


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

3.4.6.4 tdx Volt 920 

tdx Volt is NquiringMinds’ zero-trust infrastructure platform. It encapsulates identity management, 921 

credential management, service discovery, and smart policy evaluation. This platform is designed to 922 

simplify the end-to-end demonstration of the trusted onboarding process and provides tools for use on 923 

the IoT device, the router, applications, and clouds. Tdx Volt is used by the TrustNetZ demonstrator as a 924 

verifiable credential issuer and verifier. 925 

Tdx Volt is an NquiringMinds’ product. Documented working implementation are available at: 926 

https://docs.tdxvolt.com/en/introduction 927 

3.4.6.5 Reference Hardware 928 

For demonstration purposes the NquiringMinds components can be deployed using the following 929 

hardware: 930 

Compute hosts: Raspberry Pi 4 931 

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/. The Raspberry Pis are used to host 932 

the IoT client device, the router, and all additional compute services. Other Raspberry Pi models are also 933 

likely to work but have not been tested. 934 

TPM/Secure Element 935 

The secure storage for the IoT device (used in network-layer onboarding and factory provisioning) is 936 

provided by an Infineon Optiga™ SLB 9670 TPM 2.0, integrated through a Geeek Pi TPM hat. 937 

https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-938 

EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb. 939 

A working version of the code is also available utilizing the SEALSQ Secure element 940 

https://www.sealsq.com/semiconductors/vaultic-secure-elements/vaultic-40x. 941 

3.4.7 NXP Semiconductors 942 

NXP Semiconductors focuses on secure connectivity solutions for embedded applications, NXP is 943 

impacting the automotive, industrial, and IoT, mobile, and communication infrastructure markets. Built 944 

on more than 60 years of combined experience and expertise, the company has approximately 31,000 945 

employees in more than 30 countries. Find out more at https://www.nxp.com/. 946 

3.4.7.1 EdgeLock SE050 secure element 947 

The EdgeLock SE050 secure element (SE) product family offers strong protection against the latest 948 

attack scenarios and an extended feature set for a broad range of IoT use cases. This ready-to-use 949 

secure element for IoT devices provides a root of trust at the silicon level and delivers real end-to-end 950 

security – from edge to cloud – with a comprehensive software package for integration into any type of 951 

device. 952 

https://docs.tdxvolt.com/en/introduction
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb
https://www.infineon.com/dgdl/Infineon-OPTIGA_SLx_9670_TPM_2.0_Pi_4-ApplicationNotes-v07_19-EN.pdf?fileId=5546d4626c1f3dc3016c3d19f43972eb
https://www.sealsq.com/semiconductors/vaultic-secure-elements/vaultic-40x
https://www.nxp.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

3.4.7.2 EdgeLock 2GO 953 

EdgeLock 2GO is the NXP service platform designed for easy and secure deployment and management 954 

of IoT devices. This flexible IoT service platform lets the device manufacturers and service providers 955 

choose the appropriate options to optimize costs while benefiting from an advanced level of device 956 

security. The EdgeLock 2GO service provisions the cryptographic keys and certificates into the hardware 957 

root of trust of the IoT devices and simplifies the onboarding of the devices to the cloud. 958 

3.4.7.3 i.MX 8M family 959 

The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide 960 

advanced audio, voice, and video processing for applications that scale from consumer home audio to 961 

industrial building automation and mobile computers. It includes support for secure boot, secure debug, 962 

and lifecycle management, as well as integrated cryptographic accelerators. The development boards 963 

and Linux Board Support Package enablement provide out-of-the-box integration with an external SE050 964 

secure element. 965 

3.4.8 Open Connectivity Foundation (OCF) 966 

OCF is a standards-developing organization that has had contributions and participation from over 450+ 967 

member organizations representing the full spectrum of the IoT ecosystem, from chip makers to 968 

consumer electronics manufacturers, silicon enablement software platform and service providers, and 969 

network operators. The OCF specification is an International Organization for 970 

Standardization/International Electrotechnical Commission (ISO/IEC) internationally recognized standard 971 

that was built in tandem with an open-source reference implementation called IoTivity. Additionally, 972 

OCF provides an in-depth testing and certification program. 973 

3.4.8.1 IoTivity 974 

OCF has contributed open-source code from IoTivity that demonstrates the advantage of secure 975 

network-layer onboarding and implements the WFA’s Easy Connect to power a seamless bootstrapping 976 

of secure and trusted application-layer onboarding of IoT devices with minimal user interaction. 977 

This code includes the interaction layer, called the OCF Diplomat, which handles secure communication 978 

between the DPP-enabled access point and the OCF application layer. The OCF onboarding tool (OBT) is 979 

used to configure and provision devices with operational credentials. The OCF reference 980 

implementation of a basic lamp is used to demonstrate both network- and application-layer onboarding 981 

and to show that once onboarded and provisioned, the OBT can securely interact with the lamp. 982 

3.4.9 Sandelman Software Works 983 

Sandelman Software Works (SSW) provides consulting and software design services in the areas of 984 

systems and network security. A complete stack company, SSW provides consulting and design services 985 

from the hardware driver level up to Internet Protocol Security (IPsec), Transport Layer Security (TLS), 986 

and cloud database optimization. SSW has been involved with the IETF since the 1990s, now dealing 987 

with the difficult problem of providing security for IoT systems. SSW leads standardization efforts 988 

through a combination of running code and rough consensus. 989 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

3.4.9.1 Minerva Highway IoT Network-Layer Onboarding and Lifecycle Management 990 

System 991 

The Highway component is a cloud-native component operated by the device manufacturer (or its 992 

authorized designate). It provides the Request for Comments (RFC) 8995 [7] specified Manufacturer 993 

Authorized Signing Authority (MASA) for the BRSKI onboarding mechanism. 994 

Highway is an asset manager for IoT devices. In its asset database it maintains an inventory of devices 995 

that have been manufactured, what type they are, and who the current owner of the device is (if it has 996 

been sold). Highway does this by taking control of the complete identity lifecycle of the device. It can aid 997 

in provisioning new device identity certificates (IDevIDs) by collecting Certificate Signing Requests and 998 

returning certificates, or by generating the new identities itself. This is consistent with Section 4.1.2.1 999 

(On-device private key generation) and Section 4.1.2.2 (Off-device private key generation) of 1000 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-00.html. 1001 

Highway can act as a standalone three-level private-public key infrastructure (PKI). Integrations with 1002 

Automatic Certificate Management Environment (RFC 8555) allow it to provision certificates from an 1003 

external PKI using the DNS-01 challenge in Section 8.4 of https://www.rfc-1004 

editor.org/rfc/rfc8555.html#section-8.4. Hardware integrations allow for the private key operations to 1005 

be moved out of the main CPU. However, the needs of a busy production line in a factory would require 1006 

continuous access to the hardware offload. 1007 

In practice, customers put the subordinate CA into Highway, which it needs to sign new IDevIDs, and put 1008 

the trust anchor private CA into a hardware security module (HSM). 1009 

Highway provides a BRSKI-MASA interface running on a public TCP/HTTPS port (usually 443 or 9443). 1010 

This service requires access to the private key associated to the anchor that has been “baked into” the 1011 

Pledge device during manufacturing. The Highway instance that speaks to the world in this way does not 1012 

have to be the same instance that signs IDevID certificates, and there are significant security advantages 1013 

to separating them. Both instances do need access to the same database servers, and there are a variety 1014 

of database replication techniques that can be used to improve resilience and security. 1015 

As IDevIDs do not expire, Highway does not presently include any mechanism to revoke IDevIDs, nor 1016 

does it provide Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP). It is 1017 

unclear how those mechanisms can work in practice. 1018 

Highway supports two models. In the Sales Integration model, the intended owner is known in advance. 1019 

This model requires customer-specific integrations, which often occur at the database level through 1020 

views or other SQL tools. In the trust on first use (TOFU) model, the first customer to claim a product 1021 

becomes its owner. 1022 

3.4.10 SEALSQ, a subsidiary of WISeKey 1023 

WISeKey International Holding Ltd. (WISeKey) is a cybersecurity company that deploys digital identity 1024 

ecosystems and secures IoT solution platforms. It operates as a Swiss-based holding company through 1025 

several operational subsidiaries, each dedicated to specific aspects of its technology portfolio. 1026 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-00.html
https://www.rfc-editor.org/rfc/rfc8555.html#section-8.4
https://www.rfc-editor.org/rfc/rfc8555.html#section-8.4


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

SEALSQ is the subsidiary of the group that focuses on designing and selling secure microcontrollers, PKI, 1027 

and identity provisioning services while developing post-quantum technology hardware and software 1028 

products. SEALSQ products and solutions are used across a variety of applications today, from multi-1029 

factor authentication devices, home automation systems, and network infrastructure, to automotive, 1030 

industrial automation, and control systems. 1031 

3.4.11 VaultIC408 1032 

The VaultIC408 secure element combines hardware-based key storage with cryptographic accelerators 1033 

to provide a wide array of cryptographic features including identity, authentication, encryption, key 1034 

agreement, and data integrity. It protects against hardware attacks such as micro-probing and side 1035 

channels. 1036 

The fundamental cryptography of the VaultIC family includes NIST-recommended algorithms and key 1037 

lengths. Each of these algorithms, Elliptic Curve Cryptography (ECC), Rivest-Shamir-Adleman (RSA), and 1038 

Advanced Encryption Standard (AES), is implemented on-chip and uses on-chip storage of the secret key 1039 

material so the secrets are always protected in the secure hardware. 1040 

The secure storage and cryptographic acceleration support use cases like network and IoT end node 1041 

security, platform security, secure boot, secure firmware download, secure communication or TLS, data 1042 

confidentiality, encryption key storage, and data integrity. 1043 

3.4.11.1 INeS Certificate Management System (CMS) 1044 

SEALSQ’s portfolio includes INeS, a managed PKI-as-a-service solution. INeS leverages the WISeKey 1045 

Webtrust-accredited trust services platform, a Matter approved Product Attestation Authority (PAA), 1046 

and custom CAs. These PKI technologies support large-scale IoT deployments, where IoT endpoints will 1047 

require certificates to establish their identities. The INeS CMS platform provides a secure, scalable, and 1048 

manageable trust model. 1049 

INeS CMS provides certificate management, CA management, public cloud integration and automation, 1050 

role-based access control (RBAC), and APIs for custom implementations. 1051 

3.4.12 Silicon Labs 1052 

Silicon Labs provides products in the area of secure, intelligent wireless technology for a more 1053 

connected world. Securing IoT is challenging. It’s also mission critical. The challenge of protecting 1054 

connected devices against frequently surfacing IoT security vulnerabilities follows device makers 1055 

throughout the entire product lifecycle. Protecting products in a connected world is a necessity as 1056 

customer data and modern online business models are increasingly targets for costly hacks and 1057 

corporate brand damage. To stay secure, device makers need an underlying security platform in the 1058 

hardware, software, network, and cloud. Silicon Labs offers security products with features that address 1059 

escalating IoT threats, with the goal of reducing the risk of IoT ecosystem security breaches and the 1060 

compromise of intellectual property and revenue loss from counterfeiting. 1061 

For this project, Silicon Labs has provided a host platform for the OpenThread border router (OTBR), a 1062 

Thread radio transceiver, and an IoT device to be onboarded to the AWS cloud service and that 1063 

communicates using the Thread wireless protocol. 1064 

https://www.silabs.com/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

3.4.12.1 OpenThread Border Router Platform 1065 

A Raspberry Pi serves as host platform for the OTBR. The OTBR forms a Thread network and acts as a 1066 

bridge between the Thread network and the public internet, allowing the IoT device that communicates 1067 

using the Thread wireless protocol and that is to be onboarded communicate with cloud services. The 1068 

OTBR’s connection to the internet can be made through either Wi-Fi or ethernet. Connection to the 1069 

SLWSTK6023A (see Section 3.4.12.2) is made through a USB serial port. 1070 

3.4.12.2 SLWSTK6023A Thread Radio Transceiver 1071 

The SLWSTK6023A (Wireless starter kit) acts as a Thread radio transceiver or radio coprocessor (RCP). 1072 

This allows the OTBR host platform to form and communicate with a Thread network. 1073 

3.4.12.3 xG24-DK2601B Thread “End” Device 1074 

The xG24-DK2601B is the IoT device that is to be onboarded to the cloud service (AWS). It 1075 

communicates using the Thread wireless protocol. Communication is bridged between the Thread 1076 

network and the internet by the OTBR. 1077 

3.4.12.4 Kudelski IoT keySTREAM™ 1078 

The Kudelski IoT keySTREAM solution is described more fully in Section 3.4.5.1. It is a cloud service 1079 

capable of verifying the hardware-based secure identity certificate chain associated with the xG24-1080 

DK2601B component described in Section 3.4.12.3 and delivering a new certificate chain that can be 1081 

refreshed or revoked as needed to assist with lifecycle management. The certificate chain is used to 1082 

authenticate the xG24-DK2601B device to the cloud service (AWS). 1083 

Figure 3-2 shows the relationships among the components provided by Silicon Labs and Kudelski that 1084 

support the trusted application-layer onboarding of an IoT device that communicates via the Thread 1085 

protocol to AWS IoT. 1086 

Figure 3-2 Components for Onboarding an IoT Device that Communicates Using Thread to AWS IoT 1087 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

4 Reference Architecture 1088 

Figure 4-1 depicts the reference architecture to demonstrate trusted IoT device network-layer 1089 

onboarding and lifecycle management used throughout this Practice Guide. This architecture shows a 1090 

high-level, protocol-agnostic, and generic approach to trusted network-layer onboarding. It represents 1091 

the basic components and processes, regardless of the network-layer onboarding protocol used and the 1092 

particular device lifecycle management activities supported. 1093 

When implementing this architecture, an organization can follow different steps and use different 1094 

components. The exact steps that are performed may not be in the same order as the steps in the 1095 

logical reference architecture, and they may use components that do not have a one-to-one 1096 

correspondence with the logical components in the logical reference architecture. In Appendices C, D, E, 1097 

F and G we present the architectures for builds 1, 2, 3, 4 and 5, each of which is an instantiation of this 1098 

logical reference architecture. Those build-specific architectures are more detailed and are described in 1099 

terms of specific collaborator components and trusted network-layer onboarding protocols. 1100 

Figure 4-1 Trusted IoT Device Network-Layer Onboarding and Lifecycle Management Logical Reference 1101 
Architecture 1102 

 

 

There are five high-level processes to carry out this architecture, as labeled in Figure 4-1. These five 1103 

processes are as follows: 1104 

1. Device manufacture and factory provisioning – the activities that the IoT device manufacturer 1105 

performs to prepare the IoT device so that it is capable of network- and application-layer 1106 

onboarding (Figure 4-2, Section 4.1). 1107 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

2. Device ownership and bootstrapping information transfer – the transfer of IoT device 1108 

ownership and bootstrapping information from the manufacturer to the device and/or the 1109 

device’s owner that enables the owner or an entity authorized by the owner to onboard the 1110 

device securely. The component in Figure 4-1 labeled “Supply Chain Integration Service” 1111 

represents the mechanism used to accomplish this information transfer (Figure 4-3, Section 4.2). 1112 

3. Trusted network-layer onboarding – the interactions that occur between the network-layer 1113 

onboarding component and the IoT device to mutually authenticate, confirm authorization, 1114 

establish a secure channel, and provision the device with its network credentials (Figure 4-4, 1115 

Section 4.3). 1116 

4. Trusted application-layer onboarding – the interactions that occur between a trusted 1117 

application server and the IoT device to mutually authenticate, establish a secure channel, and 1118 

provision the device with application-layer credentials (Figure 4-5, Section 4.4). 1119 

5. Continuous verification – ongoing, policy-based verification and authorization checks on the IoT 1120 

device to support device lifecycle monitoring and control (Figure 4-6, Section 4.5). 1121 

Figure 4-1 uses two colors. The dark-blue components are central to supporting trusted network-layer 1122 

onboarding itself. The light-blue components support the other aspects of the architecture. Each of the 1123 

five processes is explained in more detail in the subsections below. 1124 

4.1 Device Manufacture and Factory Provisioning Process 1125 

Figure 4-2 depicts the device manufacture and factory provisioning process in more detail. As shown in 1126 

Figure 4-2, the manufacturer is responsible for creating the IoT device and provisioning it with the 1127 

necessary hardware, software, and birth credentials so that it is capable of network-layer onboarding. 1128 

The IoT device should be manufactured with a secure root of trust as a best practice, possibly as part of 1129 

a secure manufacturing process, particularly when outsourced. Visibility and control over the 1130 

provisioning process and manufacturing supply chain, particularly for outsourced manufacturing, is 1131 

critical in order to mitigate the risk of compromise in the supply chain, which could lead to the 1132 

introduction of compromised devices. The CA component is shown in light blue in Figure 4-2 because its 1133 

use is optional and depends on the type of credential that is being provisioned to the device (i.e., 1134 

whether it is an 802.1AR certificate). 1135 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

Figure 4-2 IoT Device Manufacture and Factory Provisioning Process 1136 

 

At a high level, the steps that the manufacturer or an integrator performs as part of this preparation 1137 

process, as shown in Figure 4-2, are as follows: 1138 

1. Create the IoT device and assign it a unique identifier (e.g., a serial number). Equip the device 1139 

with secure storage. 1140 

2. Equip the device to run a specific network-layer onboarding protocol (e.g., Wi-Fi Easy Connect, 1141 

BRSKI, Thread Mesh Commissioning Protocol (MeshCoP) [8]). This step includes ensuring that 1142 

the device has the software/firmware needed to run the onboarding protocol as well as any 1143 

additional information that may be required. 1144 

3. Generate or install the device’s unique birth credential into the device’s secure storage. [Note: 1145 

using a secure element that has the ability to autonomously generate private/public root key 1146 

pairs is inherently more secure than performing credential injection, which has the potential to 1147 

expose the private key.] The birth credential includes information that must be kept secret (i.e., 1148 

the device’s private key) because it is what enables the device’s identity to be authenticated. 1149 

The contents of the birth credential will depend on what network-layer onboarding protocol the 1150 

device supports. For example: 1151 

a. If the device runs the Wi-Fi Easy Connect protocol, its birth credential will take the form 1152 

of a unique private key, which has an associated DPP URI that includes the 1153 

corresponding public key and possibly additional information such as Wi-Fi channel and 1154 

serial number. 1155 

b. If the device runs the BRSKI protocol, its birth credential takes the form of an 802.1AR 1156 

certificate that gets installed as the device’s IDevID and corresponding private key. The 1157 

IDevID includes the device’s public key, the location of the MASA, and trust anchors that 1158 

can be used to verify vouchers signed by the MASA. The 802.1AR certificate needs to be 1159 

signed by a trusted signing authority prior to installation, as shown in Figure 4-2. 1160 

4. Install any additional information that may be required to support related capabilities that are 1161 

enabled by network-layer onboarding. The specific contents of the information that gets 1162 

Device manufacture and factory provisioning: 

(1) Create the IoT device and give it a unique identifier 

(2) Equip the device to run the onboarding protocol

(3) Install a unique birth credential (public/private key pair) into the device’s 

secure storage. (If the credential is a certificate, it will need to be signed.)

(4) Install any additional information that may be required to support related

operations, such as application-layer onboarding or device intent enforcement 

(5) Maintain a record of the device’s serial number and bootstrapping information

IoT Device
Secure 

storage

CA

Provide device’s public key to the CA and receive back a signed certificate for the device, if necessary

Record the 

device ID and 

bootstrapping 

information



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

installed on the device will vary according to what capabilities it is intended to support. For 1163 

example, if the device supports: 1164 

a. streamlined application-layer onboarding (see Section 3.3.2), then the bootstrapping 1165 

information that is required to enable the device and a trusted application server to find 1166 

and mutually authenticate each other and establish a secure association will be stored 1167 

on the device. This is so it can be sent to the network during network-layer onboarding 1168 

and used to automatically perform application-layer onboarding after the device has 1169 

securely connected to the network. The Wi-Fi Easy Connect protocol, for example, can 1170 

include such application-layer bootstrapping information as third-party information in 1171 

its protocol exchange with the network, and Build 2 (i.e., the Wi-Fi Easy Connect, 1172 

CableLabs, OCF build) demonstrates use of this mechanism to support streamlined 1173 

application-layer onboarding. 1174 

Note, however, that a device may still be capable of performing independent [see 1175 

Section 3.3.2] application-layer onboarding even if the application-layer onboarding 1176 

information is not exchanged as part of the network-layer onboarding protocol. The 1177 

application that is installed on the device, i.e., the application that the device executes 1178 

to fulfill its purpose, may include application-layer bootstrapping information that 1179 

enables it to perform application-layer onboarding when it begins executing. Build 1 1180 

(i.e., the Wi-Fi Easy Connect, Aruba/HPE build) demonstrates independent application-1181 

layer onboarding. 1182 

b. device communications intent, then the URI required to enable the network to locate 1183 

the device’s intent information may be stored on the device so that it can be sent to the 1184 

network during network-layer onboarding. After the device has securely connected to 1185 

the network, the network can use this device communications intent information to 1186 

ensure that the device sends and receives traffic only from authorized locations. 1187 

5. Maintain a record of the device’s serial number (or other uniquely identifying information) and 1188 

the device’s bootstrapping information. The manufacturer will take note of the device’s ID and 1189 

its bootstrapping information and store these. Eventually, when the device is sold, the 1190 

manufacturer will need to provide the device’s owner with its bootstrapping information. The 1191 

contents of the device’s bootstrapping information will depend on what network-layer 1192 

onboarding protocol the device supports. For example: 1193 

a. If the device runs the Wi-Fi Easy Connect protocol, its bootstrapping information is the 1194 

DPP URI that is associated with its private key. 1195 

b. If the device runs the BRSKI protocol, its bootstrapping information is its 802.1AR 1196 

certificate. 1197 

4.2 Device Ownership and Bootstrapping Information Transfer Process  1198 

Figure 4-3 depicts the activities that are performed to transfer device bootstrapping information from 1199 

the device manufacturer to the device owner, as well as to transfer device ownership information to the 1200 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

device itself, if appropriate. A high-level summary of these activities is described in the steps labeled A, 1201 

B, and C. 1202 

The figure uses two colors. The dark-blue components are those used in the network-layer onboarding 1203 

process. They are the same components as those depicted in the trusted network-layer onboarding 1204 

process diagram provided in Figure 4-4. The light-blue components and their accompanying steps depict 1205 

the portion of the diagram that is specific to device ownership and bootstrapping information transfer 1206 

activities. 1207 

Figure 4-3 Device Ownership and Bootstrapping Information Transfer Process 1208 

 

These steps are as follows: 1209 

1. The device manufacturer makes the device serial number, bootstrapping information, and 1210 

ownership information available so that the organization or individual who has purchased the 1211 

device will have the device’s serial number and bootstrapping information, and the device itself 1212 

can be informed of who its owner is. In Figure 4-3, the manufacturer is shown sending this 1213 

information to the supply chain integration service, which ensures that the necessary 1214 

information ultimately reaches the device owner’s authorization service as well as the device 1215 

itself, if appropriate. (This description of the process is deliberately simple in order to enable it 1216 

to be general enough that it applies to a variety of network-layer onboarding protocols.) In 1217 

reality, the supply chain integration service mechanism for forwarding this bootstrapping 1218 

information from the manufacturer to the owner may take many forms. For example, when 1219 

BRSKI is used, the manufacturer sends the device serial number and bootstrapping information 1220 

to a MASA that both the device and its owner trust. When other network-layer onboarding 1221 

protocols are used, the device manufacturer may provide the device owner with this 1222 

bootstrapping information directly by uploading this information to the owner’s portion of a 1223 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

Supply Chain 

Integration 

Service

(2) Make the 

serial number 

and 

bootstrapping 

information of  

the purchased 

device available 

to the 

authorization 

service used by 

the device owner. 

(3) Provide  

the device 

with  

information 

about its 

owner

Device 

Manufacturer 

(1) Provide the serial number and bootstrapping information 

of the device that the organization has purchased

Network-

Layer 

Onboarding 

Authorization 

Service

CA

Secure 

storage

Device Manufacturer Premises 

Device Owner’s Network 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

trusted cloud. Such a mechanism is useful for the case in which the owner is a large enterprise 1224 

that has made a bulk purchase of many IoT devices. In this case, the manufacturer can upload 1225 

the information for hundreds or thousands of IoT devices to the supply chain integration service 1226 

at once. We call this the enterprise use case. Alternatively, the device manufacturer may 1227 

provide this information to the device owner indirectly by including it on or in the packaging of 1228 

an IoT device that is sold at retail. We call this the consumer use case. 1229 

The contents of the device bootstrapping information will also vary according to the network-1230 

layer onboarding protocol that the device supports. For example, if the device supports the Wi-1231 

Fi Easy Connect network-layer onboarding protocol, the bootstrapping information will consist 1232 

of the device’s DPP URI. If the device supports the BRSKI network-layer onboarding protocol, 1233 

bootstrapping information will consist of the device’s IDevID (i.e., its 802.1AR certificate). 1234 

2. The supply chain integration service forwards the device serial number and bootstrapping 1235 

information to an authorization service that has connectivity to the network-layer onboarding 1236 

component that will onboard the device (i.e., to a network-layer onboarding component that 1237 

belongs either to the device owner or to an entity that the device owner has authorized to 1238 

onboard the device). The network-layer onboarding component will use the device’s 1239 

bootstrapping information to authenticate the device and verify that it is expected and 1240 

authorized to be onboarded to the network. Again, this forwarding may take many forms, e.g., 1241 

enterprise use case or consumer use case, and use a variety of different mechanisms within 1242 

each use case type, e.g., information moved from one location to another in the device owner’s 1243 

portion of a trusted cloud, information transferred via a standardized protocol operating 1244 

between the MASA and the onboarding network’s domain registrar, or information scanned 1245 

from a QR code on device packaging using a mobile app. In the case in which BRSKI is used, a 1246 

certificate authority is consulted to help validate the signature of the 802.1AR certificate that 1247 

comprises the device bootstrapping information. 1248 

3. The supply chain integration service may also provide the device with information about who its 1249 

owner is. Knowing who its owner is enables the device to ensure that the network that is trying 1250 

to onboard it is authorized to do so, because it is assumed that if a network owns a device, it is 1251 

authorized to onboard it. The mechanisms for providing the device with assurance that the 1252 

network that is trying to onboard it is authorized to do so can take a variety of forms, depending 1253 

on the network-layer onboarding protocol being used. For example, if the Wi-Fi Easy Connect 1254 

protocol is being used, then if an entity is in possession of the device’s public key, that entity is 1255 

assumed to be authorized to onboard the device. If BRSKI is being used, the device will be 1256 

provided with a signed voucher verifying that the network that is trying to onboard the device is 1257 

authorized to do so. The voucher is signed by the MASA. Because the device manufacturer has 1258 

installed trust anchors for the MASA onto the device, the device trusts the MASA. It is also able 1259 

to verify the MASA’s signature. 1260 

(Note: In this document, for the sake of simplicity, we often refer to the network that is 1261 

authorized to onboard a device as the device owner’s network. In reality, it may not always be 1262 

the case that the device’s owner also owns the network to which the device is being onboarded. 1263 

While it is assumed that a network that owns a device is authorized to onboard it, and the 1264 

device and the onboarding network are often owned by the same entity, common ownership is 1265 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

not a requirement. The network that is onboarding a device does not have to be the owner of 1266 

that device. The network owner may permit devices that it does not own to be onboarded to 1267 

the network. In order for such a device to be onboarded, the network owner must be in 1268 

possession of the device’s bootstrapping information. By accepting the bootstrapping 1269 

information, the network owner is implicitly authorizing the device to be onboarded to its 1270 

network. Conversely, a device may permit itself to be onboarded to a network that is not owned 1271 

by the device’s owner. A device owner that wants to authorize a network to onboard the device 1272 

needs to ensure that the device trusts the onboarding network. The specific mechanism for 1273 

accomplishing this will vary according to the network-layer onboarding protocol being used. 1274 

When the Wi-Fi Easy Connect protocol is being used, simply providing the network with the 1275 

device’s public key is sufficient to authorize the network to onboard the device. When BRSKI is 1276 

being used, the voucher that the MASA provides to the device must authorize the network to 1277 

onboard it.) 1278 

Authentication of the network by the device may also take a variety of forms. These may range 1279 

from simply trusting the person who is onboarding the device to onboard it to the correct 1280 

network, to providing the IoT device with the network’s public key. 1281 

4.3 Trusted Network-Layer Onboarding Process 1282 

Figure 4-4 depicts the trusted network-layer onboarding process in more detail. It shows the 1283 

interactions that occur between the network-layer onboarding component and the IoT device to 1284 

mutually authenticate, confirm that the device is authorized to be onboarded to the network, confirm 1285 

that the network is authorized to onboard the device, establish a secure channel, and provision the 1286 

device with its network credentials. 1287 

Figure 4-4 Trusted Network-Layer Onboarding Process 1288 

 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(7) Provision network credentials to the device

(8) Use network credentials to 

connect to the network securely

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that the network is 

authorized to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(5) Verify that device is authorized 

to be onboarded to the network

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

The numbered arrows in the diagram are intended to provide a high-level summary of the network-layer 1289 

onboarding steps. These steps are assumed to occur after any device bootstrapping information and 1290 

ownership transfer activities (as described in the previous section) that may need to be performed. The 1291 

steps of the trusted network-layer onboarding process are as follows: 1292 

1. The IoT device to be onboarded is placed in onboarding mode, i.e., it is put into a state such that 1293 

it is actively listening for and/or sending initial onboarding protocol messages. 1294 

2. Any required device bootstrapping information that has not already been provided to the 1295 

network and any required network bootstrapping information that has not already been 1296 

provided to the device are introduced in a trusted manner. 1297 

3. Using the device and network bootstrapping information that has been provided, the network 1298 

authenticates the identity of the IoT device (e.g., by ensuring that the IoT device is in possession 1299 

of the private key that corresponds with the public key for the device that was provided as part 1300 

of the device’s bootstrapping information), and the IoT device authenticates the identity of the 1301 

network (e.g., by ensuring that the network is in possession of the private key that corresponds 1302 

with the public key for the network that was provided as part of the network’s bootstrapping 1303 

information). 1304 

4. The device verifies that the network is authorized to onboard it. For example, the device may 1305 

verify that it and the network are owned by the same entity, and therefore, assume that the 1306 

network is authorized to onboard it. 1307 

5. The network onboarding component consults the network-layer onboarding authorization 1308 

service to verify that the device is authorized to be onboarded to the network. For example, the 1309 

network-layer authorization service can confirm that the device is owned by the network and is 1310 

on the list of devices authorized to be onboarded. 1311 

6. A secure (i.e., encrypted) channel is established between the network onboarding component 1312 

and the device. 1313 

7. The network onboarding component uses the secure channel that it has established with the 1314 

device to confidentially send the device its unique network credentials. 1315 

8. The device uses its newly provisioned network credentials to establish secure connectivity to the 1316 

network. The access point, router, or switch validates the device’s credentials in this step. The 1317 

mechanism it uses to do so varies depending on the implementation and is not depicted in 1318 

Figure 4-4. 1319 

4.4 Trusted Application-Layer Onboarding Process 1320 

Figure 4-5 depicts the trusted application-layer onboarding process as enabled by the streamlined 1321 

application-layer onboarding mechanism. As defined in Section 3.3.2, streamlined application-layer 1322 

onboarding occurs after network-layer onboarding and depends upon and is enabled by it. The figure 1323 

uses two colors. The dark-blue components are those used in the network-layer onboarding process. 1324 

They and their accompanying steps (written in black font) are identical to those found in the trusted 1325 

network-layer onboarding process diagram provided in Figure 4-4. The light-blue component and its 1326 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

accompanying steps (written in light-blue font) depict the portion of the diagram that is specific to 1327 

streamlined application-layer onboarding. 1328 

Figure 4-5 Trusted Streamlined Application-Layer Onboarding Process 1329 

 

As is the case with Figure 4-4, the steps in this diagram are assumed to occur after any device ownership 1330 

and bootstrapping information transfer activities that may need to be performed. Steps 1-6 in this figure 1331 

are identical to Steps 1-6 in the trusted network-layer onboarding diagram of Figure 4-4, but steps 7 and 1332 

8 are different. With the completion of steps 1-6 in Figure 4-5, a secure channel has been established 1333 

between the IoT device and the network-layer onboarding component. However, the device does not 1334 

get provisioned with its network-layer credentials until step 9. To support streamlined application-layer 1335 

onboarding, additional steps are required. Steps 1-12 are as follows: 1336 

1. The IoT device to be onboarded is placed in onboarding mode, i.e., it is put into a state such that 1337 

it is actively listening for and/or sending initial onboarding protocol messages. 1338 

2. Any required device bootstrapping information that has not already been provided to the 1339 

network and any required network bootstrapping information that has not already been 1340 

provided to the device are introduced in a trusted manner. 1341 

3. Using the device and network bootstrapping information that has been provided, the network 1342 

authenticates the identity of the IoT device (e.g., by ensuring that the IoT device is in possession 1343 

of the private key that corresponds with the public key for the device that was provided as part 1344 

of the device’s bootstrapping information), and the IoT device authenticates the identity of the 1345 

network (e.g., by ensuring that the network is in possession of the private key that corresponds 1346 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(9) Provision network credentials to the 

device, including the application server’s 

application-layer bootstrapping 

information

(10) Use network credentials to 

connect to the network securely

(5) Verify that device is authorized 

to be onboarded to the network

(8) Exchange device’s and 

application server’s application-

layer bootstrapping information

Application 

Server

(11) Device and application 

server mutually authenticate 

and establish a secure channel

(12) Application server may, 

for example, perform updates 

and ongoing lifecycle 

management of device 

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that network is authorized 

to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(7) Device sends its application-

layer bootstrapping information

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

with the public key for the network that was provided as part of the network’s bootstrapping 1347 

information). 1348 

4. The device verifies that the network is authorized to onboard it. For example, the device may 1349 

verify that it and the network are owned by the same entity, and therefore, assume that the 1350 

network is authorized to onboard it. 1351 

5. The network onboarding component consults the network-layer onboarding authorization 1352 

service to verify that the device is authorized to be onboarded to the network. For example, the 1353 

network-layer authorization service can confirm that the device is owned by the network and is 1354 

on the list of devices authorized to be onboarded. 1355 

6. A secure (i.e., encrypted) channel is established between the network onboarding component 1356 

and the device. 1357 

7. The device sends its application-layer bootstrapping information to the network onboarding 1358 

component. Just as the network required the trusted introduction of device network-layer 1359 

bootstrapping information in order to enable the network to authenticate the device and ensure 1360 

that the device was authorized to be network-layer onboarded, the application server requires 1361 

the trusted introduction of device application-layer bootstrapping information to enable the 1362 

application server to authenticate the device at the application layer and ensure that the device 1363 

is authorized to be application-layer onboarded. Because this application-layer bootstrapping 1364 

information is being sent over a secure channel, its integrity and confidentiality are ensured. 1365 

8. The network onboarding component forwards the device’s application-layer bootstrapping 1366 

information to the application server. In response, the application server provides its 1367 

application-layer bootstrapping information to the network-layer onboarding component for 1368 

eventual forwarding to the IoT device. The IoT device needs the application server’s 1369 

bootstrapping information to enable the device to authenticate the application server and 1370 

ensure that it is authorized to application-layer onboard the device. 1371 

9. The network onboarding component uses the secure channel that it has established with the IoT 1372 

device to confidentially send the device its unique network credentials. Along with these 1373 

network credentials, the network onboarding component also sends the IoT device the 1374 

application server’s bootstrapping information. Because the application server’s bootstrapping 1375 

information is being sent over a secure channel, its integrity and confidentiality are ensured.z 1376 

10. The device uses its newly provisioned network credentials to establish secure connectivity to the 1377 

network. 1378 

11. Using the device and application server application-layer bootstrapping information that has 1379 

already been exchanged in a trusted manner, the application server authenticates the identity 1380 

of the IoT device and the IoT device authenticates the identity of the application server. Then 1381 

they establish a secure (i.e., encrypted) channel. 1382 

12. The application server application layer onboards the IoT device. This application-layer 1383 

onboarding process may take a variety of forms. For example, the application server may 1384 

download an application to the device for the device to execute. It may associate the device 1385 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

with a trusted lifecycle management service that performs ongoing updates of the IoT device to 1386 

patch it as needed to ensure that the device remains compliant with policy. 1387 

4.5 Continuous Verification 1388 

Figure 4-6 depicts the steps that are performed to support continuous verification. The figure uses two 1389 

colors. The light-blue component and its accompanying steps (written in light-blue font) depict the 1390 

portion of the diagram that is specific to continuous authorization. The dark-blue components are those 1391 

used in the network-layer onboarding process. They and their accompanying steps (written in black 1392 

font) are identical to those found in the trusted network-layer onboarding process diagram provided in 1393 

Figure 4-4, except for step 5, Verify that device is authorized to be onboarded to the network. 1394 

Figure 4-6 Continuous Verification 1395 

 

When continuous verification is being supported, step 5 is broken into two separate steps, as shown in 1396 

Figure 4-6. Instead of the network onboarding component directly contacting the network-layer 1397 

onboarding authorization service to see if the device is owned by the network and on the list of devices 1398 

authorized to be onboarded (as shown in the trusted network-layer onboarding architecture depicted in 1399 

Figure 4-4), a set of other enterprise policies may also be applied to determine if the device is authorized 1400 

to be onboarded. The application of these policies is represented by the insertion of the Continuous 1401 

Authorization Service (CAS) component in the middle of the exchange between the network onboarding 1402 

component and the network-layer onboarding authorization service. 1403 

For example, the CAS may have received external threat information indicating that certain device types 1404 

have a vulnerability. If so, when the CAS receives a request from the network-layer onboarding 1405 

component to verify that a device of this type is authorized to be onboarded to the network (Step 5a), it 1406 

would immediately respond to the network-layer onboarding component that the device is not 1407 

authorized to be onboarded to the network. If the CAS has not received any such threat information 1408 

IoT Devices

Access Point, Router, or Switch

Network 

Onboarding 

Component

(7) Provision network 

credentials to the 

device

(8) Use network credentials to 

connect to the network securely

(1)Device enters onboarding mode

(2)Trusted introduction of device 

and network bootstrapping 

information

(3) Device and network 

authentication

(4) Verify that network is authorized 

to onboard the device

(6) Establish a secure channel 

(denoted by     )        

(5a) Verify that 

device is authorized 

to be onboarded to 

the network

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage

Continuous 

Authorization 

Service

(9) Monitor and control the router 

according to policy on an ongoing basis 

to verify that the device and its 

operations continue to be authorized

(5b) Verify that 

device is authorized 

to be onboarded to 

the network



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

about the device and it checks all its policies and determines that the device should be permitted to be 1409 

onboarded, it will forward the request to the network-layer onboarding authorization service (Step 5b) 1410 

and receive a response (Step 5b) that it will forward to the network onboarding component (Step 5a). 1411 

As depicted by Step 9, the CAS also continues to operate after the device connects to the network and 1412 

executes its application. The CAS performs asynchronous calls to the network router to monitor the 1413 

device on an ongoing basis, providing policy-based verification and authorization checks on the device 1414 

throughout its lifecycle. 1415 

   



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

5 Laboratory Physical Architecture 1416 

Figure 5-1 depicts the high-level physical architecture of the NCCoE IoT Onboarding laboratory 1417 

environment in which the five trusted IoT device network-layer onboarding project builds, and the 1418 

factory provisioning builds are being implemented. The NCCoE provides virtual machine (VM) resources 1419 

and physical infrastructure for the IoT Onboarding lab. As depicted, the NCCoE IoT Onboarding 1420 

laboratory hosts collaborator hardware and software for the builds. The NCCoE also provides 1421 

connectivity from the IoT Onboarding lab to the NIST Data Center, which provides connectivity to the 1422 

internet and public IP spaces (both IPv4 and IPv6). Access to and from the NCCoE network is protected 1423 

by a firewall. 1424 

Access to and from the IoT Onboarding lab is protected by a pfSense firewall, represented by the brick 1425 

box icon in Figure 5-1. This firewall has both IPv4 and IPv6 (dual stack) configured. The IoT Onboarding 1426 

lab network infrastructure includes a shared virtual environment that houses a domain controller and a 1427 

vendor jumpbox. These components are used across builds where applicable. It also contains five 1428 

independent virtual LANs, each of which houses a different trusted network-layer onboarding build. 1429 

The IoT Onboarding laboratory network has access to cloud components and services provided by the 1430 

collaborators, all of which are available via the internet. These components and services include Aruba 1431 

Central and the UXI Cloud (Build 1), SEALSQ INeS (Build 1), Platform Controller (Build 2), a MASA server 1432 

(Build 3), Kudelski IoT keySTREAM application-layer onboarding service and AWS IoT (Build 4), and a 1433 

Manufacturer Provisioning Root (Build 5). 1434 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

Figure 5-1 NCCoE IoT Onboarding Laboratory Physical Architecture 1435 

 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

All five network-layer onboarding laboratory environments, as depicted in the diagram, have been 1436 

installed: 1437 

▪ The Build 1 (i.e., the Wi-Fi Easy Connect, Aruba/HPE build) network infrastructure within the 1438 
NCCoE lab consists of two components: the Aruba Access Point and the Cisco Switch. Build 1 1439 
also requires support from Aruba Central for network-layer onboarding and the UXI Cloud for 1440 
application-layer onboarding. These components are in the cloud and accessed via the internet. 1441 
The IoT devices that are onboarded using Build 1 include the UXI Sensor and the Raspberry Pi. 1442 

▪ The Build 2 (i.e., the Wi-Fi Easy Connect, CableLabs, OCF build) network infrastructure within the 1443 
NCCoE lab consists of a single component: the Gateway Access Point. Build 2 requires support 1444 
from the Platform Controller, which also hosts the IoTivity Cloud Service. The IoT devices that 1445 
are onboarded using Build 2 include three Raspberry Pis. 1446 

▪ The Build 3 (i.e., the BRSKI, Sandelman Software Works build) network infrastructure 1447 
components within the NCCoE lab include a Wi-Fi capable home router (including Join Proxy), a 1448 
DMZ switch (for management), and an ESP32A Xtensa board acting as a Wi-Fi IoT device, as well 1449 
as an nRF52840 board acting as an IEEE 802.15.4 device. A management system on a 1450 
BeagleBone Green serves as a serial console. A registrar server has been deployed as a virtual 1451 
appliance on the NCCoE private cloud system. Build 3 also requires support from a MASA server 1452 
which is accessed via the internet. In addition, a Raspberry Pi 3 provides an ethernet/802.15.4 1453 
gateway, as well as a test platform. 1454 

▪ The Build 4 (i.e., the Thread, Silicon Labs, Kudelski IoT build) network infrastructure components 1455 
within the NCCoE lab include an Open Thread Border Router, which is implemented using a 1456 
Raspberry Pi, and a Silicon Labs Gecko Wireless Starter Kit, which acts as an 802.15.4 antenna. 1457 
Build 4 also requires support from the Kudelski IoT keySTREAM service, which is in the cloud and 1458 
accessed via the internet. The IoT device that is onboarded in Build 4 is the Silicon Labs Dev Kit 1459 
(BRD2601A) with an EFR32MG24 System-on-Chip (SoC). The application service to which it 1460 
onboards is AWS IoT. 1461 

▪ The Build 5 (i.e., the BRSKI over Wi-Fi, NquiringMinds build) includes 2 Raspberry Pi 4Bs running 1462 
a Linux operating system. One Raspberry Pi acts as the pledge (or IoT Device) with an Infineon 1463 
TPM connected. The other acts as the router, registrar and MASA all in one device. This build 1464 
uses the open source TrustNetZ distribution, from which the entire build can be replicated 1465 
easily. The TrustNetZ distribution includes source code for the IoT device, the router, the access 1466 
point, the network onboarding component, the policy engine, the manufacturer services, the 1467 
registrar and a demo application server. TrustNetZ makes use of NquiringMinds tdx Volt to issue 1468 
and validate verifiable credentials. 1469 

▪ The BRSKI factory provisioning build is deployed in the Build 5 environment. The IoT device in 1470 
this build is a Raspberry Pi equipped with an Infineon Optiga SLB 9670 TPM 2.0, which gets 1471 
provisioned with birth credentials (i.e., a public/private key pair and an IDevID). The BRSKI 1472 
factory provisioning build also uses an external certificate authority hosted on the premises of 1473 
NquiringMinds to provide the device certificate signing service. 1474 

▪ The Wi-Fi Easy Connect factory provisioning build is deployed in the Build 1 environment. Its IoT 1475 
devices are Raspberry Pis equipped with a SEALSQ VaultIC Secure Element, which gets 1476 
provisioned with a DPP URI. The Secure Element can also be provisioned with an IDevID 1477 
certificate signed by the SEALSQ INeS certification authority, which is independent of the DPP 1478 
URI. Code for performing the factory provisioning is stored on an SD card. 1479 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

Information regarding the physical architecture of all builds, their related collaborators’ cloud 1480 

components, and the shared environment, as well as the baseline software running on these physical 1481 

architectures, are described in the subsections below. Table 5-1 summarizes the builds that were 1482 

implemented and provides links to the appendices where each is described in detail. 1483 

Table 5-1 Build 1 Products and Technologies 1484 

Build Network-Layer 
Protocols 

Build Champions Link to Details 

Onboarding Builds 

Build 1 Wi-Fi Easy 
Connect 

Aruba/HPE Appendix C 

Build 2 Wi-Fi Easy 
Connect 

CableLabs and OCF Appendix D 

Build 3 BRSKI Sandelman 
Software Works 

Appendix E 

Build 4 Thread Silicon Labs and 
Kudelski IoT 

Appendix F 

Build 5 BRSKI over Wi-Fi NquiringMinds Appendix G 

Factory Provisioning Builds 

BRSKI with Build 5 BRSKI over WIFI SEALSQ and 
NquiringMinds 

Appendix H.3 

Wi-Fi Easy Connect 
with Build 1 

Wi-Fi Easy 
Connect 

SEALSQ and 
Aruba/HPE 

Appendix H.4 

 

5.1 Shared Environment 1485 

The NCCoE IoT Onboarding laboratory contains a shared environment to host several baseline services 1486 

in support of the builds. These baseline services supported configuration and integration work in each of 1487 

the builds and allowed collaborators to work together throughout the build process. This shared 1488 

environment is contained in its own network segment, with access to/from the rest of the lab 1489 

environment closely controlled. In addition, each of the systems in the shared environment is hardened 1490 

with baseline configurations. 1491 

5.1.1 Domain Controller 1492 

The Domain Controller provides Active Directory and Domain Name System (DNS) services supporting 1493 

network access and access control in the lab. It runs on Windows Server 2019. 1494 

5.1.2 Jumpbox 1495 

The jumpbox provides secure remote access and management to authorized collaborators on each of 1496 

the builds. It runs on Windows Server 2019. 1497 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture 1498 

Figure 5-2 is a view of the high-level physical architecture of Build 1 in the NCCoE IoT Onboarding 1499 

laboratory. The build components include an Aruba Wireless Access Point, Aruba Central, UXI Cloud, a 1500 

Cisco Catalyst switch, a SEALSQ INeS CMS CA, and the IoT devices to be onboarded, which include both a 1501 

Raspberry Pi and a UXI sensor. Most of these components are described in Section 3.4.1 and Section 1502 

3.4.3. 1503 

▪ The Aruba Access Point acts as the DPP Configurator and relies on the Aruba Central cloud 1504 
service for authentication and management purposes. 1505 

▪ Aruba Central ties together the IoT Operations, Client Insights, and Cloud Auth services to 1506 
support the network-layer onboarding operations of the build. It also provides an API to support 1507 
the device ownership and bootstrapping information transfer process. 1508 

▪ The Cisco Catalyst Switch provides Power-over-Ethernet and network connectivity to the Aruba 1509 
Access Point. 1510 

▪ The UXI Sensor acts as an IoT device and onboards to the network via Wi-Fi Easy Connect. After 1511 
network-layer onboarding, it performs independent (see Section 3.3.2) application-layer 1512 
onboarding. Once it has application-layer onboarded and is operational on the network, it does 1513 
passive and active monitoring of applications and services and will report outages, disruptions, 1514 
and quality of service issues. 1515 

▪ UXI Cloud is an HPE cloud service that the UXI sensor contacts as part of the application-layer 1516 
onboarding process. The UXI sensor downloads a customer-specific configuration from the UXI 1517 
Cloud so that the UXI sensor can learn about the customer networks and services it needs to 1518 
monitor. 1519 

▪ The Raspberry Pi acts as an IoT device and onboards to the network via Wi-Fi Easy Connect. 1520 

▪ SEALSQ Certificate Authority has been integrated with Build 1 to sign network credentials that 1521 
are issued to IoT devices. 1522 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

Figure 5-2 Physical Architecture of Build 1 1523 

 

5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture 1524 

Figure 5-3 is a view of the high-level physical architecture of the Wi-Fi Easy Connect Factory Provisioning 1525 

Build in the NCCoE IoT Onboarding laboratory. The build components include the IoT device, an SD card 1526 

with factory provisioning code on it, and a Secure Element. See Appendix H.4 for additional details on 1527 

the Wi-Fi Easy Connect Factory Provisioning Build. 1528 

▪ A UXI sensor. 1529 

▪ The IoT Device is a Raspberry Pi. 1530 

▪ The Secure Element is a SEALSQ VaultIC Secure Element and is interfaced with the Raspberry Pi. 1531 
The Secure Element both generates and stores the key material necessary to support the DPP 1532 
URI during the Factory Provisioning Process. 1533 

▪ An SD card with factory provisioning code. 1534 

▪ Aruba Central provides an API to ingest the DPP URI in support of the device ownership and 1535 
bootstrapping information transfer process. 1536 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 43 

Figure 5-3 Physical Architecture of Wi-Fi Easy Connect Factory Provisioning Build 1537 

 

5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture 1538 

Figure 5-3 is a view of the high-level physical architecture of Build 2 in the NCCoE IoT Onboarding 1539 

laboratory. The Build 2 components include the Gateway Access Point, three IoT devices, and the 1540 

Platform Controller, which hosts the application-layer IoTivity service. 1541 

▪ The Gateway Access Point acts as the Custom Connectivity Gateway Agent described in Section 1542 
3.4.2.2 and controls all network-layer onboarding activity within the network. It also hosts OCF 1543 
IoTivity functions, such as the OCF OBT and the OCF Diplomat. 1544 

▪ The Platform Controller described in Section 3.4.2.1 provides management capabilities for the 1545 
Custom Connectivity Gateway Agent. It also hosts the application-layer IoTivity service for the 1546 
IoT devices as described in Section 3.4.8.1. 1547 

▪ The IoT devices serve as reference clients, as described in Section 3.4.2.3. They run OCF 1548 
reference implementations. The IoT devices are onboarded to the network and complete both 1549 
application-layer and network-layer onboarding. 1550 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 44 

Figure 5-4 Physical Architecture of Build 2 1551 

 

5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture 1552 

Figure 5-4 is a view of the high-level physical architecture of Build 3 in the NCCoE IoT Onboarding 1553 

laboratory. The Build 3 components include the onboarding router, a Registrar Server, a MASA server, a 1554 

DMZ switch, IoT devices, a serial console, and an 802.15.4 gateway. 1555 

▪ The onboarding router is a Turris MOX router running OpenWRT. The onboarding router 1556 
quarantines the IoT devices until they complete the BRSKI onboarding process. 1557 

▪ The owner’s Registrar Server hosts the Minerva Fountain Join Registrar Coordinator application 1558 
running in a virtual machine. The Registrar Server determines whether or not a device meets the 1559 
criteria to join the network. 1560 

▪ The MASA server for this build is a Minerva Highway MASA server as outlined in Section 3.4.9.1. 1561 
The role of the MASA server is to receive the voucher-request from the Registrar Server and 1562 
confirm that the Registrar Server has the right to own the device. 1563 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 45 

▪ The DMZ switch is a basic Netgear switch that segments the build from the rest of the lab. 1564 

▪ The IoT devices include an ESP32 Xtensa device with Wi-Fi that will be tested with FreeRTOS and 1565 
RIOT-OS, a Raspberry Pi 3 running Raspbian 11, and an nRF52840 with an 802.15.4 radio that is 1566 
running RIOT-OS. The IoT devices are currently not used in the build but will serve as clients to 1567 
be onboarded onto the network in a future implementation of the build. 1568 

▪ The Sandelman Software Works Reach Pledge Simulator is the device that is onboarded to the 1569 
network in the current build. 1570 

▪ The serial console is a BeagleBone Green with an attached USB hub. The serial console is used to 1571 
access the IoT devices for diagnostic purposes. It also provides power and power control for 1572 
USB-powered devices. 1573 

▪ The 802.15.4 gateway is integrated into the Raspberry Pi 3 via an OpenMote daughter card. This 1574 
gateway will serve to onboard one of the IoT devices in a future implementation of this build. 1575 

Figure 5-5 Physical Architecture of Build 3 1576 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 46 

5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture 1577 

Figure 5-6 is a view of the high-level physical architecture of Build 4 in the NCCoE IoT Onboarding 1578 

laboratory. The Build 4 components include a keySTREAM server, an AWS IoT server, an OpenThread 1579 

Border Router, and a Thread IoT device. 1580 

▪ The keySTREAM server described in Section 3.4.5.1 is the application layer onboarding service 1581 
provided by Kudelski IoT. The IoT device will authenticate to keySTREAM using a Silicon Labs 1582 
chip birth certificate and private key and leveraging Silicon Labs’ Secure Engine in the 1583 
EFR32MG24 chipset (“Secure Vault(TM) High” which is security certified Platform Security 1584 
Architecture (PSA)/Security Evaluation Standard for IoT Platforms (SESIP) Level 3 to protect that 1585 
birth identity with Secure Boot, Secure Debug, and physically unclonable function (PUF) 1586 
wrapped key storage and hardware tamper protection). 1587 

▪ The AWS IoT server provides the MQTT test client for the trusted application-layer onboarding. 1588 
The Proof of Possession Certificate is provisioned for the device using a registration code from 1589 
the AWS server. 1590 

▪ The OpenThread Border Router is run on a Raspberry Pi 3B and serves as the Thread 1591 
Commissioner and Leader. It communicates with the IoT device by means of a Silicon Labs 1592 
Gecko Wireless Devkit which serves as the 802.15.4 antenna for the build. 1593 

▪ The IoT Device in this build is a Silicon Labs Thunderboard (BRD2601A) containing the 1594 
EFR32MG24Bx 15.4 SoC with Secure Vault (TM) High running the Thread protocol. It serves as 1595 
the child node on the Thread network and is onboarded onto AWS IoT Core using credentials 1596 
provisioned from the Kudelski keySTREAM service. 1597 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 47 

Figure 5-6 Physical Architecture of Build 4 1598 

 

5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture 1599 

Figure 5-6 is a view of the high-level physical architecture of Build 5 in the NCCoE IoT Onboarding 1600 

laboratory. The Build 5 components include a MASA, Registrar, Router Access Point, an IoT Device, and a 1601 

Secure Element: 1602 

▪ A Raspberry Pi 4B serves as the MASA, Registrar and Router Access Point for the local network. 1603 
The role of the MASA is to receive the voucher-request from the Registrar and confirm that the 1604 
Registrar has the right to own the device. The registrar self-signs credentials, namely the Local 1605 
Device Identifier (LDevID), issued to the IoT devices. The pledge (IoT device) gets its IDevID 1606 
certificate for device identity from the Manufacturer Provisioning Root (MPR) server during the 1607 
factory provisioning process, it can be assumed to be present on the device at the point of 1608 
onboarding. The Registrar determines whether or not a device meets the criteria to join the 1609 
network. The router access point runs an open and closed BRSKI network, the closed BRSKI 1610 
network may only be accessed through secure onboarding, which is performed via the open 1611 
network. The registrar leverages a local tdx Volt instance to sign and verify verifiable credentials. 1612 

▪ Raspberry Pi 4Bs act as IoT Devices (pledges) for this build. 1613 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 48 

▪ The Secure Element is an Infineon Optiga SLB 9670 TPM 2.0 Secure Element, and both generates 1614 
and stores the key material necessary to support the IDevID certificate during the Factory 1615 
Provisioning Process, as well as the onboarding process to request the voucher from the MASA 1616 
via the registrar and the request to the registrar to sign the LDevID. The system can also be 1617 
configured to use a SEALSQ VaultIC408 secure element. See Appendix H.3 for additional details 1618 
on the BRSKI factory provisioning builds. 1619 

Figure 5-7 Physical Architecture of Build 5 1620 

 

5.6.1 BRSKI Factory Provisioning Build Physical Architecture 1621 

Figure 5-8 is a view of the high-level physical architecture of the BRSKI Factory Provisioning Build in the 1622 

NCCoE IoT Onboarding laboratory. This build uses the same IoT device as Build 5: a Raspberry Pi 1623 

integrated with an Infineon Optiga SLB 9670 TPM 2.0 Secure Element. The factory provisioning code is 1624 

hosted on an SD card. When a provisioning event is triggered the IoT device will attempt a connection to 1625 

a Manufacturer Provisioning Root (MPR) server that sits in the cloud and acts as the certification 1626 

authority. It signs the IDevID (X.509) certificate, which is then passed back to the IoT device for 1627 

installation. As in Build 5, the Router + Services hosts a MASA, which is given device identity information 1628 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 49 

in order to verify voucher requests during the BRKSI process. See Appendix H.3 for additional details on 1629 

the BRSKI factory provisioning builds. 1630 

Figure 5-8 Physical Architecture of BRSKI Factory Provisioning Build 1631 

 

6 General Findings 1632 

6.1 Wi-Fi Easy Connect 1633 

The Wi-Fi Easy Connect solution that was demonstrated in Build 1 and Build 2 supports trusted network-1634 

layer onboarding in a manner that is secure, efficient, and flexible enough to meet the needs of various 1635 

use cases. It is simple enough to be used by consumers, who typically do not have specialized technical 1636 

knowledge. In addition, to meet the needs of enterprises, it may be used to onboard a large number of 1637 

devices quickly. Builds 1 and 2 are implementations of this protocol, and they are interoperable: IoT 1638 

devices that were provisioned for use with Build 1 were able to be onboarded onto the network using 1639 

Build 2, and IoT devices that were provisioned for use with Build 2 were able to be onboarded onto the 1640 

network using Build 1. 1641 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 50 

6.1.1 Mutual Authentication 1642 

Although DPP is designed to support authentication of the network by the IoT device as well as 1643 

authentication of the device by the network, the Wi-Fi Easy Connect solutions that were demonstrated 1644 

in builds 1 and 2 do not demonstrate mutual authentication at the network layer. They only support 1645 

authentication of the device. In order to authenticate the network, the device needs to be provided with 1646 

the DPP URI for the network configurator, which means that the device has to have a functional user 1647 

interface so that the DPP URI can be input into it. The devices being used in builds 1 and 2 do not have 1648 

user interfaces. 1649 

6.1.2 Mutual Authorization 1650 

When using DPP, device authorization is based on possession of the device’s DPP URI. When the device 1651 

is acquired, its DPP URI is provided to the device owner. A trusted administrator of the owner’s network 1652 

is assumed to approve addition of the device’s DPP URI to the database or cloud service where the DPP 1653 

URIs of authorized devices are stored. During the onboarding process, the fact that the owning network 1654 

is in possession of the device’s DPP URI indicates to the network that the device is authorized to join it. 1655 

DPP supports network authorization using the Resurrecting Duckling security model [13]. Although the 1656 

device cannot cryptographically verify that the network is authorized to onboard it, the fact that the 1657 

network possesses the device’s public key is understood by the device to implicitly authorize the 1658 

network to onboard the device. The assumption is that an unauthorized network would not have 1659 

possession of the device and so would not be able to obtain the device’s public key. While this assurance 1660 

of authorization is not cryptographic, it does provide some level of assurance that the “wrong” network 1661 

won’t onboard it. 1662 

6.1.3 Secure Storage 1663 

The UXI sensor used in Build 1 has a TPM where the device’s birth credential and private key are stored, 1664 

providing a secure root of trust. However, the lack of secure storage on some of the other IoT devices 1665 

(e.g., the Raspberry Pis) used to demonstrate onboarding in Build 2 is a current weakness. Ensuring that 1666 

the confidentiality of a device’s birth, network, and other credentials is protected while stored on the 1667 

device is an essential aspect of ensuring the security of the network-layer onboarding process, the 1668 

device, and the network itself. To fully demonstrate trusted network-layer onboarding, devices with 1669 

secure storage should be used in the future whenever possible. 1670 

6.2 BRSKI 1671 

The BRSKI solution that is demonstrated in Build 3 supports trusted network-layer onboarding in a 1672 

manner that is secure, efficient, and able to meet the needs of enterprises. It may be used to onboard a 1673 

large number of devices quickly onto a wired network. This BRSKI build is based on IETF RFC 8995 [7]. 1674 

The build has a reliance on the manufacturer to provision keys for the onboarding device and has a 1675 

reliance on a cloud-based service for the MASA server. The BRSKI solution that is demonstrated in Build 1676 

5 provides similar trusted functionality for onboarding devices onto a Wi-Fi network. This BRSKI build is 1677 

based on an IETF individual draft describing how to run BRSKI over IEEE 802.11 [10]. 1678 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 51 

6.2.1 Reliance on the Device Manufacturer 1679 

Organizations implementing BRSKI (whether wired or over Wi-Fi) should be aware of the reliance that 1680 

they will have on the IoT device manufacturer in properly and securely provisioning their devices. If keys 1681 

become compromised, attackers may be able to onboard their own devices to the network, revoke 1682 

certificates to prevent legitimate devices from being onboarded, or onboard devices belonging to others 1683 

onto the attacker’s network using the attacker’s MASA. These concerns are addressed in depth in RFC 1684 

8995 section 11.6. If a device manufacturer goes out of business or otherwise shuts down their MASA 1685 

servers, the onboarding services for their devices will no longer function. 1686 

During operation, onboarding services may become temporarily unavailable for a number of reasons. In 1687 

the case of a DoS attack on the MASA, server maintenance, or other outage on the part of the 1688 

manufacturer, an organization will not be able to access the MASA. These concerns are addressed in 1689 

depth in RFC 8995 section 11.1. 1690 

6.2.2 Mutual Authentication 1691 

BRSKI supports authentication of the IoT device by the network as well as authentication of the network 1692 

by the IoT device. The Registrar authenticates the device when it receives the IDevID from the device. 1693 

The MASA confirms that the Registrar is the legitimate owner or authorized onboarder of the device and 1694 

issues a voucher. The device is able to authenticate the network using the voucher that it receives back 1695 

from the MASA. This process is explained in depth in RFC 8995 section 11.5. 1696 

6.2.3 Mutual Authorization 1697 

BRSKI authorization for the IoT device is done via the voucher that is returned to the Registrar from the 1698 

MASA. The voucher states which network the IoT device is authorized to join. The Registrar determines 1699 

the level of access the IoT device has to the network. 1700 

6.2.4 Secure Storage 1701 

Build 5 uses a Secure Element attached to the IoT devices (e.g., Raspberry Pi devices) to store the IDevID 1702 

after it is generated during the factory provisioning process (see Appendix H.3 for more details), 1703 

however the LDevID is not stored on the Secure Element after network-layer onboarding is completed. 1704 

The lack of secure storage on the IoT devices (e.g., the Raspberry Pi devices) used to demonstrate 1705 

onboarding in Build 3 is a current weakness. Ensuring that the confidentiality of a device’s birth, 1706 

network, and other credentials is protected while stored on the device is an essential aspect of ensuring 1707 

the security of the network-layer onboarding process, the device, and the network itself. To fully 1708 

demonstrate trusted network-layer onboarding, devices with secure storage should be used in the 1709 

future whenever possible. 1710 

6.3 Thread 1711 

We do not have any findings with respect to trusted network-layer onboarding using the Thread 1712 

commissioning protocol. Build 4 demonstrated the connection of an IoT device to a Thread network, but 1713 

not trusted onboarding of the Thread network credentials to the device. In Build 4, a passphrase is 1714 

generated on the IoT device and then a person is required to enter this passphrase into the OpenThread 1715 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 52 

Border Router’s (OTBR) web interface. This passphrase serves as a pre-shared key that the device uses 1716 

to join the Thread network. Due to the fact that a person must be privy to this passphrase in order to 1717 

provide it to the OTBR, this network-layer onboarding process is not considered to be trusted, according 1718 

to the definition of trusted network-layer onboarding that we provided in Section 1.2. 1719 

After connecting to the Thread network using the passphrase, the Build 4 device was successfully able to 1720 

gain access to the public IP network via a border router. This enabled the IoT device that was 1721 

communicating using the Thread wireless protocol to communicate with cloud services and use them to 1722 

successfully perform trusted application-layer onboarding to the AWS IoT Core. 1723 

6.4 Application-Layer Onboarding 1724 

We successfully demonstrated both: 1725 

▪ streamlined application-layer onboarding (to the OCF security domain in Build 2) and 1726 

▪ independent application-layer onboarding (to the UXI cloud in Build 1 and to the AWS IoT Core 1727 
using the Kudelski keySTREAM service in Build 4). 1728 

6.4.1 Independent Application-Layer Onboarding 1729 

Support for independent application-layer onboarding requires the device manufacturer to pre-1730 

provision the device with software to support application-layer onboarding to the specific application 1731 

service (e.g., the UXI cloud or the AWS IoT Core) desired. The Kudelski keySTREAM service supports the 1732 

application-layer onboarding provided in Build 4. KeySTREAM is a device security management service 1733 

that runs as a SaaS platform on the Amazon cloud. Build 4 relies on an integration that has been 1734 

performed between Silicon Labs and Kudelski keySTREAM. KeySTREAM has integrated software libraries 1735 

with the Silicon Lab EFR32MG24 (MG24) IoT device’s secure vault to enable the private signing key that 1736 

is associated with an application-layer certificate to be stored into the secure vault using security 1737 

controls that are available on the MG24. This integration ensures that application-layer credentials can 1738 

be provisioned into the vault securely such that no key material is misused or exposed. 1739 

Because the device is prepared for application-layer onboarding on behalf of a specific, pre-defined 1740 

customer in Build 4 and this ownership information is sealed into device firmware, the device is 1741 

permanently identified as being owned by that customer. 1742 

6.4.2 Streamline Application-Layer Onboarding 1743 

Support for streamlined application-layer onboarding does not necessarily present such a burden on the 1744 

device manufacturer to provision application-layer onboarding software and/or credentials to the device 1745 

at manufacturing time. If desired, the manufacturer could pre-install application-layer bootstrapping 1746 

information onto the device at manufacturing time, as must be done in the independent application-1747 

layer onboarding case. Alternatively, the device manufacturer may simply ensure that the device has the 1748 

capability to generate one-time application-layer bootstrapping information at runtime and use the 1749 

secure exchanges inherent in trusted network-layer onboarding to support application-layer 1750 

onboarding. 1751 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 53 

7 Additional Build Considerations 1752 

The Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management 1753 

project is now complete, so no additions or changes to the existing builds are planned as part of this 1754 

project effort. As trusted network-layer onboarding is increasingly adopted, however, others may wish 1755 

to continue implementation efforts to develop new build capabilities or enhance existing ones, so it is 1756 

worth noting potential areas of further work. Various ways in which individual builds could be enhanced 1757 

are noted in the appendices that detail each build’s technologies and architectures. For example, some 1758 

builds could be enhanced by the addition of architectural components that they have not yet 1759 

implemented, such as secure device storage; the use of an independent, third-party certificate signing 1760 

authority; support for network-layer onboarding using Thread MeshCoP; support for application-layer 1761 

onboarding; and support (or enhanced support) for ongoing device authorization. In addition to adding 1762 

components to support these capabilities, future work could potentially involve demonstration of 1763 

application-layer onboarding using the FIDO Alliance’s FIDO Device Onboard (FDO) specification and/or 1764 

the Connectivity Standards Alliance (CSA) MATTER specification. Other future work could involve 1765 

integrating additional security mechanisms with network-layer onboarding, beginning at device boot-up 1766 

and extending through all phases of the device lifecycle, to further protect the device and, by extension, 1767 

the network. For example, future builds could include the capability to demonstrate the integration of 1768 

trusted network-layer onboarding with zero trust-inspired capabilities such as those described in the 1769 

following subsections. In addition, the scope of implementation efforts could potentially be expanded 1770 

beyond the current focus on IP-based networks. While this project’s goal has been to tackle what is 1771 

currently implementable, the subsections that follow briefly discuss areas that could potentially be 1772 

addressed by others in the future. 1773 

7.1 Network Authentication 1774 

Future builds could be designed to demonstrate network authentication in addition to device 1775 

authentication as part of the network-layer onboarding process. Network authentication enables the 1776 

device to verify the identity of the network that will be taking control of it prior to permitting itself to be 1777 

onboarded. 1778 

7.2 Device Communications Intent 1779 

Future builds could be designed to demonstrate the use of network-layer onboarding protocols to 1780 

securely transmit device communications intent information from the device to the network (i.e., to 1781 

transmit this information in encrypted form with integrity protections). Secure conveyance of device 1782 

communications intent information, combined with enforcement of it, would enable the build to ensure 1783 

that IoT devices are constrained to sending and receiving only those communications that are explicitly 1784 

required for each device to fulfill its purpose. Build 5 currently enforces device communications intent as 1785 

part of its continuous assurance process. Build 5 determines device communications intent information 1786 

(e.g., the device’s MUD file URL) based on device type rather than conveying this information from the 1787 

device to the network during onboarding. 1788 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 54 

7.3 Network Segmentation 1789 

Future builds could demonstrate the ability of the onboarding network to dynamically assign each new 1790 

device that is permitted to join the network to a specific subnetwork. The router may have multiple 1791 

network segments configured to which an onboarded device may be dynamically assigned. The decision 1792 

regarding which segment (subnetwork) to which to assign the device could potentially be based on the 1793 

device’s DHCP fingerprint, other markers of the device’s type, or some indication of the device’s 1794 

trustworthiness, subject to organizational policy. 1795 

7.4 Integration with a Lifecycle Management Service 1796 

Future builds could demonstrate trusted network-layer onboarding of a device, followed by streamlined 1797 

trusted application-layer onboarding of that device to a lifecycle management application service. Such 1798 

a capability would ensure that, once connected to the local network, the IoT device would automatically 1799 

and securely establish an association with a trusted lifecycle management service that is designed to 1800 

keep the device updated and patched on an ongoing basis. 1801 

7.5 Network Credential Renewal 1802 

Some devices may be provisioned with network credentials that are X.509 certificates and that will, 1803 

therefore, eventually expire. Future build efforts could explore and demonstrate potential ways of 1804 

renewing such credentials without having to reprovision the credentials to the devices. 1805 

7.6 Integration with Supply Chain Management Tools 1806 

Future work could include definition of an open, scalable supply chain integration service that can 1807 

provide additional assurance of device provenance and trustworthiness automatically as part of the 1808 

onboarding process. The supply chain integration service could be integrated with the authorization 1809 

service to ensure that only devices whose provenance meets specific criteria and that reach a threshold 1810 

level of trustworthiness will be onboarded or authorized. 1811 

7.7 Attestation 1812 

Future builds could integrate device attestation capabilities with network-layer onboarding to ensure 1813 

that only IoT devices that meet specific attestation criteria are permitted to be onboarded. In addition 1814 

to considering the attestation of each device as a whole, future attestation work could also focus on 1815 

attestation of individual device components, so that detailed attestation could be performed for each 1816 

board, integrated circuit, and software program that comprises a device. 1817 

7.8 Mutual Attestation 1818 

Future builds could implement mutual attestation of the device and its application services. In one 1819 

direction, device attestation could be used to enable a high-value application service to determine 1820 

whether a device should be given permission to access it. In the other direction, attestation of the 1821 

application service could be used to enable the device to determine whether it should give the 1822 

application service permission to access and update the device. 1823 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 55 

7.9 Behavioral Analysis 1824 

Future builds could integrate artificial intelligence (AI) and machine learning (ML)-based tools that are 1825 

designed to analyze device behavior to spot anomalies or other potential signs of compromise. Any 1826 

device that is flagged as a potential threat by these tools could have its network credentials invalidated 1827 

to effectively evict it from the network, be quarantined, or have its interaction with other devices 1828 

restricted in some way. 1829 

7.10 Device Trustworthiness Scale 1830 

Future efforts could incorporate the concept of a device trustworthiness scale in which information 1831 

regarding device capabilities, secure firmware updates, the existence (or not) of a secure element for 1832 

private key protection, type and version of each of the software components that comprise the device, 1833 

etc., would be used as input parameters to calculate each device’s trustworthiness value. Calculating 1834 

such a value would essentially provide the equivalent of a background check. A history for the device 1835 

could be maintained, including information about whether it has ever been compromised, if it has a 1836 

known vulnerability, etc. Such a trustworthiness value could be provided as an onboarding token or 1837 

integrated into the authorization service so permission to onboard to the network, or to access certain 1838 

resources once joined, could be granted or denied based on historical data and trustworthiness 1839 

measures. 1840 

7.11 Resource Constrained Systems 1841 

At present, onboarding solutions for technologies such as Zigbee, Z-Wave, and BLE use their own 1842 

proprietary mechanisms or depend on gateways. In the future, efforts could be expanded to include 1843 

onboarding in highly resource-constrained systems and non-IP systems without using gateways. Future 1844 

work could include trying to perform trusted onboarding in these smaller microcontroller-constrained 1845 

spaces in a standardized way with the goal of bringing more commonality across various solutions 1846 

without having to rely on IP gateways. 1847 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 56 

1848 Appendix A List of Acronyms 
AAA Authentication, Authorization, and Accounting 

ACL Access Control List 

AES Advanced Encryption Standard 

AI Artificial Intelligence 

AP Access Point 

API Application Programming Interface 

AWS Amazon Web Services 

BLE Bluetooth Low Energy 

BRSKI Bootstrapping Remote Secure Key Infrastructure 

BSS Basic Service Set 

CA Certificate Authority 

CAS Continuous Authorization Service 

CMS Certificate Management System 

CPU Central Processing Unit 

CRADA Cooperative Research and Development Agreement 

CRL Certificate Revocation List 

DHCP Dynamic Host Configuration Protocol 

DMZ Demilitarized Zone 

DNS Domain Name System 

DPP Device Provisioning Protocol 

DTLS Datagram Transport Layer Security 

ECC Elliptic Curve Cryptography 

ESP (Aruba) Edge Services Platform 

ESS Extended Service Set 

EST Enrollment over Secure Transport 

HPE Hewlett Packard Enterprise 

HSM Hardware Security Module 

HTTPS Hypertext Transfer Protocol Secure 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 57 

IDevID Initial Device Identifier 

IE Information Element 

IEC International Electrotechnical Commission 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

IPsec Internet Protocol Security 

ISO International Organization for Standardization 

LAN Local Area Network, Local Area Networking 

LDevID Local Device Identifier 

LmP Linux microPlatform 

MASA Manufacturer Authorized Signing Authority 

MeshCoP Thread Mesh Commissioning Protocol 

ML Machine Learning 

mPKI Managed Public Key Infrastructure 

MUD Manufacturer Usage Description 

NAC Network Access Control 

NCCoE National Cybersecurity Center of Excellence 

NIST National Institute of Standards and Technology 

OBT Onboarding Tool 

OCF Open Connectivity Foundation 

OCSP Online Certificate Status Protocol 

OS Operating System 

OTA Over the Air 

OTBR OpenThread Border Router 

PKI Public Key Infrastructure 

PSK Pre-Shared Key 

R&D Research & Development 

RBAC Role-Based Access Control 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 58 

RCP Radio Coprocessor 

RESTful Representational State Transfer 

RFC Request for Comments 

RoT Root of Trust 

RSA Rivest-Shamir-Adleman (public-key cryptosystem) 

SaaS Software as a Service 

SE Secure Element 

SEF Secure Element Factory 

SoC System-on-Chip 

SP Special Publication 

SSID Service Set Identifier 

SSW Sandelman Software Works 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

TOFU Trust On First Use 

TPM Trusted Platform Module 

URI Uniform Resource Identifier 

UXI (Aruba) User Experience Insight 

VM Virtual Machine 

WAN Wide Area Network, Wide Area Networking 

WFA Wi-Fi Alliance 

WPA2 Wi-Fi Protected Access 2 

WPA3 Wi-Fi Protected Access 3 

 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 59 

1849 Appendix B Glossary 
Application-Layer 
Bootstrapping 
Information 

Information that the device and an application-layer service must have in order 
for them to mutually authenticate and use a trusted application-layer 
onboarding protocol to onboard a device at the application layer. There is 
application-layer bootstrapping information about the device that the network 
must be in possession of, and application-layer bootstrapping information 
about the application service that the device must be in possession of. A typical 
example of application-layer bootstrapping information that the device must 
have is the public key that corresponds to the trusted application service’s 
private key. 

Application-Layer 
Onboarding 

The process of providing IoT devices with the application-layer credentials they 
need to establish a secure (i.e., encrypted) association with a trusted 
application service. This document defines two types of application-layer 
onboarding: independent and streamlined. 

Independent 
Application-Layer 
Onboarding 

An application-layer onboarding process that does not rely on use of the 
network-layer onboarding process to transfer application-layer bootstrapping 
information between the device and the application service. 

Network-Layer 
Bootstrapping 
Information 

Information that the device and the network must have in order for them to 
use a trusted network-layer onboarding protocol to onboard a device. There is 
network-layer bootstrapping information about the device that the network 
must be in possession of, and network-layer bootstrapping information about 
the network that the device must be in possession of. A typical example of 
device bootstrapping information that the network must have is the public key 
that corresponds with the device’s private key. 

Network-Layer 
Onboarding 

The process of providing IoT devices with the network-layer credentials and 
policy they need to join a network upon deployment. 

Streamlined 
Application-Layer 
Onboarding 

An application-layer onboarding process that uses the network-layer 
onboarding protocol to securely transfer application-layer bootstrapping 
information between the device and the application service. 

Trusted Network-
Layer Onboarding 

A network-layer onboarding process that meets the following criteria: 

• provides each device with unique network credentials, 

• enables the device and the network to mutually authenticate, 

• sends devices their network credentials over an encrypted channel, 

• does not provide any person with access to the network credentials, and 

• can be performed repeatedly throughout the device lifecycle to enable: 

• the device’s network credentials to be securely managed and replaced 
as needed, and 

• the device to be securely onboarded to other networks after being 
repurposed or resold. 

  



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 60 

1850 Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE) 

1851 C.1 Technologies 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 1852 

The onboarding infrastructure and related technology components for Build 1 have been provided by 1853 

Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 1854 

The CA used for signing credentials issued to IoT devices was provided by SEALSQ, a subsidiary of 1855 

WISeKey. For more information on these collaborators and the products and technologies that they 1856 

contributed to this project overall, see Section 3.4. 1857 

Build 1 network onboarding infrastructure components within the NCCoE lab consist of the Aruba 1858 

Access Point. Build 1 also requires support from Aruba Central and the UXI Cloud, which are accessed via 1859 

the internet. IoT devices that can be network-layer onboarded using Build 1 include the Aruba/HPE UXI 1860 

sensor and CableLabs Raspberry Pi. The UXI sensor also includes the Aruba UXI Application, which 1861 

enables it to use independent (see Section 3.3.2) application-layer onboarding to be onboarded at the 1862 

application layer as well, providing that the network to which the UXI sensor is onboarded has 1863 

connectivity to the UXI Cloud via the internet. The Build 1 implementation supports the provisioning of 1864 

all three types of network credentials defined in DPP: 1865 

▪ Connector for DPP-based network access 1866 

▪ Password/passphrase/PSK for WPA3/WPA2 network access 1867 

▪ X.509 certificates for 802.1X network access 1868 

Build 1 has been integrated with the SEALSQ CA on SEALSQ INeS CMS to enable Build 1 to obtain signed 1869 

certificates from this CA when Build 1 is onboarding devices and issuing credentials for 802.1X network 1870 

access. When issuing credentials for DPP and WPA3/WPA2-based network access, the configurator does 1871 

not need to use a CA. 1872 

Table C-1 lists the technologies used in Build 1. It lists the products used to instantiate each component 1873 

of the reference architecture and describes the security function that the component provides. The 1874 

components listed are logical. They may be combined in physical form, e.g., a single piece of hardware 1875 

may house a network onboarding component, a router, and a wireless access point. 1876 

Table C-1 Build 1 Products and Technologies 1877 

Component Product Function 

Network-Layer 
Onboarding 
Component (Wi-Fi 
Easy Connect 
Configurator) 

Aruba Access Point 
with support from 
Aruba Central 

Runs the Wi-Fi Easy Connect network-layer onboarding 
protocol to interact with the IoT device to perform one-
way or mutual authentication, establish a secure 
channel, and securely provide local network credentials 
to the device. If the network credential that is being 
provided to the device is a certificate, the onboarding 
component will interact with a certificate authority to 
sign the certificate. The configurator deployed in Build 1 
supports DPP 2.0, but it is also backward compatible with 
DPP 1.0. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 61 

Component Product Function 

Access Point, 
Router, or Switch 

Aruba Access Point Wireless access point that also serves as a router. It may 
get configured with per-device access control lists (ACLs) 
and policy when devices are onboarded. 

Supply Chain 
Integration Service 

Aruba Central The device manufacturer provides device bootstrapping 
information to the HPE Cloud via the REST API that is 
documented in the DPP specification. Once the device is 
transferred to an owner, the HPE Cloud provides the 
device bootstrapping information (i.e., the device’s DPP 
URI) to the device owner’s private tenancy within the 
HPE Cloud. 

Authorization 
Service 

Cloud Auth (on 
Aruba Central) 

The authorization service provides the configurator and 
router with the information needed to determine if the 
device is authorized to be onboarded to the network 
and, if so, whether it should be assigned any special roles 
or be subject to any specific access controls. It provides 
device authorization, role-based access control, and 
policy enforcement. 

Build-Specific IoT 
Device 

Aruba UXI Sensor The IoT device that is used to demonstrate both trusted 
network-layer onboarding and trusted application-layer 
onboarding. It runs the Wi-Fi Easy Connect network-layer 
onboarding protocol supported by the build to securely 
receive its network credentials. It also has an application 
that enables it to perform independent (see Section 
3.3.2) application-layer onboarding. 

Generic IoT Device Raspberry Pi The IoT device that is used to demonstrate only trusted 
network-layer onboarding. 

Secure Storage Aruba UXI Sensor 
Trusted Platform 
Module (TPM) 

Storage on the IoT device that is designed to be 
protected from unauthorized access and capable of 
detecting attempts to hack or modify its contents. Used 
to store and process private keys, credentials, and other 
information that must be kept confidential. 

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

Issues and signs certificates as needed. These certificates 
can be used by the device to connect to any 802.1a-
based network. 

Application-Layer 
Onboarding 
Service 

UXI Application and 
UXI Cloud 

After connecting to the network, the device downloads 
its application-layer credentials from the UXI cloud and 
uses them to authenticate to the UXI application, with 
which it interacts. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 62 

Component Product Function 

Ongoing Device 
Authorization 

N/A – Not intended 
for inclusion in this 
build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, 
it may perform behavioral analysis or device attestation 
and use the results to determine whether the device 
should be granted access to certain high-value resources, 
assigned to a particular network segment, or other action 
taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not 
implemented at the 
time of publication) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs information the device 
requires for application-layer onboarding (if applicable). 
May populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

1878 C.2 Build 1 Architecture 

1879 C.2.1 Build 1 Logical Architecture 

The network-layer onboarding steps that are performed in Build 1 are depicted in Figure C-1. These 1880 

steps are broken into two main parts: those required to transfer device bootstrapping information from 1881 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 1882 

required to perform network-layer onboarding of the device (labeled with numbers). 1883 

The device manufacturer: 1884 

1. Creates the device and installs a unique birth credential into secure storage on the device. Then 1885 

the manufacturer sends the device’s bootstrapping information, which takes the form of a DPP 1886 

URI, to Aruba Central in the HPE cloud. The device manufacturer interfaces with the HPE cloud 1887 

via a REST API. 1888 

2. When the device is purchased, the device’s DPP URI is sent to the HPE cloud account of the 1889 

device’s owner. The device owner’s cloud account contains the DPP URIs for all devices that it 1890 

owns. 1891 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 63 

Figure C-1 Logical Architecture of Build 1 1892 

 

After obtaining the device, the device owner provisions the device with its network credentials by 1893 

performing the following network-layer onboarding steps: 1894 

1. The owner puts the device into onboarding mode. The device waits for the DPP exchange to 1895 

begin. This exchange includes the device issuing a discovery message, which the owner’s 1896 

configurator hears. The discovery message is secured such that it can only be decoded by an 1897 

entity that possesses the device’s DPP URI. 1898 

2. The configurator consults the list of DPP URIs of all owned devices to decode the discovery 1899 

message and verify that the device is owned by the network owner and is therefore assumed to 1900 

be authorized to be onboarded to the network. 1901 

3. Assuming the configurator finds the device’s DPP URI, the configurator and the device perform 1902 

the authentication phase of DPP, which is a three-way handshake that authenticates the device 1903 

and establishes a secure (encrypted) channel with it. 1904 

4. The configurator and the device use this secure channel to perform the configuration phase of 1905 

DPP, which is a three-way handshake that provisions network credentials to the device, along 1906 

with any other information that may be needed, such as the network SSID. 1907 

5. The router or switch consults the owner’s authentication, authorization, and accounting (AAA) 1908 

service to determine if the device should be assigned any special roles or if any special ACL 1909 

entries should be made for the device. If so, these are configured on the router or switch. 1910 

IoT Devices

Access Point, Router, or Switch

(2) Configurator verifies that the device is authorized 

to be onboarded to the network by obtaining its public 

key from the list of owned device DPP URIs

Configurator

(4) Configurator and device perform the configuration phase 

of DPP—a 3-way handshake that provisions network 

credentials to the device (e.g., SSID, unique PSK)

(6) Acquire an IP address via DHCP and use the network 

credentials to connect to the network securely

HPE Cloud

(B) Provide the 

device’s DPP 

URI to the 

device owner’s 

account in the 

cloud

Device Manufacturer 
(A) Create the IoT Device

Install the device’s unique birth credential into the device’s secure storage

Send the device’s DPP URI to the HPE Cloud (via the REST API)

(1) Device enters onboarding 

mode and waits for DPP 

exchange to begin

(3) Configurator and device 

perform the authentication 

phase of DPP—a 3-way 

handshake that authenticates 

the device and establishes a 

secure channel with it

Network-Layer Onboarding Steps

IoT Device Manufacturing and Ownership Transfer Activities

Authorization

Service

(5) Assign any special roles or 

ACLs pertaining to the device



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 64 

6. The device uses Dynamic Host Configuration Protocol (DHCP) to acquire an IP address and then 1911 

uses its newly provisioned network credentials to connect to the network securely. 1912 

This completes the network-layer onboarding process. 1913 

After the device is network-layer onboarded and connects to the network, it automatically performs 1914 

independent (see Section 3.3.2) application-layer onboarding. The application-layer onboarding steps 1915 

are not depicted in Figure C-1. During the application-layer onboarding process, the IoT device, which is 1916 

a UXI sensor, authenticates itself to the UXI cloud using its manufacturing certificate and pulls its 1917 

application-layer credentials from the UXI cloud. In addition, if a firmware update is relevant, this also 1918 

happens. The UXI sensor contacts the UXI cloud service to download a customer-specific configuration 1919 

that tells it what to monitor on the customer’s network. The UXI sensor then conducts the network 1920 

performance monitoring functions it is designed to perform and uploads the data it collects to the UXI 1921 

application dashboard. 1922 

1923 C.2.2 Build 1 Physical Architecture 

Section 5.2 describes the physical architecture of Build 1.  1924 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 65 

1925 Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) 

1926 D.1 Technologies 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 1927 

Build 2 also supports streamlined (see Section 3.3.2) application-layer onboarding to the OCF security 1928 

domain. The network-layer onboarding infrastructure for Build 2 is provided by CableLabs and the 1929 

application-layer onboarding infrastructure is provided by OCF. IoT devices that were network-layer 1930 

onboarded using Build 2 were provided by Aruba/HPE and OCF. Only the IoT devices provided by OCF 1931 

were capable of being both network-layer onboarded and streamlined application-layer onboarded. For 1932 

more information on these collaborators and the products and technologies that they contributed to 1933 

this project overall, see Section 3.4. 1934 

Build 2 onboarding infrastructure components consist of the CableLabs Custom Connectivity Gateway 1935 

Agent, which runs on the Gateway Access Point, and the Platform Controller. IoT devices onboarded by 1936 

Build 2 include the Aruba UXI Sensor and CableLabs Raspberry Pi. 1937 

Table D-1 lists the technologies used in Build 2. It lists the products used to instantiate each logical build 1938 

component and the security function that the component provides. The components listed are logical. 1939 

They may be combined in physical form, e.g., a single piece of hardware may house a network 1940 

onboarding component, a router, and a wireless access point. 1941 

Table D-1 Build 2 Products and Technologies 1942 

Component Product Function 

Network-Layer 
Onboarding 
Component 
(Configurator) 

CableLabs Custom 
Connectivity 
Gateway Agent 
with support from 
CableLabs 
Platform 
Controller 

Runs the Wi-Fi Easy Connect network-layer onboarding 
protocol to interact with the IoT device to perform one-
way or mutual authentication, establish a secure channel, 
and securely provide local network credentials to the 
device. It also securely conveys application-layer 
bootstrapping information to the device as part of the Wi-
Fi Easy Connect protocol to support application-layer 
onboarding. The network-layer onboarding component 
deployed in Build 2 supports DPP 2.0, but it is also 
backward compatible with DPP 1.0. 

Access Point, 
Router, or Switch 

Raspberry Pi 
(running Custom 
Connectivity 
Gateway Agent) 

The access point includes a configurator that runs the Wi-
Fi Easy Connect Protocol. It also serves as a router that: 1) 
routes all traffic exchanged between IoT devices and the 
rest of the network, and 2) assigns each IoT device to a 
local network segment appropriate to the device’s trust 
level (optional). 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 66 

Component Product Function 

Supply Chain 
Integration Service 

CableLabs 
Platform 
Controller/IoTivity 
Cloud Service 

The device manufacturer provides device bootstrapping 
information (i.e., the DPP URI) to the CableLabs Web 
Server. There are several potential mechanisms for 
sending the DPP URI to the CableLabs Web Server. The 
manufacturer can send the device’s DPP URI to the Web 
Server directly, via an API. The API used is not the REST API 
that is documented in the DPP specification. However, the 
API is published and was made available to manufacturers 
wanting to onboard their IoT devices using Build 2. Once 
the device is transferred to an owner, the CableLabs Web 
Server provides the device’s DPP URI to the device owner’s 
authorization service, which is part of the owner’s 
configurator. 

Authorization 
Service 

CableLabs 
Platform 
Controller 

The authorization service provides the configurator and 
router with the information needed to determine if the 
device is authorized to be onboarded to the network and, 
if so, whether it should be assigned any special roles, 
assigned to any specific network segments, or be subject 
to any specific access controls. 

Build-Specific IoT 
Device 

Raspberry Pi 
(Bulb) 

Raspberry Pi 
(switch) 

The IoT devices that are used to demonstrate both trusted 
network-layer onboarding and trusted application-layer 
onboarding. They run the Wi-Fi Easy Connect network-
layer onboarding protocol to securely receive their 
network credentials. They also support application-layer 
onboarding of the device to the OCF environment by 
conveying the device’s application-layer bootstrapping 
information as part of the network-layer onboarding 
protocol. 

Generic IoT Device Aruba UXI Sensor The IoT device that is used to demonstrate only trusted 
network-layer onboarding. 

Secure Storage N/A (IoT device is 
not equipped 
with secure 
storage) 

Storage designed to be protected from unauthorized 
access and capable of detecting attempts to hack or 
modify its contents. Used to store and process private keys 
and other information that must be kept confidential.   

Certificate 
Authority 

N/A (Not 
implemented at 
the time of 
publication) 

Issues and signs certificates as needed. 

Application-Layer 
Onboarding Service 

OCF Diplomat and 
OCF OBT within 
IoTivity 

After connecting to the network, the OCF Diplomat 
authenticates the devices, establishes secure channels 
with them, and sends them access control lists that control 
which bulbs each switch is authorized to turn on and off. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 67 

Component Product Function 

Ongoing Device 
Authorization 

N/A – Not 
intended for 
inclusion in this 
build 

Performs activities designed to provide ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, it 
may perform behavioral analysis or device attestation and 
use the results to determine whether the device should be 
granted access to certain high-value resources, assigned to 
a particular network segment, or other action taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not yet 
implemented) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs information the device 
requires for application-layer onboarding (if applicable). 
May populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

1943 D.2 Build 2 Architecture 

1944 D.2.1 Build 2 Logical Architecture 

The network-layer onboarding steps that are performed in Build 2 are depicted in Figure D-1. These 1945 

steps are broken into two main parts: those required to transfer device bootstrapping information from 1946 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 1947 

required to perform network-layer onboarding of the device (labeled with numbers). 1948 

The device manufacturer: 1949 

1. Creates the device and installs a unique birth credential into secure storage on the device. 1950 

Because the device created for use in Build 2 will also perform application-layer onboarding into 1951 

the OCF security domain, as part of the manufacturing process the manufacturer also either 1952 

installs application-layer bootstrapping information onto the device or ensures that the device 1953 

has the capability to generate one-time application-layer bootstrapping information at runtime. 1954 

Then the manufacturer makes the device’s network-layer bootstrapping information, which 1955 

takes the form of a DPP URI, available to the device’s owner. 1956 

Build 2 supports several mechanisms whereby the manufacturer can make the device’s 1957 

network-layer bootstrapping information (i.e., its DPP URI) available to the device owner. The 1958 

device’s DPP URI can be uploaded directly to a device owner’s cloud account or web server via 1959 

API (as might come in handy when onboarding many enterprise devices at one time). 1960 

Alternatively, the DPP URI can be manually entered into a local web portal that runs a 1961 

configuration webpage that a device on the same Wi-Fi network can connect to for purposes of 1962 

scanning a QR code or typing in the DPP URI. A DPP URI that is to be entered manually could, for 1963 

example, be emailed to the owner or encoded into a QR code and printed on the device chassis, 1964 

in device documentation, or on device packaging. Table D-1 depicts the case in which the 1965 

manufacturer provides the device’s DPP URI to the owner for manual entry. When the owner 1966 

receives the device’s DPP URI, the owner may optionally add the device’s DPP URI to a list of 1967 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 68 

DPP URIs for devices that it owns that is maintained as part of the owner’s authorization service. 1968 

Such a list would enable the owner’s network to determine if a device is authorized to be 1969 

onboarded to it. 1970 

2. The person onboarding the device opens a web application and enters the device’s DPP URI. The 1971 

web application then sends the DPP URI to the Wi-Fi Easy Connect configurator, e.g., through a 1972 

web request. (Note: Although the laboratory implementation of Build 2 requires the user to 1973 

enter the DPP URI via a web page, an implementation designed for operational use would 1974 

typically require the user to provide the DPP URI by scanning a QR code into a network 1975 

operator-provided app that is logged into the user’s account.) 1976 

Figure D-1 Logical Architecture of Build 2 1977 

 

After ensuring that the device’s network-layer bootstrapping information (i.e., its DPP URI) has been 1978 

uploaded to the configurator, the device owner performs both trusted network-layer onboarding and 1979 

streamlined application-layer onboarding to the OCF security domain by performing the steps depicted 1980 

in Figure D-1. In this diagram, the components that relate to network-layer onboarding are depicted in 1981 

dark blue and their associated steps are written in black font. The components and steps that are 1982 

related to application-layer onboarding are depicted in light blue. The steps are as follows: 1983 

1. The owner puts the device into onboarding mode. The device waits for the DPP exchange to 1984 

begin. This exchange includes the device issuing a discovery message, which the owner’s 1985 

configurator hears. The discovery message is secured such that it can only be decoded by an 1986 

entity that possesses the device’s DPP URI. 1987 

(B) Person opens a web app 

and inputs the device’s DPP URI, 

which is sent to the configurator, 

thereby performing the trusted 

introduction of the device’s 

bootstrapping information

(1) The device enters onboarding 

mode and waits for the DPP 

exchange to begin

(3) The configurator and the device 

perform the authentication phase 

of DPP—a three-way handshake 

that authenticates the device and 

establishes a secure channel with it

(4) The configurator and the device 

perform the configuration phase of 

DPP. During this three-way 

handshake, the device sends its 

application-layer bootstrapping 

information as part of the DPP 

configuration crequest object and 

the configurator provisions 

network credentials to the device

IoT Devices

Access Point and Router

(6) The device uses its newly-provisioned 

network credentials to connect to the 

network securely and then acquires an IP 

address via DHCP

(2) The configurator verifies that 

the device is authorized to be 

onboarded to the network

(5) The configurator sends the 

device’s application-layer 

bootstrapping information to the 

OCF OBT via the OCF Diplomat

(7) The OCF OBT 

discovers the device and 

prompts the user for 

confirmation. Assuming 

user confirmation is 

received, the OBT 

authenticates the device 

and establishes a secure 

channel with it

Network-

Layer 

Onboarding 

Authorization 

Service

Secure 

storage

Wi-Fi Easy 

Connect 

Configurator

OCF Diplomat
OCF OBT

(8) The OBT installs 

operational trust 

anchors on the device 

and sends it an access 

control list that dictates 

which bulbs each light 

switch is authorized to 

turn on and off. 

Device Manufacturer 

(A) Create the IoT Device, install the device’s unique birth credential, and either install its application-layer 

bootstrapping information or ensure that it can generate one-time application-layer bootstrapping 

information at runtime.

Provide the device’s DPP URI to the device’s owner either via the CableLabs web server or via QR code

IoT Device Manufacturing and Ownership Transfer Activities

Network- and Application-Layer Onboarding



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 69 

2. Optionally, if such a list is being maintained, the configurator consults the list of DPP URIs of all 1988 

owned devices to verify that the device is owned by the network owner and is, therefore, 1989 

assumed to be authorized to be onboarded to the network. (If the device is being onboarded by 1990 

an enterprise, the enterprise would likely maintain such a list; however, if the device is being 1991 

onboarded to a home network, this step might be omitted.) 1992 

3. Assuming the configurator finds the device’s DPP URI, the configurator and the device perform 1993 

the authentication phase of DPP, which is a three-way handshake that authenticates the device 1994 

and establishes a secure (encrypted) channel with it. 1995 

4. The configurator and the device use this secure channel to perform the configuration phase of 1996 

DPP, which is a three-way handshake that provisions network credentials to the device, along 1997 

with any other information that may be needed, such as the network SSID. In particular, as part 1998 

of the three-way handshake in the Build 2 demonstration, the device sends its application-layer 1999 

bootstrapping information to the configurator as part of the DPP configuration request object. 2000 

5. The configurator receives the device’s application-layer bootstrapping information and forwards 2001 

it to the OCF Diplomat. The purpose of the OCF Diplomat is to provide a bridge between the 2002 

network and application layers. It accomplishes this by parsing the org.openconnectivity fields of 2003 

the DPP request object, which contains the UUID of the device and the application-layer 2004 

bootstrapping credentials, and sending these to the OCF OBT as part of a notification that the 2005 

OBT has a new device to onboard. The Diplomat and the OBT use a subscribe and notify 2006 

mechanism to ensure that the OBT will receive the onboarding request even if the OBT is 2007 

unreachable for a period of time (e.g., the OBT is out of the home). 2008 

6. The device uses its newly provisioned network credentials to connect to the network securely 2009 

and then uses DHCP to acquire an IP address. This completes the network-layer onboarding 2010 

process. 2011 

7. The OBT implements a filtered discovery mechanism using the UUID provided from the OCF 2012 

Diplomat to discover the new device on the network. Once it discovers the device, before 2013 

proceeding, the OBT may optionally prompt the user for confirmation that they want to perform 2014 

application-layer onboarding to the OCF security domain. This prompting may be accomplished, 2015 

for example, by sending a confirmation request to an OCF app on the user’s mobile device. 2016 

Assuming the user responds affirmatively, the OBT uses the application-layer bootstrapping 2017 

information to authenticate the device and take ownership of it by setting up a Datagram 2018 

Transport Layer Security (DTLS) connection with the device. 2019 

8. The OBT then installs operational trust anchors and access control lists onto the device. For 2020 

example, in the access control list, each light bulb may have an access control entry dictating 2021 

which light switches are authorized to turn it on and off. This completes the application-layer 2022 

onboarding process. 2023 

Note that, at this time, the application-layer bootstrapping information is provided unilaterally in the 2024 

Build 2 application-layer onboarding demonstration. The application-layer bootstrapping information of 2025 

the device is provided to the OCF Diplomat, enabling the OBT to authenticate the device. In a future 2026 

version of this process, the application-layer bootstrapping information could be provided bi-2027 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 70 

directionally, meaning that the OCF Diplomat could also send the OCF operational root of trust to the 2028 

IoT device as part of the DPP configuration response frame. Exchanging application-layer bootstrapping 2029 

information bilaterally in this way would enable the secure channel set up as part of the network-layer 2030 

onboarding process to support establishment of a mutually authenticated session between the device 2031 

and the OBT. 2032 

In the Build 2 demonstration, two IoT devices, a switch and a light bulb, are onboarded at both the 2033 

network and application layers. Each of these devices sends the OCF Diplomat its application-layer 2034 

bootstrapping information over the secure network-layer onboarding channel during the network-layer 2035 

onboarding process. Immediately after they complete the network-layer onboarding process and 2036 

connect to the network, the OCF Diplomat provides their application-layer bootstrapping information to 2037 

the OBT. The OBT then uses the provided application-layer bootstrapping information to discover, 2038 

authenticate, and onboard each device. Because the devices have no way to authenticate the identity of 2039 

the OBT in the current implementation, the devices are configured to trust the OBT upon first use. 2040 

After the OBT authenticates the devices, it establishes secure channels with them and provisions them 2041 

access control lists that control which bulbs each switch is authorized to turn on and off. To demonstrate 2042 

that the application onboarding was successful, Build 2 demonstrates that the switch is able to control 2043 

only those bulbs that the OCF OBT has authorized it to. 2044 

2045 D.2.2 Build 2 Physical Architecture 

Section 5.3 describes the physical architecture of Build 2.  2046 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 71 

2047 Appendix E Build 3 (BRSKI, Sandelman Software Works) 

2048 E.1 Technologies 

Build 3 is an implementation of network-layer onboarding that uses the BRSKI protocol. Build 3 does not 2049 

support application-layer onboarding. The network-layer onboarding infrastructure and related 2050 

technology components for Build 3 were provided by Sandelman Software Works. The Raspberry Pi, 2051 

ESP32, and Nordic NRF IoT devices that will be onboarded in a future implementation of Build 3 were 2052 

also provided by Sandelman Software Works, as was the Sandelman Software Works Reach Pledge 2053 

Simulator, which is the device that is onboarded in the current build. The IoT devices do not have secure 2054 

storage, but future plans are to integrate them with secure storage elements. Build 3 issues private PKI 2055 

certificates as network credentials at this time, but future plans are to integrate Build 3 with a third-2056 

party private CA from which it can obtain signed certificates. For more information on Sandelman 2057 

Software Works and the products and technologies that it contributed to this project overall, see Section 2058 

3.4. 2059 

Onboarding Build 3 infrastructure components consist of Raspberry Pi, Nordic NRF, ESP32, Sandelman 2060 

Software Works Minerva Fountain Join Registrar/Coordinator, Sandelman Software Works Minerva. 2061 

Highway, Sandelman Software Works Reach Pledge Simulator, and a Minerva Fountain internal CA. 2062 

Table E-1 lists the technologies used in Build 3. It lists the products used to instantiate each logical build 2063 

component and the security function that the component provides. The components are logical. They 2064 

may be combined in physical form, e.g., a single piece of hardware may house both a network 2065 

onboarding component and a router and/or wireless access point. 2066 

Table E-1 Build 3 Products and Technologies 2067 

Component Product Function 

Network-Layer 
Onboarding 
Component (BRSKI 
Domain Registrar) 

Sandelman Software 
Works Minerva 
Fountain Registrar 

Runs the BRSKI protocol. It authenticates the IoT 
device, receives a voucher-request from the IoT 
device, and passes the request to the MASA. It also 
receives a voucher from the MASA, verifies it, and 
passes it to the IoT device. Assuming the IoT device 
finds the voucher to be valid and determines that the 
network is authorized to onboard it, the Domain 
Registrar provisions network credentials to the IoT 
device using EST. 

Access Point, 
Router, or Switch 

Turris MOX router 
running OpenWRT  

The Onboarding Router segments the onboarding 
device from the rest of the network until the BRSKI 
onboarding is complete 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 72 

Component Product Function 

Supply Chain 
Integration 
Service 
(Manufacturer 
Authorized Signing 
Authority—MASA) 

Minerva Highway, 
which is a MASA 
provided by 
Sandelman Software 
Works 

The device manufacturer provides device 
bootstrapping information (e.g., the device’s X.509 
certificate) and device ownership information to the 
MASA. The MASA creates and signs a voucher saying 
who the owner of the device is and provides this 
voucher to the IoT device via the Domain Registrar so 
that the device can verify that the network that is 
trying to onboard it is authorized to do so. 

Authorization 
Service 

Minerva Highway, 
which is a MASA 
provided by 
Sandelman Software 
Works 

As described in the previous row. 

IoT Device 
(Pledge) 

Sandelman Software 
Works Reach Pledge 
Simulator 

The device that is used to demonstrate trusted 
network-layer onboarding by joining the network. 

Secure Storage N/A (The IoT devices 
and the Sandelman 
Software Works Reach 
Pledge Simulator do 
not include secure 
storage) 

Storage on the IoT device that is designed to be 
protected from unauthorized access and capable of 
detecting attempts to hack or modify its contents. 
Used to store and process private keys, credentials, 
and other information that must be kept confidential. 

Certificate 
Authority 

N/A (self-signed 
certificates were used) 

Issues and signs certificates as needed. 

Application-Layer 
Onboarding 
Service 

None. Not supported 
in this build. 

After connecting to the network, the device mutually 
authenticates with a trusted application service and 
interacts with it at the application layer. 

Ongoing Device 
Authorization 

N/A – Not intended for 
inclusion in this build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For 
example, it may perform behavioral analysis or device 
attestation and use the results to determine whether 
the device should be granted access to certain high-
value resources, assigned to a particular network 
segment, or other action taken. 

Manufacturer 
Factory 
Provisioning 
Process 

N/A (Not implemented 
at the time of 
publication) 

Manufactures the IoT device. Creates, signs, and 
installs the device’s unique identity and other birth 
credentials into secure storage. Installs information 
the device requires for application-layer onboarding (if 
applicable). May populate a manufacturer database 
with information regarding devices that are created 
and, when the devices are sold, may record what 
entity owns them. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 73 

2068 E.2 Build 3 Architecture 

2069 E.2.1 Build 3 Logical Architecture 

The network-layer onboarding steps that are performed in Build 3 are depicted in Figure E-1. These 2070 

steps are broken into two main parts: those required to transfer device bootstrapping information from 2071 

the device manufacturer to the device owner’s authorization service (labeled with letters) and those 2072 

required to perform network-layer onboarding of the device (labeled with numbers). These steps are 2073 

described in greater detail in IETF RFC 8995. 2074 

The device manufacturer: 2075 

1. Creates the device and installs a unique serial number and birth credential into secure storage 2076 

on the device. This unique birth credential takes the form of a private key and its associated 2077 

802.1AR certificate, e.g., the device’s IDevID. As part of this factory-installed certificate process, 2078 

the location of the device’s MASA is provided in an extension to the IDevID. The device is also 2079 

provided with trust anchors for the MASA entity that will sign the returned vouchers. 2080 

2. Stores information about the device, such as its serial number and its IDevID, in the MASA’s 2081 

database. 2082 

3. Eventually, when the device is sold, the MASA may also record the device ownership 2083 

information in its database. 2084 

Figure E-1 Logical Architecture of Build 3 2085 

           

IoT Devices (Pledges)

Access Point, Router, or Switch

(3) Registrar determines if the device was 

expected. If so, it creates, signs, and sends to 

the device’s MASA a registrar voucher-request 

containing the info from the pledge voucher-

request and info about the registrar/owner. 

Domain 

Registrar

(8) Registrar provisions network credentials 

to the device using EST (e.g. LDevID)

(9) Device uses network credentials 

to connect to the network securely

Manufacturer 

Authorized 

Signing Authority 

(MASA)

Device Manufacturer 

(A) Create the IoT Device and give it a serial number

Install the device’s unique birth credential into the device’s secure storage (IDevID)

Provide the location of the device's MASA and a trust anchor for the MASA

(1) Device establishes/discovers an https 

connection to the local Domain Registrar

(2) Device creates a pledge voucher request, 

signs it using its IDevID certificate, and 

sends the request to the Registrar

(5) Registrar examines the new voucher and 

other info. Based on this info, the Registrar 

makes the decision to continue 

bootstrapping and passes the voucher to 

the device

(6) Device verifies the voucher signature by 

using pre-provisioned trust anchors 

associated with the MASA

(7) Device uses EST to requests new 

credentials

IoT Device Manufacturing and Ownership Transfer Activities

Network-Layer Onboarding

4) MASA verifies that the Registrar owns the device (or 

trusts on first use), creates a new voucher indicating 

this, and passes the new voucher back to the Registrar.

B) Store the 

device serial # 

and IDevID in the 

MASA database. 

C) Eventually, 

when the device 

is purchased, the 

manufacturer 

may also 

record the 

device owner 

information in 

the MASA

Supply Chain 

Integration 

Service



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 74 

After obtaining the device, the device owner provisions the device with its network credentials by 2086 

performing the following network-layer onboarding steps: 2087 

1. The owner puts the device into onboarding mode. The device establishes an https connection to 2088 

the local Domain Registrar. Trust in the Domain Registrar is provisional. (In a standard 2089 

implementation, the device would use link-local network connectivity to locate a join proxy, and 2090 

the join proxy would provide the device with https connectivity to the local Domain Registrar. 2091 

The Build 3 implementation, however, does not support discovery at this time. To overcome this 2092 

code limitation, the IoT device has been pre-provided with the address of the local Domain 2093 

Registrar, to which it connects directly.) 2094 

2. The device creates a pledge voucher-request that includes the device serial number, signs this 2095 

request with its IDevID certificate (i.e., its birth credential), and sends this signed request to the 2096 

Registrar. 2097 

3. The Registrar receives the pledge voucher-request and considers whether the manufacturer is 2098 

known to it and whether devices of that type are welcome. If so, the Registrar forms a registrar 2099 

voucher-request that includes all the information from the pledge voucher-request along with 2100 

information about the registrar/owner. The Registrar signs this registrar voucher-request. It 2101 

locates the MASA that the IoT device is known to trust (e.g., the MASA that is identified in the 2102 

device’s IDevID extension) and sends the registrar voucher-request to the MASA. 2103 

4. The MASA consults the information that it has stored and applies policy to determine whether 2104 

or not to approve the Registrar’s claim that it owns and/or is authorized to onboard the device. 2105 

(For example, the MASA may consult sales records for the device to verify device ownership, or 2106 

it may be configured to trust that the first registrar that contacts it on behalf of a given device is 2107 

in fact the device owner.) Assuming the MASA decides to approve the Registrar’s claim to own 2108 

and/or be authorized to onboard the device, the MASA creates a voucher that directs the device 2109 

to accept its new owner/authorized network, signs this voucher, and sends it back to the 2110 

Registrar. 2111 

5. The Registrar receives this voucher, examines it along with other related information (such as 2112 

security posture, remote attestation results, and/or expected device serial numbers), and 2113 

determines whether it trusts the voucher. Assuming it trusts the voucher, the Registrar passes 2114 

the voucher to the device. 2115 

6. The device uses its factory-provisioned MASA trust anchors to verify the voucher signature, 2116 

thereby ensuring that the voucher can be trusted. The voucher also validates the Registrar and 2117 

represents the intended owner, ending the provisional aspect of the EST connection. 2118 

7. The device uses Enrollment over Secure Transport (EST) to request new credentials. 2119 

8. The Registrar provisions network credentials to the device using EST. These network credentials 2120 

get stored into secure storage on the device, e.g., as an LDevID. 2121 

9. The device uses its newly provisioned network credentials to connect to the network securely. 2122 

This completes the trusted network-layer onboarding process for Build 3. 2123 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 75 

2124 E.2.2 Build 3 Physical Architecture 

Section 5.4 describes the physical architecture of Build 3.  2125 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 76 

2126 Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski 
2127 KeySTREAM) 

2128 F.1 Technologies 

Build 4 is an implementation of network-layer connection to an OpenThread network, followed by use 2129 

of the Kudelski IoT keySTREAM Service to perform independent (see Section 3.3.2) application-layer 2130 

onboarding of the device to a particular customer’s tenancy in the AWS IoT Core. To join the network, 2131 

the joining device generates and displays a pre-shared key that the owner enters on the commissioner, 2132 

through a web interface, for authentication. The network-layer infrastructure for Build 4 was provided 2133 

by Silicon Labs. The application-layer onboarding infrastructure for Build 4 was provided by Kudelski IoT. 2134 

IoT devices that were onboarded using Build 4 were provided by Silicon Labs. For more information on 2135 

these collaborators and the products and technologies that they contributed to this project overall, see 2136 

Section 3.4. 2137 

Build 4 network infrastructure components within the NCCoE lab consist of a Thread border router 2138 

(which is implemented using a Raspberry Pi) and a Silicon Labs Gecko Wireless Starter Kit. Build 4 also 2139 

requires support from the Kudelski IoT keySTREAM service to perform application-layer onboarding. The 2140 

keySTREAM service comes as a SaaS platform that is running in the cloud (accessible via the internet), 2141 

and a software library (KTA – Kudelski Trusted Agent) that is integrated in the IoT device software stack. 2142 

The KTA integrates with the Silicon Labs’ Hardware Root of Trust (Secure Vault). The IoT device that is 2143 

connected to the network and application-layer onboarded using Build 4 is the Silicon Labs 2144 

Thunderboard (BRD2601A) with EFR32MG24x with Secure Vault(TM) High which is security certified to 2145 

PSA/SESIP Level 3. 2146 

Table F-1 lists the technologies used in Build 4. It lists the products used to instantiate each logical build 2147 

component and the security function that the component provides. The components are logical. They 2148 

may be combined in physical form, e.g., a single piece of hardware may house a network onboarding 2149 

component, a router, and a wireless access point. 2150 

Table F-1 Build 4 Products and Technologies 2151 

Component Product Function 

Network-Layer 
Onboarding 
Component 

(Thread Protocol 
Component) 

SLWSTK6023A 
Thread Radio 
Transceiver 
(Wireless starter 
kit); 

The SLWSTK6023A acts as a Thread radio transceiver or 
radio coprocessor (RCP), allowing the open thread boarder 
router host platform to form and communicate with a 
Thread network. If the Thread MeshCoP were running on 
this device, it would provision the IoT device with 
credentials for the Thread network. 

Access Point, 
Router, or Switch 

OpenThread 
Border Router 
(OTBR) hosted on 
a Raspberry Pi 

Router that has interfaces both on the Thread network and 
on the IP network to act as a bridge between the Thread 
network and the public internet. This allows the IoT device 
that communicates using the Thread wireless protocol to 
communicate with cloud services. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 77 

Component Product Function 

Supply Chain 
Integration Service 

Silicon Labs 
Custom Parts 
Manufacturer 
Service (CPMS) 

To support network-layer onboarding, the device 
manufacturer provides device bootstrapping information 
to the to the device owner. 

Authorization 
Service 

Not implemented Enables the network to verify that the device that is trying 
to onboard to it is authorized to do so. 

IoT Device Silicon Labs 
Thunderboard 
(BRD2601A) 

The IoT device that is used to demonstrate trusted 
network- and application-layer onboarding. 

Secure Storage Secure Vault ™ 
High on Silicon 
Labs IoT device 

Storage designed to be protected from unauthorized 
access and capable of detecting attempts to hack or 
modify its contents. Used to store and process private keys 
and other information that must be kept confidential.   

Certificate 
Authority 

Each tenant in the 
Kudelski 
keySTREAM 
service cloud has 
its own certificate 
signing authority 

Issues and signs certificates as needed. For application-
layer onboarding, the device owner has its own certificate 
signing authority in its portion of the Kudelski keySTREAM 
service cloud. 

Application-Layer 
Onboarding Service 

Kudelski 
keySTREAM 
Service 

After connecting to the Thread network, the device 
performs application-layer onboarding by accessing the 
Kudelski keySTREAM service. The device and the 
keySTREAM service mutually authenticate; the keySTREAM 
service verifies the device’s owner, generates an 
application-layer credential (i.e., an AWS certificate that is 
based on the device’s chipset identity and owner) for the 
device, and provisions the device with this X.509 credential 
that will enable the device to access the owner’s tenancy 
in the AWS IoT Core cloud. 

Ongoing Device 
Authorization 

N/A – Not 
intended for 
inclusion in this 
build 

Performs activities designed to provide an ongoing 
assessment of the device’s trustworthiness and 
authorization to access network resources. For example, it 
may perform behavioral analysis or device attestation and 
use the results to determine whether the device should be 
granted access to certain high-value resources, assign the 
device to a particular network segment, or take other 
action. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 78 

Component Product Function 

Manufacturer 
Factory 
Provisioning 
Process 

Silicon Labs 
Custom Parts 
Manufacturing 
Service (CPMS) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity and other birth credentials 
into secure storage. Installs software and information the 
device requires for application-layer onboarding. May 
populate a manufacturer database with information 
regarding devices that are created and, when the devices 
are sold, may record what entity owns them. 

The MG24 “B” version comes pre-loaded with a Silicon 
Labs Birth certificate. The “A” or “B” version birth 
certificate can be modified via their Custom Part 
Manufacturing Service (CPMS) to be unique per end device 
manufacturer and signed into their Root CA if desired. 

2152 F.2 Build 4 Architecture 

2153 F.2.1 Build 4 Logical Architecture 

Build 4 demonstrates a device connecting to an OpenThread network. IoT devices generate and use a 2154 

pre-shared key to connect to the OpenThread network of Build 4 using the Thread MeshCoP service. 2155 

Once a device is connected to the OpenThread network of Build 4, it gets access to an IP network via a 2156 

border router, and then performs application-layer onboarding using the Kudelski keySTREAM Service. 2157 

Kudelski keySTREAM is a device security management service that runs as a SaaS platform on the 2158 

Amazon cloud. Build 4 relies on an integration that has been performed between Silicon Labs and 2159 

Kudelski keySTREAM. KeySTREAM has integrated software libraries with the Silicon Lab EFR32MG24 2160 

(MG24) IoT device’s secure vault to enable the private signing key that is associated with an application-2161 

layer certificate to be stored into the secure vault using security controls that are available on the 2162 

MG24. This integration ensures that application-layer credentials can be provisioned into the vault 2163 

securely such that no key material is misused or exposed. 2164 

At a high level, the steps required to enable demonstration of Build 4’s network connection and 2165 

application-layer onboarding capabilities can be broken into the following three main parts: 2166 

▪ Device Preparation: The IoT device is prepared for network connection and application-layer 2167 
onboarding by the device manufacturer.  2168 

• The device comes from the manufacturer ready to be provisioned onto a Thread network. 2169 
No additional preparation is required. 2170 

• The device is prepared for application-layer onboarding on behalf of a specific, pre-defined 2171 
customer who will become its owner. The device is assigned ownership to this customer 2172 
(e.g., customer A) and this ownership information is sealed into device firmware, 2173 
permanently identifying the device as being owned by customer A. The device owner, 2174 
customer A, has a tenancy on the Kudelski keySTREAM Service and is also an Amazon Web 2175 
Services (AWS) customer. After the device has been prepared, the device is provided to its 2176 
owner (customer A). 2177 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 79 

▪ Network Connection: Customer A connects the device to Customer A’s OpenThread network by 2178 
entering the pre-shared key displayed on the device’s serial terminal in the OpenThread Border 2179 
Router’s (OTBR) web interface. This allows the network‘s radio channel, PAN ID, extended PAN 2180 
ID and network name to be discovered, avoiding the need to preconfigure any of these 2181 
parameters. Once on customer A’s OpenThread network, the device has access to the public IP 2182 
network via the border router. 2183 

▪ Application-Layer Onboarding: The device and the keySTREAM service mutually authenticate, 2184 
keySTREAM confirms that customer A owns the device, and keySTREAM provisions the device 2185 
with an AWS certificate that is specific to the device and to customer A, enabling the device to 2186 
authenticate to customer A’s tenancy in the AWS IoT Core. 2187 

Each of these three aspects of the demonstration are illustrated in its own figure and described in more 2188 

detail in the three subsections below. 2189 

F.2.1.1 Device Preparation 2190 

Figure F-1 depicts the steps that are performed by the device manufacturer, which in this case is Silicon 2191 

Labs, to prepare the device for network- and application-layer onboarding by a particular customer, 2192 

Customer A. Each step is described in more detail below. Because these steps are performed to prepare 2193 

the device for onboarding rather than as part of onboarding itself, they are labeled with letters instead 2194 

of numbers in keeping with the conventions used in other build descriptions. 2195 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 80 

Figure F-1 Logical Architecture of Build 4: Device Preparation 2196 

 

The following steps are performed to prepare the device for network connection and application-layer 2197 

onboarding: 2198 

1. The manufacturer creates the device, which in this case is a Silicon Labs MG24, and prepares it 2199 

for network connection by installing the device’s unique birth credential into the device’s 2200 

chipset. This chipset identity is a hardware root of trust. The MG24 “B” version comes pre-2201 

loaded with a Silicon Labs Birth certificate. The “A” or “B” version birth certificate can be 2202 

modified via their Custom Part Manufacturing Service (CPMS) to be unique per end device 2203 

manufacturer and signed into their Root CA if desired. 2204 

2. The manufacturer provides information about the device to customer A (perhaps via the supply 2205 

chain service, as depicted in Figure 1-1) so customer A can be aware that the device is expected 2206 

on its network. 2207 

3. The manufacturer prepares the device for application-layer onboarding by installing the Kudelski 2208 

keySTREAM Trusted Agent (KTA) software onto the device. 2209 

4. The manufacturer connects the device to the manufacturer’s local OpenThread network. (See 2210 

Figure 1-2 for details of the network connection steps.) Note that in this case, which is the first 2211 

time that the device is being connected to a network, the device is being connected to the 2212 

manufacturer’s network rather than to the network of the device’s eventual owner. 2213 

5. After the device connects to the manufacturer’s OpenThread network, the device has access to 2214 

the public IP network via the border router. 2215 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 81 

6. The device and the Kudelski keySTREAM service mutually authenticate and establish an 2216 

encrypted connection. 2217 

7. The KTA installs a configuration into the keySTREAM service platform that builds up a group of 2218 

devices that belong to a certain end user and associates the group with a device ownership 2219 

profile. This device ownership profile is associated with a particular customer (e.g., customer A). 2220 

The same device profile is used by all devices in a group of devices that are owned by this 2221 

owner. The profile is not specific to individual devices. The owner of these devices (customer A) 2222 

has a keySTREAM tenancy, which includes a dedicated certificate signing CA. Customer A is also 2223 

an AWS customer. 2224 

8. The device manufacturer installs and seals this device ownership profile into the device 2225 

firmware. This profile permanently identifies the device as being owned by customer A. 2226 

F.2.1.2 Network-Layer Connection 2227 

Figure F-2 depicts the steps of an IoT device connecting to that thread network using a pre-shared key 2228 

that the device generates and shares with the OpenThread boarder router. Each step is described in 2229 

more detail below. 2230 

Figure F-2 Logical Architecture of Build 4: Connection to the OpenThread Network 2231 

 

The device connects to the OpenThread network using the following steps: 2232 

1. The device generates a pre-shared key. 2233 

2. The owner starts the commissioning process by entering this pre-shared key on the OpenThread 2234 

border router. 2235 

IoT Devices

Border Router

(5) Verify that the device is authorized 

to connect to the network

(6) Assign the device network 

permissions

Thread 

Network 

Onboarding 

Component

(3) Device requests to join the network and provides 

the pre-shared key as its network credential

(4) Router authenticates the device based on the 

pre-shared key and grants the join request

Supply Chain 

Integration 

Service

(C) Provide the 

device info to 

the device 

owner’s 

authorization 

service

Device

Manufacturer 

(A) Prepare the device for network connection and application-layer onboarding (See the 

previous figure for detailed device preparation steps.)

(B)  One aspect of this preparation involves providing device information to the device owner 

(perhaps via the supply chain integration service, as depicted here)

(1) Device generates a 

pre-shared key.

(2) Owner shares this key 

with the OpenThread

border router using the 

router’s web interface

Network-Layer Connection Steps

IoT Device Manufacturing Activities

Authorization Service 

for Device Owner

(7) The device is able to access the IP network via 

the border router.



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 82 

3. The device requests to join the network and provides the pre-shared key as its network 2236 

credential. 2237 

4. The network authenticates the device based on the pre-shared key and grants the join request. 2238 

5. The network verifies that the device is authorized to connect to the network. 2239 

6. The network assigns the device network permissions and configures these as policies on the 2240 

border router. 2241 

7. The device is able to access the IP network (and the internet) via the border router. 2242 

This completes the network-layer connection process. 2243 

F.2.1.3 Application-Layer Onboarding 2244 

Figure F-3 depicts the steps of the application-layer onboarding process using the Kudelski keySTREAM 2245 

service. Each step is described in more detail below. 2246 

Figure F-3 Logical Architecture of Build 4: Application-Layer Onboarding using the Kudelski keySTREAM 2247 
Service 2248 

 

The application-layer onboarding steps performed to provision the device with its application-layer 2249 

credentials (e.g., its AWS certificate) are as follows: 2250 

1. The device, which is already connected to the OpenThread network, accesses the IP network via 2251 

the border router. 2252 

2. The device and the keySTREAM service mutually authenticate. 2253 

IoT Devices

Border Router

(3) The KeySTREAM Service examines the 

device’s firmware profile to determine which 

of KeySTREAM’s customers owns the 

device and associates the device with the 

KeySTREAM tenancy of that customer (e.g., 

customer A).

Kudelski 

KeySTREAM

Provisioning 

Service

(6) The KeySTREAM Service securely provisions the AWS certificate to 

the device’s secure storage using the software library that KeySTREAM

has integrated with the device’s secure vault chipset security controls to 

ensure that no key material is misused or exposed.

(7) The device uses its newly-

provisioned AWS certificate to 

authenticate to the AWS IoT Core 

using the MQTT-TLS protocol.

Kudelski

KeySTREAM

Device  

Management 

Interface

(1) The device has already connected to 

the Thread network and now has access 

to the public (IP) network via the border 

router.

(2) The device and the KeySTREAM

Service mutually authenticate.

(4) The KeySTREAM Service generates 

an AWS certificate for the device based 

on the device’s chipset identity and 

owner.

(5) The KeySTREAM Service uses the 

dedicated CA that is running in customer 

A’s KeySTREAM tenancy to sign the 

certificate.

Application-Layer Onboarding

AWS IoT 

Core

Device Manufacturer 

Prepare the device for application-layer onboarding by sealing a device ownership 

profile that permanently associates the device with KeySTREAM customer A into the 

device’s firmware. (See Figure 1-1 for the detailed device preparation steps.)

IoT Device Manufacturing Activities

CA

profileKTA



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 83 

3. The keySTREAM Service examines the device’s firmware profile to determine which of 2254 

keySTREAM’s customers owns the device. In this case, customer A is identified as the device 2255 

owner. The keySTREAM service associates the device with customer A’s keySTREAM tenancy. 2256 

4. The keySTREAM Service generates an AWS IoT Core certificate for the device based on both the 2257 

device’s ownership information and the secure hardware root of trust that is in the device’s 2258 

chipset. 2259 

5. The keySTREAM Service uses the dedicated CA that is running in customer A’s keySTREAM 2260 

tenancy to sign the AWS certificate. 2261 

6. The keySTREAM Service securely provisions the AWS certificate to the device’s secure storage 2262 

using the software library that keySTREAM has integrated with the device’s secure vault chipset 2263 

security controls to ensure that no key material is misused or exposed. 2264 

7. The device uses its newly provisioned application-layer credentials (i.e., the AWS certificate) to 2265 

authenticate to customer A’s tenancy in the AWS IoT Core using the MQTT-TLS protocol. 2266 

2267 F.2.2 Build 4 Physical Architecture 

Section 5.5 describes the physical architecture of Build 4.  2268 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 84 

2269 Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds) 

2270 G.1 Technologies 

Build 5 is an implementation of network-layer onboarding that uses a version of the BRSKI Protocol that 2271 

has been modified to work over Wi-Fi. After the IoT device has joined the network, Build 5 also 2272 

demonstrates a number of mechanisms that are performed on an ongoing basis to provide continuous, 2273 

policy-based authorization and assurance. Both the network-layer onboarding infrastructure and the 2274 

continuous assurance service for Build 5 were provided by NquiringMinds. This entire build can be 2275 

replicated using the open sourced TrustNetZ code base. 2276 

For more information on NquiringMinds and the products and technologies that they contributed to this 2277 

project overall, see Section 3.4. 2278 

Build 5 network onboarding infrastructure components within the NCCoE lab consist of a Linux based 2279 

Raspberry Pi 4B router (which also runs the registrar service and MASA service), and a USB hub. The 2280 

Build 5 components used to support the continuous assurance service include TrustNetZ Authorization 2281 

interfaces, TrustNetZ information provider, and TrustNetZ policy engine. The IoT devices that are 2282 

onboarded using Build 5 are a Raspberry Pi device. These IoT devices do not have secure storage, but 2283 

use the Infineon Optiga SLB 9670 TPM 2.0 as an external secure element. Build 5 depends on an IDevID 2284 

(X.509 Certificate) having been provisioned to the secure element of the IoT device (pledge) prior to 2285 

onboarding, as part of the factory provisioning process (see Section H.1). For Build 5, this factory 2286 

provisioning process was accomplished by the BRSKI Factory Provisioning Build, which is described in 2287 

Appendix H.3. 2288 

Table G-1 lists the technologies used in Build 5. It lists the products used to instantiate each logical build 2289 

component and the security function that the component provides. The components are logical. They 2290 

may be combined in physical form, e.g., a single piece of hardware may house a network onboarding 2291 

component, a router, and a wireless access point. 2292 

Table G-1 Build 5 Products and Technologies 2293 

Component Product Function 

Network-Layer 
Onboarding 
Component 

(BRSKI Domain 
Registrar) 

Stateful, non-
persistent Linux 
app that has two 
functional 
interfaces for 
both BRSKI and 
for the 
Authentication 
Service. 
(TrustNetZ 
onboarding) 

Runs the BRSKI protocol modified to work over Wi-Fi and 
acts as a BRSKI Domain Registrar. It authenticates the IoT 
device, receives a voucher request from the IoT device, 
and passes the request to the MASA. It also receives a 
voucher from the MASA, verifies it, and passes it to the IoT 
device. Assuming the IoT device finds the voucher to be 
valid and determines that the network is authorized to 
onboard it, the Domain Registrar provisions network 
credentials to the IoT device using EST. 

https://github.com/nqminds/trustnetz


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 85 

Component Product Function 

Access Point, 
Router, or Switch 

Raspberry Pi 4B 
equipped with 
USB Wi-Fi dongle, 
running TrustNetZ 
AP code. 

Router, providing an open Wi-Fi network and closed Wi-Fi 
network. Physical access control is mediated through the 
RADUIS interface (which is part of the TrustNetZ AP 
configuration) The AP also receives network commands 
from the continuous assurance service. 

Supply Chain 
Integration Service 
(Manufacturer 
Authorized Signing 
Authority—MASA) 

TrustNetZ MASA The MASA creates and signs a voucher and provides this 
voucher to the IoT device via the Registrar so that the 
device can verify that the network that is trying to onboard 
it is authorized to do so. 

Authorization 
Service 

Linux application 
which contains an 
encapsulated 
policy engine 
(TrustNetZ policy 
engine) 

Determines whether the device is authorized to be 
onboarded to the network. The application features a REST 
API which accepts verifiable credential claims to feed data 
on entities and their relationships into its SQL database. 

The policy engine itself is based on verifiable credentials 
presentation, (persisted to SQL database), making it easily 
configurable and extensible. 

IoT Device Raspberry Pi 
devices (running 
TrustNetZ pledge 
agent) 

The IoT device that is used to demonstrate trusted 
network- and application-layer onboarding. Handles the 
client side BRSKI protocols, the integration with the secure 
storage, with factory provisioning and TLS connections. 

Secure Storage Infineon Optiga 
SLB 9670 TPM 2.0 

Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to store and 
process private keys and other information that must be 
kept confidential. 

Certificate 
Authority 

TrustNetZ demo 
manufacturer CA 
(MPR – 
manufacture 
provisioning root) 

TrustNetZ Domain 
CA 

Two CA are used in Build 5 

Domain CA issues certificates and provides signing and 
attestation functions that model network owner 
relationships (e.g. sign the LDevID certificate) 

Manufacturer CA issues the IDevID certificates; proving the 
device has been created by the manufacturer. 

Application-Layer 
Onboarding Service 

TrustNetZ Demo 
application sever 

After connecting to the network, the device mutually 
authenticates with a trusted application service and 
interacts with it at the application layer. 

The IDevID and TPM private key are used to establish a TLS 
session with the demonstration application server and 
send data to it from the device. 

This demonstrates the concept of secure connection to a 
third-party application server using the cryptographic 
artifacts from the onboarding process. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 86 

Component Product Function 

Ongoing Device 
Authorization 

Continuous 
Authorization 
Service, which 
calls into the in 
the TrustNetZ 
policy engine 

Designed to perform a set of ongoing, policy-based 
continuous assurance and authorization checks on the 
device after it has connected to the network. As of this 
publication, the following ongoing checks have been 
implemented: 

▪ The manufacturer of the device must be trusted by 
the network owner 

▪ The device must be trusted by a user with 
appropriate privileges 

▪ The device must have an associated device type 

▪ The vulnerability score of the software bill of 
materials (SBOM) for the device type must be 
lower than a set threshold 

▪ The device must not have contacted an IP address 
that is on a deny list 

If it fails any of these periodic checks, its voucher is 
revoked, which removes the device from the network. 

Manufacturer 
Factory 
Provisioning 
Process 

BRSKI Factory 
Provisioning 
Process used to 
provision the 
Infineon TPM 
with its private 
key and IDevID 
(See Appendix 
H.3) 

Manufactures the IoT device. Creates, signs, and installs 
the device’s unique identity (i.e., its IDevID, which is an 
X.509 certificate) into secure storage. Installs information 
the device requires for application-layer onboarding. 
Populates the MASA with information regarding devices 
that are created and, when the devices are sold, may 
record what entity owns them. 

2294 G.2 Build 5 Architecture 

2295 G.2.1 Build 5 Logical Architecture 

The network-layer onboarding steps that are performed in Build 5 are depicted in Figure G-1. These 2296 

steps are broken into two main parts: those required to transfer device bootstrapping information from 2297 

the device manufacturer to the MASA (labeled with letters) and those required to perform network-2298 

layer onboarding of the device and establish the operation of the continuous authorization service 2299 

(labeled with numbers). 2300 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 87 

Figure G-1 Logical Architecture of Build 5 2301 

 

The device manufacturer: 2302 

1. Creates the device and installs a unique serial number and birth credential into secure storage 2303 

on the device. This unique birth credential takes the form of a private key and its associated 2304 

802.1AR certificate, e.g., the device’s IDevID. As part of this factory-installed certificate process, 2305 

the location of the device’s manufacturer authorized signing authority (MASA) is provided in an 2306 

extension to the IDevID. The device is also provided with trust anchors for the MASA entity that 2307 

will sign the returned vouchers. 2308 

2. Stores information about the device, such as its serial number and its IDevID, in the MASA’s 2309 

database. 2310 

3. Eventually, when the device is sold, the MASA may also record the device ownership 2311 

information in its database. 2312 

After obtaining the device, the device owner provisions the device with its network credentials by 2313 

performing the following network-layer onboarding steps: 2314 

1. The owner puts the device (i.e., the pledge) into onboarding mode. The device establishes an 2315 

https connection to the local Domain Registrar. (In a standard BRSKI implementation, the device 2316 

would have wired network connectivity. The device would use its link-local network connectivity 2317 

to locate a join proxy, and the join proxy would provide the device with https connectivity to the 2318 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 88 

local Domain Registrar.) The Build 5 implementation, however, relies on wireless connectivity 2319 

and initially uses the unauthenticated EAP-TLS protocol. The pledge discovers potential 2320 

onboarding networks by searching for public Wi-Fi networks that either match a particular SSID 2321 

wildcard name or that advertise a particular realm. When the device finds a potential 2322 

onboarding network, it connects to it and attempts to discover the registrar. The pledge will 2323 

connect to the open Wi-Fi network and will receive either an IPv4 or IPv6 address. Subsequently, 2324 

the pledge will listen to mDNS packets and will obtain the list of join proxies (IP addresses). 2325 

Finally, the pledge will subsequently connect to each join proxy using the BRSKI-EST protocol. 2326 

2. The device creates a pledge voucher-request that includes the device serial number, signs this 2327 

request with its IDevID certificate (i.e., its birth credential), and sends this signed request to the 2328 

Registrar. 2329 

3. The Registrar receives the pledge voucher-request and considers whether the manufacturer is 2330 

known to it and whether devices of that type are welcome. If so, the Registrar forms a registrar 2331 

voucher-request that includes all the information from the pledge voucher request along with 2332 

information about the registrar/owner. The Registrar sends this registrar voucher-request to the 2333 

Continuous Authorization Service. 2334 

4. The Continuous Authorization Service consults policy to determine if this device should be 2335 

permitted to be onboarded and what other conditions should be enforced. An example of policy 2336 

that might be used is that the network owner wants to disable MASA validation. Assuming the 2337 

device is permitted to be onboarded, the Continuous Authorization Service locates the MASA 2338 

that the IoT device is known to trust (i.e., the MASA that is identified in the device’s IDevID 2339 

extension) and sends the registrar voucher-request to the MASA. 2340 

5. The MASA consults the information that it has stored and applies policy to determine whether 2341 

to approve the Registrar’s claim that it owns the device. (For example, the MASA may consult 2342 

sales records for the device to verify device ownership, or it may be configured to trust that the 2343 

first registrar that contacts it on behalf of a given device is in fact the device owner). Assuming 2344 

the MASA decides to approve the Registrar’s claim to own the device, the MASA creates a new 2345 

voucher that directs the device to accept its new owner, signs this voucher, and sends it back to 2346 

the Continuous Authorization Service. 2347 

6. The Continuous Authorization Service receives this new voucher and examines it in consultation 2348 

with policy to determine whether to continue onboarding. Some examples of policies that might 2349 

be used include: permit onboarding only if no current critical vulnerabilities have been disclosed 2350 

against the declared device type, the device instance has successfully passed a site-specific test 2351 

process, or a test compliance certificate has been found for the declared device type. Assuming 2352 

the device is permitted to be onboarded, the Continuous Authorization Service sends the new 2353 

voucher to the Domain Registrar. 2354 

7. The Domain Registrar receives and examines the new voucher along with other related 2355 

information and determines whether it trusts the voucher. Assuming it trusts the voucher, the 2356 

Registrar passes the voucher to the device. 2357 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 89 

8. The device uses its factory-provisioned MASA trust anchors to verify the voucher signature, 2358 

thereby ensuring that the voucher can be trusted. 2359 

9. The device uses Enrollment over Secure Transport (EST) to request new credentials. 2360 

10. The Registrar provisions network credentials to the device using EST. These network credentials 2361 

get stored into secure storage on the device, e.g., as an LDevID. 2362 

11. The device uses its newly provisioned network credentials to connect to the network securely. 2363 

12. After the device is connected and begins operating on the network, the Continuous 2364 

Authorization Service and the router make periodic asynchronous calls to each other that enable 2365 

the Continuous Authorization Service to monitor device behavior and constrain communications 2366 

to and from the device as needed in accordance with policy. In this manner, the Continuous 2367 

Authorization Service interacts with the router on an ongoing basis to verify that the device and 2368 

its operations continue to be authorized throughout the device’s tenure on the network. 2369 

This completes the network-layer onboarding process for Build 5 as well as the initialization of the Build 2370 

5 continuous authorization service. More details regarding the Build 5 implementation can be found at 2371 

https://trustnetz.nqm.ai/docs/. 2372 

2373 G.2.2 Build 5 Physical Architecture 

Section 5.6 describes the physical architecture of Build 5. 2374 

  

https://trustnetz.nqm.ai/docs/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 90 

2375 Appendix H Factory Provisioning Process 

2376 H.1 Factory Provisioning Process 

The Factory Provisioning Process creates and provisions a private key into the device’s secure storage; 2377 

generates and signs the device’s certificate (when BRSKI is supported), generates the device’s DPP URI 2378 

(when Wi-Fi Easy Connect is supported), or generates other bootstrapping information (when other 2379 

trusted network-layer onboarding protocols are supported); provisions the device’s certificate, DPP URI, 2380 

or other bootstrapping information onto the device; and sends the device’s certificate, DPP URI, or other 2381 

bootstrapping information to the manufacturer’s database, which will eventually make this information 2382 

available to the device owner to use during network-layer onboarding. 2383 

2384 H.1.1 Device Birth Credential Provisioning Methods 

There are various methods by which a device can be provisioned with its private key and bootstrapping 2385 

information (e.g., its certificate, DPP URI, etc.) depending on how, where, and by what entity the 2386 

public/private key pairs are generated [14]. Additional methods are also possible depending on how the 2387 

device’s certificate is provided to the manufacturer’s database. The following are high-level descriptions 2388 

of five potential methods for provisioning device birth credentials during various points in the device 2389 

lifecycle. These methods are not intended to be exhaustive: 2390 

1. Method 1: Key Pair Generated on IoT Device 2391 

Summary: Generate the private key on the device; device sends the device’s bootstrapping 2392 

information (e.g., the device’s certificate or DPP URI) to the manufacturer’s database. The steps for 2393 

Method 1 are: 2394 

a. The public/private key pair is generated on the device and stored in secure storage. 2395 

b. The device generates and signs a CSR structure and sends the CSR to the 2396 

manufacturer’s IDevID CA, which sends a signed certificate (IDevID) back to the device. 2397 

c. If BRSKI is being supported, the device loads the certificate (IDevID) into its secure 2398 

storage; if Wi-Fi Easy Connect is being supported, the device creates a DPP URI and 2399 

loads that into secure storage. 2400 

d. The device sends the certificate or DPP URI to the manufacturer’s database. 2401 

One disadvantage of this method is that the device’s random number generator is being relied 2402 

upon to generate the key pair, and it is possible that a device’s random number generator will not 2403 

be as robust as the random number generator that would be included in an SE, for example. An 2404 

advantage of this method is that the device’s private key is not vulnerable to disclosure, assuming 2405 

the device is equipped with a strong random number generator that is used for key generation and 2406 

the private key is put into secure storage immediately upon generation. 2407 

2. Method 2: Key Pair Generated in Secure Element 2408 

Summary: Generate the private key in a secure element on the device; IDevID CA provides the 2409 

device certificate to the manufacturer’s database. The steps for Method 2 are: 2410 

a. The public/private key pair is generated within the device’s SE. 2411 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 91 

b. The device generates a CSR structure, the SE signs it, and the device sends the CSR to 2412 

the manufacturer’s IDevID CA, which sends a signed certificate (IDevID) back to the 2413 

device. 2414 

c. If BRSKI is being supported, the device loads the certificate (IDevID) into its secure 2415 

storage; if Wi-Fi Easy Connect is being supported, the device creates a DPP URI and 2416 

loads that into secure storage. 2417 

d. The IDevID CA provides the certificate to the manufacturer’s database. The 2418 

manufacturer stores either the certificate (i.e., if BRSKI is being supported), or creates 2419 

and stores a DPP URI (i.e., if Wi-Fi Easy Connect is being supported). 2420 

Method 2 is similar to Method 1 except that in method 2, the key pair is generated and stored in a 2421 

secure element and the manufacturer’s database receives the signed certificate directly from the 2422 

CA (either via a push or a pull) rather than via the device. An advantage of method 2 is that the 2423 

device’s private key is not vulnerable to disclosure because secure elements are normally equipped 2424 

with a strong random number generator and tamper-proof storage. 2425 

3. Method 3: Key Pair Loaded into IoT Device 2426 

Summary: Generate the private key in the device factory and load it onto the device. The steps for 2427 

Method 3 are: 2428 

a. The public/private key pairs and certificates are generated in advance at the device 2429 

factory and recorded in the manufacturer’s database. 2430 

b. The public/private key pair and certificate are loaded onto the device at the device 2431 

factory. 2432 

One advantage of this method is that there is no need to trust the random number generator on 2433 

the device to generate strong public/private key pairs. However, the private keys may be 2434 

vulnerable to disclosure during the period of time before they are provisioned into secure storage 2435 

on the devices (and afterwards if they are not deleted once they have been copied into secure 2436 

storage). 2437 

4. Method 4: Key Pair Pre-Provisioned onto Secure Element 2438 

Summary: Generate the private key in the SE and load the certificate on the device at the SE 2439 

factory (SEF). The steps for Method 4 are: 2440 

a. The public/private key pair and certificate are generated in advance in the SE at the 2441 

SEF and the public key is recorded. 2442 

b. The certificate is loaded onto the devices at the SEF. 2443 

c. The certificates and the serial numbers of their corresponding devices are provided to 2444 

the device manufacturer, and the device manufacturer can put them into the 2445 

manufacturer database. 2446 

d. The CA that signs the certificates that are generated and loaded onto the SEs may 2447 

come from either the SEF or the device manufacturer. (Note: the CA is likely not 2448 

located at the factory, which may be offshore.) 2449 

Additional trust anchors can also be loaded into the SE at the SEF (e.g., code signing keys, server 2450 

public keys for TLS connections, etc.) As with methods 2 and 3, one advantage of this method 2451 

(method 4) is that there is no need to trust the random number generator on the device to 2452 

generate strong public/private key pairs because the random number generator on the SE is used 2453 

https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-02.html#name-bamboo-method-off-device-pr
https://www.ietf.org/archive/id/draft-irtf-t2trg-taxonomy-manufacturer-anchors-02.html#name-sapodilla-method-secure-ele


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 92 

instead. With this method, the security level of the manufacturer’s factory does not need to be as 2454 

high as that of the SEF because all key generation and certificate signing is performed at the SEF; 2455 

the manufacturer can rely on the security of the SEF, which can be advantageous to the device 2456 

manufacturer, assuming that the SEF is in fact secure. 2457 

5. Method 5: Private Key Derived from Shared Seed 2458 

Summary: The device’s private key is derived from a shared seed. The steps for Method 5 are: 2459 

a. The chip vendor embeds a random number into each IoT device (e.g., this may be 2460 

burned into fuses on the IoT device, inside the Trusted Execution Environment (TEE)). 2461 

b. The IoT device manufacturer gets a copy of this seed securely (e.g., on a USB device 2462 

that is transported via trusted courier). 2463 

c. On first boot, the IoT device generates a private key from this seed. 2464 

d. The manufacturer uses the same seed to generate a public key and signs a certificate. 2465 

As with method 4, with this option (method 5), there is no need for the IoT device manufacturer to have 2466 

a secure factory because the IoT device manufacturer may rely on the security of the chip manufacturer. 2467 

However, the IoT device manufacturer must also rely on the security of the courier or other mechanism 2468 

that is delivering the seed, and the IoT device manufacturer must ensure that the value of this seed is 2469 

not disclosed. 2470 

2471 H.2 Factory Provisioning Builds – General Provisioning Process 

The Factory Provisioning Builds implemented as part of this project simulate activities performed during 2472 

the IoT device manufacturing process to securely provision the device’s birth credentials (i.e., its private 2473 

key) into secure storage on the device and make the device’s network-layer bootstrapping information 2474 

available by enrolling the device’s public key into a database that will make this public key accessible to 2475 

the device owner in a form such as a certificate or DPP URI. The method used in the factory provisioning 2476 

builds most closely resembles Method 2: Key Pair Generated on IoT Device, as described in Section H.1.1. 2477 

There are several different potential versions of the factory provisioning build architecture depending 2478 

on whether the credentials being generated are designed to support BRSKI, Wi-Fi Easy Connect, Thread, 2479 

or some other trusted network-layer onboarding protocol. For example, when BRSKI is being supported, 2480 

the device bootstrapping information that is created takes the form of an 802.1AR certificate (IDevID); if 2481 

DPP is supported, it takes the form of a DPP URI. 2482 

Because this project does not have access to a real factory or the tools necessary to provision birth 2483 

credentials directly into device firmware, the factory builds simulate the firmware loading process by 2484 

loading factory provisioning code into the IoT device (e.g., a Raspberry Pi device). This code plays the 2485 

role of the factory in the builds by instructing the SE that is attached to the IoT device to generate the 2486 

device’s private key and bootstrapping information. Once the IoT device has been provisioned with its 2487 

birth credentials in this manner, it can, in theory, be network-layer onboarded to one of the project 2488 

build networks. 2489 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 93 

2490 H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ) 

Two variants of the BRSKI Factory Provisioning Build were implemented: 2491 

▪ NquiringMinds and SEALSQ implementation (first version): SEALSQ, a subsidiary of WISeKey, 2492 
and NquiringMinds collaborated to implement one version of the BRSKI Factory Provisioning 2493 
Build. This build is designed to provision birth credentials to a Raspberry Pi device that has an 2494 
attached secure element provided by SEALSQ. 2495 

▪ NquiringMinds and Infineon implementation (second version): NquiringMinds implemented a 2496 
second version of the BRSKI Factory Provisioning Build using an Infineon SE. This build is 2497 
designed to provision birth credentials to a Raspberry Pi device that has an attached Infineon 2498 
Optiga SLB 9670 TPM 2.0. 2499 

2500 H.3.1 BRSKI Factory Provisioning Build Technologies 

The general infrastructure for the first version of the BRSKI Factory Provisioning Build (i.e., the 2501 

NquiringMinds and SEALSQ implementation) is provided by SEALSQ. The first version of the BRSKI 2502 

Factory Provisioning Build infrastructure consists of: 2503 

▪ A SEALSQ VaultIC SE that is attached to the Raspberry Pi 2504 

▪ SEALSQ Factory Provisioning Code that is located on an SD card and that communicates with the 2505 
chip in the SE to 2506 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2507 

• construct a certificate signing request, and 2508 

• store the certificate in the SE as well as send it to the manufacturer’s database 2509 

▪ SEALSQ INeS CMS CA, a certificate authority for signing the device’s birth certificate 2510 

As mentioned earlier, separate factory provisioning builds are required for each network-layer 2511 

onboarding protocol being supported. A small amount of factory provisioning code is required to be 2512 

customized for each build, depending on the onboarding protocol that is supported and how the 2513 

bootstrapping information will be provided to the manufacturer. In this build, NquiringMinds provided 2514 

this code and made it available to the Raspberry Pi IoT device by placing it on an SD card. (This could be 2515 

either in a partition of the SD card that holds the device’s BRSKI onboarding software or on a separate 2516 

SD card altogether). 2517 

Table H-1 lists the technologies used in the first version of the BRSKI Factory Provisioning Build. It lists 2518 

the products used to instantiate each logical build component and the security function that the 2519 

component provides. The components listed are logical. They may be combined in physical form, e.g., a 2520 

single piece of hardware may both generate key pairs and provide secure storage. 2521 

Table H-1 First Version of the BRSKI Factory Provisioning Build Products and Technologies 2522 

Component Product Function 

Key Pair 
Generation 
Component 

SEALSQ VaultIC 
and associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. The VaultIC has a SP800-90B certified 
random number generator for key pair generation. 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 94 

Component Product Function 

[15][16][17] Signs the certificate signing request that is sent 
to the CA. 

Secure Storage SEALSQ VaultIC Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

SEALSQ Factory 
Provisioning Code 

Creates a CSR associated with the key pair, installs the 
signed certificate into secure storage. Creates a record of 
devices that it has created and their certificates. 

Build-specific 
Factory 
Provisioning 
Instructions 

NquiringMinds 
Factory 
Provisioning Code 

Sends device ownership information and the certificate 
received by the General Factory Provisioning code to the 
MASA. 

Manufacturer 
Database 

MASA When devices are manufactured, device identity and 
bootstrapping information is stored here by the 
manufacturer. Eventually, this database makes the device’s 
bootstrapping information available to the device owner. 
Device bootstrapping information is information that the 
device owner requires to perform trusted network-layer 
onboarding; for BRSKI, the bootstrapping information is a 
signed certificate that is sent to the MASA, along with 
information regarding the device’s owner. 

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

Issues and signs certificates as needed. 

 

The second version of the BRSKI Factory Provisioning Build (i.e., the NquiringMinds implementation with 2523 

an Infineon SE) infrastructure consists of: 2524 

▪ An Infineon Optiga SLB 9670 TPM 2.0. that is attached to the Raspberry Pi 2525 

▪ Factory Provisioning Code written by NquiringMinds that is located on an SD card and that 2526 
communicates with the chip in SE to  2527 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2528 

• construct a certificate signing request, and 2529 

• store the certificate in the SE as well as send it to the manufacturer’s database 2530 

▪ NquiringMinds Manufacturer Provisioning Root (MPR) server, which signs the device’s IDevID 2531 
birth certificate. It sits in the cloud and is securely contacted using the keys in the Infineon 2532 
Optiga secure element. 2533 

In this build, NquiringMinds provided all of the factory provisioning code and made it available to the 2534 

Raspberry Pi IoT device by placing it on an SD card. (This could be either in a partition of the SD card that 2535 

holds the device’s BRSKI onboarding software or on a separate SD card altogether). 2536 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 95 

Table H-2 lists the technologies used in the second version of the BRSKI Factory Provisioning Build. It lists 2537 

the products used to instantiate each logical build component and the security function that the 2538 

component provides. The components listed are logical. They may be combined in physical form, e.g., a 2539 

single piece of hardware may both generate key pairs and provide secure storage. 2540 

Table H-2 Second Version of the BRSKI Factory Provisioning Build Products and Technologies 2541 

Component Product Function 

Key Pair 
Generation 
Component 

Infineon TPM and 
associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. Signs the certificate signing request that is 
sent to the CA. 

Secure Storage Infineon TPM Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

Infineon TPM-
specific Factory 
Provisioning Code 

Creates a CSR associated with the key pair, installs the 
signed certificate into secure storage. Creates a record of 
devices that it has created and their certificates. 

Build-specific 
Factory 
Provisioning 
Instructions 

Build-specific 
Factory 
Provisioning Code 

Sends device ownership information and the signed 
certificate to the MASA. 

Manufacturer 
Database 

MASA When devices are manufactured, device identity and 
bootstrapping information is stored here by the 
manufacturer. Eventually, this database makes the device’s 
bootstrapping information available to the device owner. 
Device bootstrapping information is information that the 
device owner requires to perform trusted network-layer 
onboarding; for BRSKI, the bootstrapping information is a 
signed certificate that is sent to the MASA, along with 
information regarding the device’s owner.  

Certificate 
Authority (CA) 

SEALSQ INeS CMS 
CA 

NquiringMinds On-
premises CA 

Issues and signs certificates as needed. 

 

2542 H.3.2 BRSKI Factory Provisioning Build Logical Architectures 

Figure H-1 depicts the logical architecture of the first version of the BRSKI factory provisioning build (i.e., 2543 

the NquiringMinds and SEALSQ implementation) and is annotated with the steps that are performed in 2544 

this build to prepare IoT devices for network-layer onboarding using the BRSKI protocol. Figure H-1 2545 

shows a Raspberry Pi device with a SEALSQ VaultIC SE attached. An SD card that contains factory 2546 

provisioning code provided by SEALSQ and NquiringMinds is also required. To perform factory 2547 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 96 

provisioning using this build, insert the SD card into the Raspberry Pi, as depicted (or activate the code in 2548 

the factory provisioning partition of the SD card that is already in the Raspberry Pi). The SEALSQ 2549 

software will boot up and perform the following steps to simulate the activities of a factory: 2550 

1. Instruct the SE to generate and store a private/public key pair 2551 

2. Create a certificate signing request for this key pair and have the SE sign it 2552 

3. Send the signed CSR to the IDevID CA (i.e., to the INeS CA that is operated by SEALSQ) 2553 

4. Receive back the signed certificate from the CA 2554 

5. Load the certificate into the SE 2555 

6. Send the certificate (along with device ownership information) to the manufacturer’s database, 2556 

which in this case is the MASA that is trusted by the owner 2557 

This completes the steps performed as part of the first version of the BRSKI Factory Provisioning Build. 2558 

Once complete, shipment of the device to its owner can be simulated by walking the device across the 2559 

room in the NCCoE laboratory to the Build 5 (NquiringMinds) implementation and replacing the SD card 2560 

that has the factory provisioning code on it with and SD card that has the BRSKI onboarding code on it. 2561 

(Alternatively, if the factory provisioning code and the BRSKI onboarding code are stored in separate 2562 

partitions of the same SD card, shipment of the device to its owner can be simulated by booting up the 2563 

code in the onboarding partition.) Build 5 is designed to execute this BRSKI onboarding software, which 2564 

onboards the device to the device owner’s network by provisioning the device with an LDevID that will 2565 

serve as its network-layer credential. Such successful network-layer onboarding of the newly 2566 

provisioned device using the BRSKI protocol by Build 5 would serve to confirm that the first version of 2567 

the BRSKI factory provisioning process successfully provisioned the device with its birth credentials. At 2568 

the time of this writing, however, this confirmation process was not able to be performed. In order to 2569 

securely network-layer onboard the newly provisioned Raspberry Pi using the BRSKI protocol, the 2570 

Raspberry Pi’s onboarding software would need to be written to use the private key stored in the 2571 

SEALSQ secure element when running the BRSKI protocol. Such software was not yet available at the 2572 

time of this publication. The BRSKI onboarding code on the Raspberry Pi does not currently use the 2573 

private key stored in the SEALSQ SE. As a result, Build 5 was not able to onboard this factory Pi as a way 2574 

of confirming that the first version of the BRSKI factory build process completed successfully. The 2575 

repository that hosts the code for this implementation can be found here at the trustnetz-se Github 2576 

repository. 2577 

https://github.com/nqminds/trustnetz-se/
https://github.com/nqminds/trustnetz-se/


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 97 

Figure H-1 Logical Architecture of the First Version of the BRSKI Factory Provisioning Build 2578 

 

Figure H-2 depicts the logical architecture of the second version of the BRSKI factory provisioning build 2579 

and is annotated with the steps that are performed in this build to prepare IoT devices for network-layer 2580 

onboarding using the BRSKI protocol. Figure H-2 shows a Raspberry Pi device with an Infineon Optiga 2581 

SLB 9670 TPM 2.0 SE attached. An SD card that contains factory provisioning code provided by 2582 

NquiringMinds is also required. To perform factory provisioning using this build, insert the SD card into 2583 

the Raspberry Pi, as depicted (or activate the code in the factory provisioning partition of the SD card 2584 

that is already in the Raspberry Pi). The factory provisioning code software will boot up and perform the 2585 

following steps to simulate the activities of a factory: 2586 

1. Instruct the Infineon SE to generate and store a private/public key pair 2587 

2. Create a certificate signing request for this key pair and have the SE sign it 2588 

3. Send the signed CSR to the IDevID CA (i.e., to the NquiringMinds on-premises CA/Manufacturer 2589 

Provisioning Root) 2590 

4. Receive back the signed certificate from the CA 2591 

5. Load the certificate into the SE 2592 

6. Send the certificate (along with device ownership information) to the manufacturer’s database, 2593 

which in this case is the MASA that is trusted by the owner 2594 

This completes the steps performed as part of the second version of the BRSKI Factory Provisioning 2595 

Build. Once complete, shipment of the device to its owner can be simulated by walking the device across 2596 

the room in the NCCoE laboratory to the Build 5 (NquiringMinds) implementation and replacing the SD 2597 

card that has the factory provisioning code on it with and SD card that has the BRSKI onboarding code 2598 

on it. (Alternatively, if the factory provisioning code and the BRSKI onboarding code are stored in 2599 

separate partitions of the same SD card, shipment of the device to its owner can be simulated by 2600 

IoT Device 

(Raspberry Pi)

MASA

SEALSQ 

INeS CA

WISeKey VaultIC Secure Element (SE)

Key Pair 

Generation 

Component

SD Card

Provisioning 

Code

Operations performed in the SE:

• Generate private/public key pair

• Sign the certificate signing 

request (CSR)

• Receive and store the signed 

certificate

5. Load the certificate into 

the SE

6. Send the certificate and 

ownership information to 

the manufacturer’s 

database (i.e., the MASA)

The Provisioning Code 

performs the following steps:

1. Instruct the SE to generate 

and store a public/private 

key pair

2. Create a CSR and have the 

SE sign it

3. Send the signed CSR to the 

CA

4. Receive certificate 

from  the CA

Secure 

Storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 98 

booting up the code in the onboarding partition.) Build 5 executes a modification of the BRSKI 2601 

onboarding software that has been modified to use the IDevID resident on the Infineon TPM throughout 2602 

the protocol flow, ensuring the device’s IDevID’s private key is never made public and never leaves the 2603 

secure element. Specifically, the critical signing operations and the TLS negotiation steps are fully 2604 

secured by the SE. The full BRSKI onboarding flow provisions a new LDevID onto the device. This LDevID 2605 

provides the secure method for the device to connect to the domain owner’s network. This successful 2606 

network-layer onboarding of the IoT device by Build 5 serves as confirmation that the second version of 2607 

the BRSKI factory provisioning process successfully provisioned the device with its birth credentials. 2608 

Figure H-2 Logical Architecture of the Second Version of the BRSKI Factory Provisioning Build 2609 

 

2610 H.3.3 BRSKI Factory Provisioning Build Physical Architectures 

Section 5.6.1 describes the physical architecture of the BRSKI Factory Provisioning Builds. 2611 

2612 H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and 
2613 Aruba/HPE) 

SEALSQ, a subsidiary of WISeKey, and Aruba/HPE implemented a Wi-Fi Easy Connect Factory 2614 

Provisioning Build. This build is designed to provision birth credentials to a Raspberry Pi device that has 2615 

an attached secure element provided by SEALSQ. 2616 

2617 H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies 

The general infrastructure for the Wi-Fi Easy Connect Factory Provisioning Build is provided by SEALSQ. 2618 

The Wi-Fi Easy Connect Factory Provisioning Build infrastructure consists of: 2619 

▪ A SEALSQ VaultIC SE that is attached to the Raspberry Pi 2620 

IoT Device 

(Raspberry Pi)

MASA

Nquiring

Minds On-

Premises 

CA

Infineon Optiga SLB 9670 TPM 2.0 (SE)

Key Pair 

Generation 

Component

SD Card

Provisioning 

Code

Operations performed in the SE:

• Generate private/public key pair

• Sign the certificate signing 

request (CSR)

• Receive and store the signed 

certificate

5. Load the certificate into 

the SE

6. Send the certificate and 

ownership information to 

the manufacturer’s 

database (i.e., the MASA)

The Provisioning Code 

performs the following steps:

1. Instruct the SE to generate 

and store a public/private 

key pair

2. Create a CSR and have the 

SE sign it

3. Send the signed CSR to the 

CA

4. Receive certificate 

from  the CA

Secure 

Storage



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 99 

▪ SEALSQ Factory Provisioning Code that is located on an SD card and that communicates with the 2621 
chip in the SE to: 2622 

• create a P-256 Elliptic Curve public/private key pair within the SE, 2623 

• use the public key to construct a DPP URI 2624 

• export the DPP URI and convert it into a QR code 2625 

Table H-3 lists the technologies used in the Wi-Fi Easy Connect Factory Provisioning Build. It lists the 2626 

products used to instantiate each logical build component and the security function that the component 2627 

provides. The components listed are logical. They may be combined in physical form, e.g., a single piece 2628 

of hardware may both generate key pairs and provide secure storage. 2629 

Table H-3 Wi-Fi Easy Connect Factory Provisioning Build Products and Technologies 2630 

Component Product Function 

Key Pair 
Generation 
Component 

SEALSQ VaultIC 
and associated 
provisioning code 

Generates and installs the public/private key pair into 
secure storage. The VaultIC has a SP800-90B certified 
random number generator for key pair generation. [17] 

Secure Storage SEALSQ VaultIC Storage on the IoT device that is designed to be protected 
from unauthorized access and capable of detecting 
attempts to hack or modify its contents. Used to generate, 
store, and process private keys, credentials, and other 
information that must be kept confidential. 

General Factory 
Provisioning 
Instructions 

SEALSQ Factory 
Provisioning Code 

Creates a public/private key pair. 

Build-specific 
Factory 
Provisioning 
Instructions 

Aruba/HPE Factory 
Provisioning Code 

Uses the public key to create a DPP URI. Exports the DPP 
URI and converts it into a QR code. 

Manufacturer 
Database 

Manufacturer 
cloud or imprint on 
device 

The DPP URI information is stored in the QR code and is the 
mechanism for conveying the device’s bootstrapping 
information to the device owner. 

2631 H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture 

Figure H-3 depicts the logical architecture of the Wi-Fi Easy Connect factory provisioning build and is 2632 

annotated with the steps that are performed in this build to prepare Raspberry Pi IoT devices for 2633 

network-layer onboarding using the Wi-Fi Easy Connect protocol. Figure H-3 shows a Raspberry Pi device 2634 

with a SEALSQ VaultIC SE attached. Factory provisioning code provided by SEALSQ and Aruba/HPE must 2635 

also be loaded. In Figure H-3, this code is shown as being on an SD card. The factory provisioning 2636 

software will boot up and perform the following steps to simulate the activities of a factory: 2637 

1. Instruct the SE to generate and store a private/public key pair 2638 

2. Use the public key to create a DPP URI 2639 



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 100 

3. Export the DPP URI and convert it into a QR code 2640 

This completes the steps performed as part of the Wi-Fi Easy Connect Factory Provisioning Build. Once 2641 

complete, shipment of the device to its owner can be simulated by walking the device across the room 2642 

in the NCCoE laboratory to the Build 1 (Aruba/HPE) implementation. Build 1 uses the Wi-Fi Easy Connect 2643 

protocol to network-layer onboard the device to the device owner’s network by provisioning the device 2644 

with connector that will serve as its network-layer credential. Successful network-layer onboarding of 2645 

the newly provisioned device using the Wi-Fi Easy Connect protocol by Build 1 would serve to confirm 2646 

that the Wi-Fi Easy Connect factory provisioning process correctly provisioned the device with its birth 2647 

credentials. At the time of this writing, however, this confirmation process was not able to be 2648 

performed. In order to securely network-layer onboard the newly provisioned Raspberry Pi using the 2649 

Wi-Fi Easy Connect protocol, the Raspberry Pi would need to be equipped with a firmware image that 2650 

uses the private key stored in the secure element when running the Wi-Fi Easy Connect protocol. Such 2651 

firmware was not yet available at the time of this publication. The Wi-Fi Easy Connect code on the 2652 

Raspberry Pi does not use the private key stored in the SE at this time. Confirmation that the factory 2653 

build process completed successfully is limited to inspection of the .PNG file and .URI file that were 2654 

created to display the QR Code and the device’s DPP URI, respectively. 2655 

Figure H-3 Logical Architecture of the Wi-Fi Easy Connect Factory Provisioning Build 2656 

 

2657 H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture 

Section 5.2.1 describes the physical architecture of the Factory Provisioning Build. 2658 

  

IoT Device 

(Raspberry Pi)

WISeKey VaultIC Secure Element (SE)

Key Pair 

Generation 

ComponentSD Card

Provisioning 

Code
Operations performed in the SE:

• Generate private/public key pair

• Create the DPP URI

The Provisioning Code performs 

the following steps:

1. Instruct the SE to generate 

and store a public/private key 

pair

2. Use the public key to create a 

DPP URI

3. Export the DPP URI and 

convert it to a QR code

Secure 

Storage

DPP URI

QR Code



DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 101 

2659 Appendix I References 
[1] L. S. Vailshery, “Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2660 

2023, with forecasts from 2022 to 2030,” Statista, July 2023. Available: 2661 

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/. 2662 

[2] S. Symington, W. Polk, and M. Souppaya, Trusted Internet of Things (IoT) Device Network-2663 

Layer Onboarding and Lifecycle Management (Draft), National Institute of Standards and 2664 

Technology (NIST) Draft Cybersecurity White Paper, Gaithersburg, MD, Sept. 2020, 88 pp. 2665 

https://doi.org/10.6028/NIST.CSWP.09082020-draft. 2666 

[3] E. Lear, R. Droms, and D. Romascanu, Manufacturer Usage Description Specification, IETF 2667 

Request for Comments (RFC) 8520, March 2019. Available: https://tools.ietf.org/html/rfc8520. 2668 

[4] M. Souppaya et al, Securing Small-Business and Home Internet of Things (IoT) Devices: 2669 

Mitigating Network-Based Attacks Using Manufacturer Usage Description (MUD), National 2670 

Institute of Standards and Technology (NIST) Special Publication (SP) 1800-15, Gaithersburg, 2671 

Md., May 2021, 438 pp. Available: 2672 

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-15.pdf. 2673 

[5] “National Cybersecurity Center of Excellence (NCCoE) Trusted Internet of Things (IoT) Device 2674 

Network-Layer Onboarding and Lifecycle Management,” Federal Register Vol. 86, No. 204, 2675 

October 26, 2021, pp. 59149-59152. Available: 2676 

https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-2677 

center-of-excellence-nccoe-trusted-internet-of-things-iot-device. 2678 

[6] Wi-Fi Alliance, Wi-Fi Easy Connect™ Specification Version 3.0, 2022. Available: 2679 

https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf. 2680 

[7] M. Pritikin, M. Richardson, T.T.E. Eckert, M.H. Behringer, and K.W. Watsen, Bootstrapping 2681 

Remote Secure Key Infrastructure (BRSKI), IETF Request for Comments (RFC) 8995, October 2682 

2021. Available: https://datatracker.ietf.org/doc/rfc8995/. 2683 

[8] Thread 1.1.1 Specification, February 13, 2017. 2684 

[9] OpenThread Released by Google. Available: https://openthread.io/. 2685 

[10] O. Friel, E. Lear, M. Pritikin, and M. Richardson, BRSKI over IEEE 802.11, IETF Internet-Draft 2686 

(Individual), July 2018. Available: https://datatracker.ietf.org/doc/draft-friel-brski-over-2687 

802dot11/01/. 2688 

[11] NIST. The NIST Cybersecurity Framework (CSF) 2.0. Available: 2689 

https://doi.org/10.6028/NIST.CSWP.29. 2690 

[12] IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity, IEEE Std 2691 

802.1AR-2018 (Revision of IEEE Std 802.1AR-2009), 2 Aug. 2018, 73 pp. Available: 2692 

https://ieeexplore.ieee.org/document/8423794. 2693 

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.6028/NIST.CSWP.09082020-draft
https://tools.ietf.org/html/rfc8520
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1800-15.pdf
https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-center-of-excellence-nccoe-trusted-internet-of-things-iot-device
https://www.federalregister.gov/documents/2021/10/26/2021-23293/national-cybersecurity-center-of-excellence-nccoe-trusted-internet-of-things-iot-device
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf
https://datatracker.ietf.org/doc/rfc8995/
https://openthread.io/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://doi.org/10.6028/NIST.CSWP.29
https://ieeexplore.ieee.org/document/8423794


DRAFT 

NIST SP 1800-36B: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 102 

[13] F. Stajano and R. Anderson, The Resurrecting Duckling: Security Issues for Ad-hoc Wireless 2694 

Networks, B. Christianson, B. Crispo and M. Roe (Eds.). Security Protocols, 7th International 2695 

Workshop Proceedings, Lecture Notes in Computer Science, 1999. Springer-Verlag Berlin 2696 

Heidelberg 1999. Available: https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-2697 

duckling.pdf. 2698 

[14] M. Richardson, A Taxonomy of operational security considerations for manufacturer installed 2699 

keys and Trust Anchors, IETF Internet-Draft (Individual), November 2022. Available: 2700 

https://datatracker.ietf.org/doc/draft-richardson-t2trg-idevid-considerations/. 2701 

[15] Certificate #4302, Cryptographic Module Validation Program, NIST Computer Security 2702 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2703 

program/certificate/4302. 2704 

[16] Certificate #4303, Cryptographic Module Validation Program, NIST Computer Security 2705 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2706 

program/certificate/4303. 2707 

[17] Entropy Certificate #E2, Cryptographic Module Validation Program, NIST Computer Security 2708 

Resource Center. Available: https://csrc.nist.gov/projects/cryptographic-module-validation-2709 

program/entropy-validations/certificate/2. 2710 

https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://datatracker.ietf.org/doc/draft-richardson-t2trg-idevid-considerations/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4302
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4302
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4303
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4303
https://csrc.nist.gov/projects/cryptographic-module-validation-program/entropy-validations/certificate/2
https://csrc.nist.gov/projects/cryptographic-module-validation-program/entropy-validations/certificate/2


 

 

NIST SPECIAL PUBLICATION 1800-36C 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management: 
Enhancing Internet Protocol-Based IoT Device and Network 
Security 
 
Volume C: 
How-To Guides 
 

Murugiah Souppaya 
Paul Watrobski 
National Institute of Standards and Technology 
Gaithersburg, Maryland 

Chelsea Deane 
Joshua Klosterman 
Blaine Mulugeta 
Charlie Rearick 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 

Dan Harkins 
Danny Jump 
Aruba, a Hewlett Packard 
Enterprise Company 

San Jose, California 

Andy Dolan 

Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs 
Louisville, Colorado 

Nick Allot 
Ashley Setter 
NquiringMinds 
Southampton, United Kingdom 

 

May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 

 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 

logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 

experimental procedure or concept adequately. Such identification is not intended to imply special 4 

status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 

intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 

for the purpose. 7 

While NIST and the NCCoE address goals of improving management of cybersecurity and privacy risk 8 

through outreach and application of standards and best practices, it is the stakeholder’s responsibility to 9 

fully perform a risk assessment to include the current threat, vulnerabilities, likelihood of a compromise, 10 

and the impact should the threat be realized before adopting cybersecurity measures such as this 11 

recommendation. 12 

 

National Institute of Standards and Technology Special Publication 1800-36C, Natl. Inst. Stand. Technol. 13 

Spec. Publ. 1800-36C, 55 pages, May 2024, CODEN: NSPUE2 14 

 

FEEDBACK 15 

You can improve this guide by contributing feedback. As you review and adopt this solution for your 16 

own organization, we ask you and your colleagues to share your experience and advice with us. 17 

Comments on this publication may be submitted to: iot-onboarding@nist.gov. 18 

Public comment period: May 31, 2024 through July 30, 2024 19 

All comments are subject to release under the Freedom of Information Act. 20 

National Cybersecurity Center of Excellence 21 

National Institute of Standards and Technology 22 

100 Bureau Drive 23 

Mailstop 2002 24 

Gaithersburg, MD 20899 25 

Email: nccoe@nist.gov  26 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 27 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 28 

and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 29 

academic institutions work together to address businesses’ most pressing cybersecurity issues. This 30 

public-private partnership enables the creation of practical cybersecurity solutions for specific 31 

industries, as well as for broad, cross-sector technology challenges. Through consortia under 32 

Cooperative Research and Development Agreements (CRADAs), including technology partners—from 33 

Fortune 50 market leaders to smaller companies specializing in information technology security—the 34 

NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 35 

solutions using commercially available technology. The NCCoE documents these example solutions in 36 

the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 37 

and details the steps needed for another entity to re-create the example solution. The NCCoE was 38 

established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 39 

Maryland. 40 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 41 

https://www.nist.gov. 42 

NIST CYBERSECURITY PRACTICE GUIDES 43 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 44 

challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 45 

adoption of standards-based approaches to cybersecurity. They show members of the information 46 

security community how to implement example solutions that help them align with relevant standards 47 

and best practices, and provide users with the materials lists, configuration files, and other information 48 

they need to implement a similar approach. 49 

The documents in this series describe example implementations of cybersecurity practices that 50 

businesses and other organizations may voluntarily adopt. These documents do not describe regulations 51 

or mandatory practices, nor do they carry statutory authority. 52 

KEYWORDS 53 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 54 

(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 55 

  

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

ACKNOWLEDGMENTS 56 

We are grateful to the following individuals for their generous contributions of expertise and time. 57 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

Eliot Lear Cisco 

Peter Romness Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT 

Brecht Wyseur Kudelski IoT 

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors 

Mihai Chelalau NXP Semiconductors 

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor NXP Semiconductors 

Michael Richardson Sandelman Software Works 

Karen Scarfone Scarfone Cybersecurity 

Steve Clark SEALSQ, a subsidiary of WISeKey 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

Mike Dow Silicon Labs 

Steve Egerter Silicon Labs 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 58 

response to a notice in the Federal Register. Respondents with relevant capabilities or product 59 

components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 60 

NIST, allowing them to participate in a consortium to build this example solution. We worked with: 61 

Technology Collaborators 62 

Aruba, a Hewlett Packard 63 

Enterprise company 64 

CableLabs 65 

Cisco 66 

Foundries.io 

Kudelski IoT 

NquiringMinds 

NXP Semiconductors 

Open Connectivity Foundation (OCF) 

Sandelman Software Works 

SEALSQ, a subsidiary of WISeKey 

Silicon Labs 

DOCUMENT CONVENTIONS 67 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 68 

publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 69 

among several possibilities, one is recommended as particularly suitable without mentioning or 70 

excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 71 

the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 72 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

“may” and “need not” indicate a course of action permissible within the limits of the publication. The 73 

terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 74 

CALL FOR PATENT CLAIMS 75 

This public review includes a call for information on essential patent claims (claims whose use would be 76 

required for compliance with the guidance or requirements in this Information Technology Laboratory 77 

(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 78 

or by reference to another publication. This call also includes disclosure, where known, of the existence 79 

of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 80 

unexpired U.S. or foreign patents. 81 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 82 

written or electronic form, either: 83 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 84 

currently intend holding any essential patent claim(s); or 85 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 86 

to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 87 

publication either: 88 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 89 

or 90 

2. without compensation and under reasonable terms and conditions that are demonstrably free 91 

of any unfair discrimination. 92 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 93 

behalf) will include in any documents transferring ownership of patents subject to the assurance, 94 

provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 95 

and that the transferee will similarly include appropriate provisions in the event of future transfers with 96 

the goal of binding each successor-in-interest. 97 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 98 

whether such provisions are included in the relevant transfer documents. 99 

Such statements should be addressed to: iot-onboarding@nist.gov. 100 

  

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

Contents 101 

102 

103 

104 

1.2.1 Reference Architecture Summary ................................................................................ 3 105 

1.2.2 Physical Architecture Summary .................................................................................... 3 106 

107 

108 

109 

110 

2.2.1 Wi-Fi Network Setup and Configuration ...................................................................... 8 111 

2.2.2 Wi-Fi Easy Connect Configuration ................................................................................ 9 112 

113 

2.3.1 Configuration .............................................................................................................. 10 114 

115 

2.4.1 Configuration .............................................................................................................. 10 116 

117 

2.5.1 Configuration .............................................................................................................. 11 118 

2.5.2 DPP Onboarding ......................................................................................................... 11 119 

120 

2.6.1 Private Certificate Authority ....................................................................................... 13 121 

2.6.2 SEALSQ INeS................................................................................................................ 17 122 

123 

124 

2.8.1 SEALSQ VaultIC Secure Element ................................................................................. 18 125 

126 

127 

3.1.1 Operation and Demonstration ................................................................................... 20 128 

129 

3.2.1 Installation and Configuration .................................................................................... 20 130 

3.2.2 Integration with CableLabs Platform Controller ........................................................ 20 131 

3.2.3 Operation and Demonstration ................................................................................... 20 132 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ix 

133 

3.3.1 Installation and Configuration .................................................................................... 20 134 

3.3.2 Operation and Demonstration ................................................................................... 20 135 

136 

137 

4.1.1 Setup and Configuration ............................................................................................. 21 138 

139 

4.2.1 Setup and Configuration ............................................................................................. 21 140 

141 

4.3.1 Setup and Configuration ............................................................................................. 22 142 

143 

144 

4.5.1 Setup and Configuration ............................................................................................. 23 145 

146 

147 

5.1.1 Installation and Configuration .................................................................................... 24 148 

5.1.2 Operation and Demonstration ................................................................................... 24 149 

150 

5.2.1 Setup and Configuration ............................................................................................. 25 151 

152 

5.3.1 Setup and Configuration ............................................................................................. 28 153 

154 

5.4.1 Setup and Configuration ............................................................................................. 30 155 

5.4.2 Testing ........................................................................................................................ 35 156 

157 

158 

6.1.1 Installation and Configuration .................................................................................... 37 159 

6.1.2 Operation and Demonstration ................................................................................... 37 160 

161 

6.2.1 Installation and Configuration .................................................................................... 37 162 

6.2.2 Logical services ........................................................................................................... 38 163 

164 

6.3.1 Prerequisites ............................................................................................................... 41 165 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management x 

6.3.2 Onboarding Demonstration ....................................................................................... 42 166 

6.3.3 Continuous Assurance Demonstration ....................................................................... 42 167 

168 

6.4.1 Pledge ......................................................................................................................... 43 169 

6.4.2 Installation and Configuration .................................................................................... 43 170 

6.4.3 Operation and Demonstration ................................................................................... 43 171 

 

List of Figures 172 

Figure 1-1 NCCoE IoT Onboarding Laboratory Physical Architecture .....................................................5 173 

Figure 6-1 Logical Services for Build 5 ............................................................................................... 38 174 

Figure 6-2 Diagram of Physical/Logical Components Used to Demonstrate BRSKI Flow ...................... 42 175 

 

  



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 176 

The following volumes of this guide show information technology (IT) professionals and security 177 

engineers how we implemented these example solutions. We cover all of the products employed in this 178 

reference design. We do not re-create the product manufacturers’ documentation, which is presumed 179 

to be widely available. Rather, these volumes show how we incorporated the products together in our 180 

environment. 181 

Note: These are not comprehensive tutorials. There are many possible service and security configurations 182 

for these products that are out of scope for this reference design. 183 

1.1 How to Use This Guide 184 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 185 

implementing trusted IoT device network-layer onboarding and lifecycle management and describes 186 

various example implementations of this reference design. Each of these implementations, which are 187 

known as builds, is standards-based and is designed to help provide assurance that networks are not put 188 

at risk as new IoT devices are added to them and to help safeguard IoT devices from connecting to 189 

unauthorized networks. The reference design described in this practice guide is modular and can be 190 

deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 191 

onboarding and lifecycle management into their legacy environments according to goals that they have 192 

prioritized based on risk, cost, and resources. 193 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 194 

possible rather than delaying release until all volumes are completed. 195 

This guide contains five volumes: 196 

▪ NIST Special Publication (SP) 1800-36A: Executive Summary – why we wrote this guide, the 197 
challenge we address, why it could be important to your organization, and our approach to 198 
solving this challenge 199 

▪ NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 200 

▪ NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 201 
including all the security-relevant details that would allow you to replicate all or parts of this 202 
project (you are here) 203 

▪ NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 204 
trusted IoT device network-layer onboarding and lifecycle management security capabilities and 205 
the results of demonstrating these use cases with each of the example implementations 206 

▪ NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 207 
device network-layer onboarding and lifecycle management security characteristics to 208 
cybersecurity standards and recommended practices 209 

Depending on your role in your organization, you might use this guide in different ways: 210 

Business decision makers, including chief security and technology officers, will be interested in the 211 

Executive Summary, NIST SP 1800-36A, which describes the following topics: 212 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

▪ challenges that enterprises face in migrating to the use of trusted IoT device network-layer 213 
onboarding 214 

▪ example solutions built at the NCCoE 215 

▪ benefits of adopting the example solution 216 

Technology or security program managers who are concerned with how to identify, understand, assess, 217 

and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 218 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 219 

components of the general trusted IoT device network-layer onboarding and lifecycle management 220 

reference design to security characteristics listed in various cybersecurity standards and recommended 221 

practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 222 

Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 223 

(NIST SP 800-53). 224 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 225 

them understand the importance of using standards-based trusted IoT device network-layer onboarding 226 

and lifecycle management implementations. 227 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 228 

can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 229 

in our lab. The how-to portion of the guide provides specific product installation, configuration, and 230 

integration instructions for implementing the example solution. We do not re-create the product 231 

manufacturers’ documentation, which is generally widely available. Rather, we show how we 232 

incorporated the products together in our environment to create an example solution. Also, you can use 233 

Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 234 

showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 235 

and the results of demonstrating these use cases with each of the example implementations. Finally, 236 

NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 237 

build provide. 238 

This guide assumes that IT professionals have experience implementing security products within the 239 

enterprise. While we have used a suite of commercial products to address this challenge, this guide does 240 

not endorse these particular products. Your organization can adopt this solution or one that adheres to 241 

these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 242 

parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 243 

organization’s security experts should identify the products that will best integrate with your existing 244 

tools and IT system infrastructure. We hope that you will seek products that are congruent with 245 

applicable standards and recommended practices. 246 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 247 

feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 248 

stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-249 

onboarding@nist.gov. 250 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf
mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

1.2 Build Overview 251 

This NIST Cybersecurity Practice Guide addresses the challenge of network-layer onboarding using 252 

standards-based protocols to perform trusted network-layer onboarding of an IoT device. Each build 253 

demonstrates one or more of these capabilities: 254 

▪ Trusted Network-Layer Onboarding: providing the device with its unique network credentials 255 
over an encrypted channel 256 

▪ Network Re-Onboarding: performing trusted network-layer onboarding of the device again, 257 
after device reset 258 

▪ Network Segmentation: assigning a device to a particular local network segment to prevent it 259 
from communicating with other network components, as determined by enterprise policy 260 

▪ Trusted Application-Layer Onboarding: providing the device with application-layer credentials 261 
over an encrypted channel after completing network-layer onboarding 262 

▪ Ongoing Device Authorization: continuously monitoring the device on an ongoing basis, 263 
providing policy-based assurance and authorization checks on the device throughout its lifecycle 264 

▪ Device Communications Intent Enforcement: Secure conveyance of device communications 265 
intent information, combined with enforcement of it, to ensure that IoT devices are constrained 266 
to sending and receiving only those communications that are explicitly required for each device 267 
to fulfill its purpose 268 

Five builds that will serve as examples of how to onboard IoT devices using the protocols described in 269 

NIST SP 1800-36B, as well as the factory provisioning builds, are being implemented and will be 270 

demonstrated as part of this project. The remainder of this practice guide provides step-by-step 271 

instructions on how to reproduce all builds. 272 

1.2.1 Reference Architecture Summary 273 

The builds described in this document are instantiations of the trusted network-layer onboarding and 274 

lifecycle management logical reference architecture that is described in NIST SP 1800-36B. This 275 

architecture is organized according to five high-level processes: Device Manufacture and Factory 276 

Provisioning, Device Ownership and Bootstrapping Information Transfer, Trusted Network-Layer 277 

Onboarding, Trusted Application-Layer Onboarding, and Continuous Verification. For a full explanation 278 

of the architecture, please see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 279 

1.2.2 Physical Architecture Summary 280 

Figure 1-1 depicts the high-level physical architecture of the NCCoE IoT Onboarding laboratory 281 

environment in which the five trusted IoT device network-layer onboarding project builds and the two 282 

factory provisioning builds are being implemented. The NCCoE provides virtual machine (VM) resources 283 

and physical infrastructure for the IoT Onboarding lab. As depicted, the NCCoE IoT Onboarding 284 

laboratory hosts collaborator hardware and software for the builds. The NCCoE also provides 285 

connectivity from the IoT Onboarding lab to the NIST Data Center, which provides connectivity to the 286 

internet and public IP spaces (both IPv4 and IPv6). Access to and from the NCCoE network is protected 287 

by a firewall. 288 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

Access to and from the IoT Onboarding lab is protected by a pfSense firewall, represented by the brick 289 

box icon in Figure 1-1. This firewall has both IPv4 and IPv6 (dual stack) configured. The IoT Onboarding 290 

lab network infrastructure includes a shared virtual environment that houses a domain controller and a 291 

vendor jumpbox. These components are used across builds where applicable. It also contains five 292 

independent virtual local area networks (VLANs), each of which houses a different trusted network-layer 293 

onboarding build. 294 

The IoT Onboarding laboratory network has access to cloud components and services provided by the 295 

collaborators, all of which are available via the internet. These components and services include Aruba 296 

Central and the UXI Cloud (Build 1), SEALSQ INeS (Build 1), Platform Controller (Build 2), a MASA server 297 

(Build 3), Kudelski IoT keySTREAM application-layer onboarding service and AWS IoT (Build 4), and a 298 

Manufacturer Provisioning Root (Build 5). 299 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

Figure 1-1 NCCoE IoT Onboarding Laboratory Physical Architecture 300 

 

 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

All five network-layer onboarding laboratory environments, as depicted in the diagram, have been 301 

installed: 302 

▪ Build 1 (i.e., the Wi-Fi Easy Connect, Aruba/HPE build) network infrastructure within the NCCoE 303 
lab consists of two components: the Aruba Access Point and the Cisco Switch. Build 1 also 304 
requires support from Aruba Central for network-layer onboarding and the UXI Cloud for 305 
application-layer onboarding. These components are in the cloud and accessed via the internet. 306 
The IoT devices that are onboarded using Build 1 include the UXI Sensor and the Raspberry Pi. 307 

▪ Build 2 (i.e., the Wi-Fi Easy Connect, CableLabs, OCF build) network infrastructure within the 308 
NCCoE lab consists of a single component: the Gateway Access Point. Build 2 requires support 309 
from the Platform Controller, which also hosts the IoTivity Cloud Service. The IoT devices that 310 
are onboarded using Build 2 include three Raspberry Pis. 311 

▪ Build 3 (i.e., the BRSKI, Sandelman Software Works build) network infrastructure components 312 
within the NCCoE lab include a Wi-Fi capable home router (including Join Proxy), a DMZ switch 313 
(for management), and an ESP32A Xtensa board acting as a Wi-Fi IoT device, as well as an 314 
nRF52840 board acting as an IEEE 802.15.4 device. A management system on a BeagleBone 315 
Green serves as a serial console. A registrar server has been deployed as a virtual appliance on 316 
the NCCoE private cloud system. Build 3 also requires support from a MASA server which is 317 
accessed via the internet. In addition, a Raspberry Pi 3 provides an ethernet/802.15.4 gateway, 318 
as well as a test platform. 319 

▪ Build 4 (i.e., the Thread, Silicon Labs, Kudelski IoT build) network infrastructure components 320 
within the NCCoE lab include an Open Thread Border Router, which is implemented using a 321 
Raspberry Pi, and a Silicon Labs Gecko Wireless Starter Kit, which acts as an 802.15.4 antenna. 322 
Build 4 also requires support from the Kudelski IoT keySTREAM service, which is in the cloud and 323 
accessed via the internet. The IoT device that is onboarded in Build 4 is the Silicon Labs Dev Kit 324 
(BRD2601A) with an EFR32MG24 System-on-Chip. The application service to which it onboards 325 
is AWS IoT. 326 

▪ Build 5 (i.e., the BRSKI over Wi-Fi, NquiringMinds build) includes 2 Raspberry Pi 4Bs running a 327 
Linux operating system. One Raspberry Pi acts as the pledge (or IoT Device) with an Infineon 328 
TPM connected. The other acts as the router, registrar and MASA all in one device. This build 329 
uses the open source TrustNetZ distribution, from which the entire build can be replicated 330 
easily. The TrustNetZ distribution includes source code for the IoT device, the router, the access 331 
point, the network onboarding component, the policy engine, the manufacturer services, the 332 
registrar and a demo application server. TrustNetZ makes use of NquiringMinds tdx Volt to issue 333 
and validate verifiable credentials. 334 

▪ The BRSKI factory provisioning build is deployed in the Build 5 environment. The IoT device in 335 
this build is a Raspberry Pi equipped with an Infineon Optiga SLB 9670 TPM 2.0, which gets 336 
provisioned with birth credentials (i.e., a public/private key pair and an IDevID). The BRSKI 337 
factory provisioning build also uses an external certificate authority hosted on the premises of 338 
NquiringMinds to provide the device certificate signing service. 339 

▪ The Wi-Fi Easy Connect factory provisioning build is deployed in the Build 1 environment. Its IoT 340 
devices are Raspberry Pis equipped with a SEALSQ VaultIC Secure Element, which gets 341 
provisioned with a DPP URI. The Secure Element can also be provisioned with an IDevID 342 
certificate signed by the SEALSQ INeS certification authority, which is independent of the DPP 343 
URI. Code for performing the factory provisioning is stored on an SD card. 344 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

1.3 Typographic Conventions 345 

The following table presents typographic conventions used in this volume. 346 

Typeface/Symbol Meaning Example 

Italics file names and path names; 
references to documents that are not 
hyperlinks; new terms; and 
placeholders 

For language use and style guidance, see 
the NCCoE Style Guide. 

Bold names of menus, options, command 
buttons, and fields 

Choose File > Edit. 

Monospace command-line input, onscreen 
computer output, sample code 
examples, and status codes 

mkdir 

Monospace Bold command-line user input contrasted 
with computer output 

service sshd start 

blue text link to other parts of the document, a 
web URL, or an email address 

All publications from NIST’s NCCoE are 
available at https://www.nccoe.nist.gov. 

2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) 347 

This section of the practice guide contains detailed instructions for installing and configuring all the 348 

products used to build an instance of the example solution. For additional details on Build 1’s logical and 349 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 350 

The network-layer onboarding component of Build 1 utilizes Wi-Fi Easy Connect, also known as the 351 

Device Provisioning Protocol (DPP). The Wi-Fi Easy Connect standard is maintained by the Wi-Fi Alliance 352 

[1]. The term “DPP” is used when referring to the network-layer onboarding protocol, and “Wi-Fi Easy 353 

Connect” is used when referring to the overall implementation of the network onboarding process. 354 

2.1 Aruba Central/Hewlett Packard Enterprise (HPE) Cloud 355 

This build utilized Aruba Central as a cloud management service that provided management and support 356 

for the Aruba Wireless Access Point (AP) and provided authorization and DPP onboarding capabilities for 357 

the wireless network. A cloud-based application programming interface (API) endpoint provided the 358 

ability to import the DPP Uniform Resource Identifiers (URIs) in the manner of a Supply Chain 359 

Integration Service. Due to this capability and Build 1’s support for Wi-Fi Easy Connect, Build 1’s 360 

infrastructure fully supported interoperable network-layer onboarding with Build 2’s Reference Clients 361 

(“IoT devices”) provided by CableLabs. 362 

2.2 Aruba Wireless Access Point 363 

Use of DPP is implicitly dependent on the Aruba Central cloud service. Aruba Central provides a cloud 364 

Infrastructure as a Service (IaaS) enabled architecture that includes initial support for DPP in Central 365 

2.5.6/ArubaOS (AOS) 10.4.0. Central and AOS support multiple deployment formats: 366 

1. As AP only, referred to as an underlay deployment, where traffic is bridged locally from the APs. 367 

https://www.nccoe.nist.gov/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

2. An overlay deployment, where all data is securely tunneled to an on-prem gateway where 368 

advanced services can route, inspect, and analyze the data before it’s either bridged locally or 369 

routed to its next hop. 370 

3. A mixed-mode deployment, which is a combination of the two where a returned ‘role/label’ is 371 

used to determine how the data is processed and forwarded. 372 

At the time of this publication, a user can leverage any 3xx, 5xx, or 6xx APs to support a DPP 373 

deployment, with a view that all future series APs will implicitly include support. For an existing or new 374 

user there is a prerequisite of the creation of a Service Set Identifier (SSID). Note that DPP today is not 375 

supported under Wi-Fi Protected Access 3 (WPA3); this is a roadmap item with no published timeline. 376 

Assuming there is an existing SSID or a new one is created based upon the above security restrictions, 377 

the next step is to enable DPP (as detailed below in Section 2.2.1) such that the SSID can support 378 

multiple authentication and key managements (AKMs) on a Basic Service Set (BSS). If the chosen security 379 

type is DPP, only a single AKM will exist for that BSS. 380 

A standards-compliant 802.3at port is the easiest method for providing the AP with power. An external 381 

power supply can also be used. 382 

Within this document, we do not cover the specifics of radio frequency (RF) design and placement of 383 

APs. Guidance and assistance is available within the Aruba community site, 384 

https://community.arubanetworks.com or the Aruba Support Portal, https://asp.arubanetworks.com. 385 

Additionally, we do not cover onboarding and licensing of Aruba Central hardware. Documentation can 386 

be found here: https://www.arubanetworks.com/techdocs/ArubaDocPortal/content/docportal.htm. 387 

2.2.1 Wi-Fi Network Setup and Configuration 388 

The following instructions detail the initial setup and configuration of the Wi-Fi network upon powering 389 

on and connecting the AP to an existing network. 390 

1. Navigate to the Aruba Central cloud management interface. 391 

2. On the sidebar, navigate under Global and choose the AP-Group you want to configure/modify. 392 

(This assumes you have already grouped your APs by location/functions.) 393 

3. Under Devices, click Config in the top right side. 394 

4. You will now be in the Access Points tab and WLANs tab. Do one of the following: 395 

a. If creating a new SSID, click on + Add SSID. After entering the Name (SSID) in Step 1 and 396 

configuring options as necessary in Step 2, when you get to Step 3 (Security), it will 397 

default on the slide-bar to the Personal Security Level; the alternative is the Enterprise 398 

Security Level. 399 

i. If you choose the Personal Security Level, under Key-Management ensure you 400 

select either DPP or WPA2-Personal. If you choose WPA2-Personal, expand the 401 

Advanced Settings section and enable the toggle button for DPP so that the SSID 402 

can broadcast the AKM. Note that this option is not available if choosing DPP for 403 

Key-Management. 404 

https://community.arubanetworks.com/
https://asp.arubanetworks.com/
https://www.arubanetworks.com/techdocs/ArubaDocPortal/content/docportal.htm


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

ii. If you choose the Enterprise Security Level, only WPA2-Enterprise Key-405 

Management currently supports DPP. Expand the Advanced Settings section and 406 

enable the toggle button for DPP so that the SSID can broadcast the AKM. 407 

b. If you plan to enable DPP on a previously created SSID: 408 

i. Ensure you are running version 10.4+ on your devices. You also need an SSID that 409 

is configured for WPA2-Personal or WPA2-Enterprise. 410 

ii. When ready, float your cursor over the previously created SSID name you wish to 411 

configure and click on the edit icon. 412 

iii. Edit the SSID, click on Security, and expand the Advanced Settings section and 413 

enable the toggle button for DPP. 414 

iv. Click Save Settings. 415 

For SSIDs that have been modified to add DPP AKM, it’s also necessary to enable DPP within the radio 416 

profile. 417 

1. Under the Access Point Tab, click Radios. 418 

2. It’s expected you’ll see a default radio-profile. If a custom one has been created, you’ll need to 419 

review your configuration before proceeding. 420 

3. Assuming a default radio-profile, click on the Edit icon, expand Show advanced settings, and 421 

scroll down to DPP Provisioning. You can selectively enable this for 2.4 GHz or 5.0 GHz. Support 422 

for DPP on 6.0 GHz is a roadmap item at this time and is not yet available. 423 

2.2.2 Wi-Fi Easy Connect Configuration 424 

Configuration of the Access Point occurred through the Aruba Central cloud management interface. 425 

Standard configurations were used to stand up the Build 1 wireless network. The instructions for 426 

enabling DPP capabilities for the overall wireless network are listed below: 427 

1. Navigate to the Aruba Central cloud management interface. 428 

2. On the sidebar, navigate to Security > Authentication and Policy > Config. 429 

3. In the Client Access Policy section, click Edit. 430 

4. Under the Wi-Fi Easy Connect™ Service heading, ensure that the name of your wireless network 431 

is selected. 432 

5. Click Save. 433 

2.3 Cisco Catalyst 3850-S Switch 434 

This build utilized a Cisco Catalyst 3850-S switch. This switch utilized a minimal configuration with two 435 

separate VLANs to allow for IoT device network segmentation and access control. The switch also 436 

provided Power-over-Ethernet support for the Aruba Wireless AP. 437 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

2.3.1 Configuration 438 

The switch was configured with two VLANs, and a trunk port dedicated to the Aruba Wireless AP. You 439 

can find the relevant portions of the Cisco iOS configuration below: 440 

interface Vlan1 441 

 no ip address 442 

interface Vlan2 443 

 no ip address 444 

interface GigabitEthernet1/0/1 445 

 switchport mode trunk 446 

interface GigabitEthernet1/0/2 447 

 switchport mode access 448 

 switchport access vlan 1 449 

interface GigabitEthernet1/0/3 450 

 switchport mode access 451 

 switchport access vlan 2 452 

2.4 Aruba User Experience Insight (UXI) Sensor 453 

This build utilized an Aruba UXI Sensor as a Wi-Fi Easy Connect-capable IoT device. Models G6 and G6C 454 

support Wi-Fi Easy Connect, and all available G6 and G6C models support Wi-Fi Easy Connect within 455 

their software image. This sensor successfully utilized the network-layer onboarding mechanism 456 

provided by the wireless network and completed onboarding to the application-layer UXI cloud service. 457 

The network-layer onboarding process is automatically initiated by the device on boot. 458 

2.4.1 Configuration 459 

All of Aruba’s available G6 and G6C UXI sensors support the ability to complete network-layer and 460 

application-layer onboarding. No specific configuration of the physical sensor is required. As part of the 461 

supply-chain process, the cryptographic public key for your sensor(s) will be available within the cloud 462 

tenant. This public/private keypair for each device is created as part of the manufacturing process. The 463 

public key effectively identifiers the sensor to the network and as part of the Wi-Fi Easy Connect/DPP 464 

onboarding process. This allows unprovisioned devices straight from the factory to be onboarded and 465 

subsequently connect to the UXI sensor cloud to obtain their network-layer configuration. An 466 

administrator will have to define the ‘tasks’ the UXI sensor is going to perform such as monitoring SSIDs, 467 

performing reachability tests to on-prem or cloud services, and making the results of these tests 468 

available within the UXI user/administrator portal. 469 

2.5 Raspberry Pi 470 

In this build, the Raspberry Pi 3B+ acts as a DPP enrollee. In setting up the device for this build, a DPP-471 

capable wireless adapter, the Alfa AWUS036NHA network dongle, was connected to enable the Pi to 472 

send and receive DPP frames. Once fully configured, the Pi can onboard with the Aruba AP. 473 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

2.5.1 Configuration 474 

The following steps were completed for the Raspberry Pi to complete DPP onboarding: 475 

1. Set the management IP for the Raspberry Pi to an IP address in the Build 1 network. To do this, 476 

add the following lines to the file dhcpcd.conf located at /etc/dhcpcd.conf. For this build, the IP 477 

address was set to 192.168.10.3. 478 

 

2. Install Linux Libraries using the apt package manager. The following packages were installed: 479 

a. autotools-dev 480 

b. automake 481 

c. libcurl4-openssl-dev 482 

d. libnl-genl-3-dev 483 

e. libavahi-client-dev 484 

f. libavahi-core-dev 485 

g. aircrack-ng 486 

h. openssl-1.1.1q 487 

3. Install the DPP utilities. These utilities were installed from the GitHub repository 488 

https://github.com/HewlettPackard/dpp using the following command: 489 

git clone https://github.com/HewlettPackard/dpp 490 

2.5.2 DPP Onboarding 491 

This section describes the steps for using the Raspberry Pi as a DPP enrollee. The Pi uses a DPP utility to 492 

send out chirps to make its presence known to available DPP configurators. Once the Pi is discovered, 493 

the DPP configurator (Aruba Wireless AP) initiates the DPP authentication protocol. During this phase, 494 

DPP connectors are created to onboard the device to the network. As soon as the Pi is fully 495 

authenticated, it is fully enrolled and can begin normal network communication. 496 

1. Navigate to the DPP utilities directory which was installed during setup: 497 

cd dpp/linux 498 

2. From the DPP utilities directory, run the following command to initiate a DPP connection: 499 

sudo ./sss -I wlan1 -r -e sta -k respp256.pem -B respbkeys.txt -a -t -d 255 500 

https://github.com/HewlettPackard/dpp


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

 

3. Once the enrollee has found a DPP configurator, the DPP authentication protocol is initiated. 501 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

 

2.6 Certificate Authority 502 

The function of the certificate authority (CA) in this build is to issue network credentials for use in the 503 

network-layer onboarding process. 504 

2.6.1 Private Certificate Authority 505 

A private CA was provided as a part of the DPP demonstration utilities in the HPE GitHub repository. For 506 

demonstration purposes, the Raspberry Pi is used as the configurator and the enrollee. 507 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

2.6.1.1 Installation and Configuration 508 

The following instructions detail the initial setup and configuration of the private CA using the DPP 509 

demonstration utilities and certificates located at https://github.com/HewlettPackard/dpp. 510 

1. Navigate to the DPP utilities directory on the Raspberry Pi: ~dpp/linux 511 

cd dpp/linux/ 512 

2. The README in the GitHub repository 513 

(https://github.com/HewlettPackard/dpp/blob/master/README) references a text file called 514 

configakm which contains information about the network policies for a configurator to provision 515 

on an enrollee. The format is: <akm> <EAP server> <ssid>. Current AKMs that are supported 516 

are DPP, dot1x, sae, and psk. For this build, DPP is used. For DPP, an Extensible Authentication 517 

Protocol (EAP) server is not used. 518 

3. Configure the file configakm located in ~/dpp/linux/. This file instructs the configurator on how 519 

to deploy a DPP connector (network credential) from the configurator to the enrollee. As shown 520 

below, the configakm file is filled with the following fields:  521 

dpp unused Build1-IoTOnboarding. 522 

 

4. The file csrattrs.conf contains attributes to construct an Abstract Syntax Notation One (ASN.1) 523 

string. This string allows the configurator to tell the enrollee how to generate a certificate 524 

signing request (CSR). The following fields were used for this demonstration: 525 

asn1 = SEQUENCE: seq_section 526 

[seq_section] 527 

field1 = OID:challengePassword 528 

field2 = SEQUENCE:ecattrs 529 

field3 = SEQUENCE:extnd 530 

field4 = OID:ecdsa-with-SHA256 531 

 

[ecattrs] 532 

field1 = OID:id-ecPublicKey 533 

field2 = SET:curve 534 

 

[curve] 535 

field1 = OID:prime256v1 536 

 

https://github.com/HewlettPackard/dpp
https://github.com/HewlettPackard/dpp/blob/master/README


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

[extnd] 537 

field1 = OID:extReq 538 

field2 = SET:extattrs 539 

 

[extattrs] 540 

field1 = OID:serialNumber 541 

field2 = OID:favouriteDrink 542 

 

2.6.1.2 Operation and Demonstration 543 

Once setup and configuration have been completed, the following steps can be used to demonstrate 544 

utilizing the private CA to issue credentials to a requesting device. 545 

1. Open three terminals on the Raspberry Pi: one to start the certificate program, one to show the 546 

configurator’s point of view, and one to show the enrollee’s point of view. 547 

2. The demonstration uses an OpenSSL certificate. To run the program from the first terminal, 548 

navigate to the following directory: ~/dpp/ecca/, and run the command: 549 

./ecca. 550 

 

3. On the second terminal, start the configurator using the following command: 551 

sudo ./sss -I lo -r -c signp256.pem -k respp256.pem -B resppbkeys.txt -d 255 552 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

 

As shown in the terminal where the ecca program is running, the configurator contacts the CA 553 

and asks for the certificate. 554 

 

4. On the third terminal, start the enrollee using the following command: 555 

sudo ./sss -I lo -r -e sta -k initp256.pem -B initbkeys.txt -t -a -q -d 255 556 

From the enrollee’s perspective, it will send chirps on different channels until it finds the 557 

configurator. Once found, it sends its certificate to the CA for signing. The snippet below is of 558 

the enrollee generating the CSR. 559 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

 

5. In the ecca terminal, the certificate from the enrollee is shown 560 

 

2.6.2 SEALSQ INeS 561 

The SEALSQ INeS Certificate Management System provides CA and certificate management capabilities 562 

for Build 1. Implementation of this system provides Build 1 with a trusted, public CA to support issuing 563 

network credentials. 564 

2.6.2.1 Setup and Configuration 565 

To support this build, a custom software agent was deployed on a Raspberry Pi in the Build 1 network. 566 

This agent interacted with the cloud-based CA in SEALSQ INeS via API to sign network credentials. 567 

Network-level onboarding of IoT devices was completed via DPP, with network credentials being 568 

successfully requested from and issued by SEALSQ INeS. 569 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

Additional information on interacting with the SEALSQ INeS API can be found at 570 

https://inesdev.certifyiddemo.com/. Access can be requested directly from SEALSQ via their contact 571 

form: https://www.sealsq.com/contact. 572 

2.7 UXI Cloud 573 

The UXI Cloud is a web-based application that serves as a monitoring hub for the UXI sensor. It provides 574 

visibility into the data captured by the performance monitoring that the UXI sensor conducts. For the 575 

purposes of this build, the dashboard was used to demonstrate application-layer onboarding, which 576 

occurs once the UXI sensor has completed network-layer onboarding. Once application-layer 577 

onboarding was completed and the application configuration had been applied to the device, our 578 

demonstration concluded. 579 

2.8 Wi-Fi Easy Connect Factory Provisioning Build 580 

This Factory Provisioning Build included many of the components listed above, including Aruba Central, 581 

SEALSQ INeS, the Aruba Access Point, and Raspberry Pi IoT devices. A SEALSQ VaultIC Secure Element 582 

was also included in the build and provided secure generation and storage of the key material and 583 

certificates provisioned to the device. 584 

2.8.1 SEALSQ VaultIC Secure Element 585 

The SEALSQ VaultIC Secure Element was connected to a Raspberry Pi via the built-in GPIO pins present 586 

on the Pi. SEALSQ provided demonstration code that generates a public/private keypair within the 587 

secure element, creates a Certificate Signing Request, and uses that CSR to obtain an IDevID certificate 588 

from SEALSQ INeS. This code supports the Raspberry Pi OS Bullseye. The demonstration code can be 589 

found at the official GitHub repository. 590 

HPE also provided a custom DPP-based implementation of the SEALSQ code, which generates 591 

supporting material within the secure element, and then generates a DPP URI. This DPP URI is available 592 

in a string format, PNG (QR Code), and ASCII (QR Code). The DPP URI can then be used for network 593 

onboarding, as described in the rest of the Build 1 section. This code is included in the demonstration 594 

code located at the repository linked above. 595 

2.8.1.1 Installation and Configuration 596 

Full instructions for installation and configuration can be found in the INSTALL.txt file from the SEALSQ 597 

demonstration code mentioned above. A general set of steps for preparing to run the demonstration 598 

code is included below. 599 

1. Install prerequisites on Raspberry Pi 600 

a. cmake 601 

b. git 602 

c. gcc 603 

2. On the Raspberry Pi, run the sudo raspi-update command to update drivers 604 

https://inesdev.certifyiddemo.com/
https://www.sealsq.com/contact
https://github.com/sclark-wisekey/NCCoE.factory.pub


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

3. Before plugging VaultIC Secure Element into the Raspberry Pi connector, configure the jumpers: 605 

a. Set _VCC_ jumper 606 

i. CTRL = VaultIC power controlled by GPIO25 (default) 607 

ii. 3V3 = VaultIC power always on 608 

b. Set J1&J2 to select I2C or SPI 609 

i. If using SPI, set J1 to SS and J2 to SEL (default) 610 

ii. If using I2C, set J1 to SCL and J2 to SDA 611 

4. Using the raspi-config command, enable the SPI or I2C interface on the Raspberry Pi 612 

5. Run git clone https://github.com/sclark-wisekey/NCCoE.factory.pub to pull down the 613 

demonstration code. 614 

2.8.1.2 Running the demonstration code 615 

1. Navigate to the folder containing the demonstration code. Inside that folder, navigate to the 616 

VaultIC/demos folder. 617 

2. Edit the file config.cfg and change the value of VAULTIC_COMM to match with the jumpers 618 

configured during setup. 619 

3. The demonstrations are available with wolfSSL stacks and organized in dedicated folders. The 620 

README.TXT file in each demonstration subfolder explains how to run the demonstrations. 621 

3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) 622 

This section of the practice guide contains detailed instructions for installing and configuring all of the 623 

products used to build an instance of the example solution. For additional details on Build 2’s logical and 624 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 625 

The network-layer onboarding component of Build 2 utilizes Wi-Fi Easy Connect, also known as the 626 

Device Provisioning Protocol (DPP). The Wi-Fi Easy Connect standard is maintained by the Wi-Fi Alliance 627 

[1]. The term “DPP” is used when referring to the network-layer onboarding protocol, and “Wi-Fi Easy 628 

Connect” is used when referring to the overall implementation of the network onboarding process. 629 

3.1 CableLabs Platform Controller 630 

The CableLabs Platform Controller provides an architecture and reference implementation of a cloud-631 

based service that provides management capability for service deployment groups, access points with 632 

the deployment groups, registration and lifecycle of user services, and the secure onboarding and 633 

lifecycle management of users’ Wi-Fi devices. The controller also exposes APIs for integration with third-634 

party systems for the purpose of integrating various business flows (e.g., integration with manufacturing 635 

process for device management). 636 

https://github.com/sclark-wisekey/NCCoE.factory.pub


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

The Platform Controller would typically be hosted by the network operator or a third-party service 637 

provider. It can be accessed via web interface. Additional information for this deployment can be 638 

accessed at the official CableLabs repository. 639 

3.1.1 Operation and Demonstration 640 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 641 

operation can commence. Instructions for this are located at the official CableLabs repository. 642 

3.2 CableLabs Custom Connectivity Gateway 643 

In this deployment, the gateway software is running on a Raspberry Pi 3B+, which acts as a router, 644 

firewall, wireless access point, Open Connectivity Foundation (OCF) Diplomat, and OCF Onboarding Tool. 645 

The gateway is also connected to the CableLabs Platform Controller, which manages much of the 646 

configuration and functions of the gateway. Due to Build 2’s infrastructure and support of Wi-Fi Easy 647 

Connect, Build 2 fully supported interoperable network-layer onboarding with Build 1’s IoT devices. 648 

3.2.1 Installation and Configuration 649 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 650 

gateway can be found at the official CableLabs repository. 651 

3.2.2 Integration with CableLabs Platform Controller 652 

Once initial configuration has occurred, the gateway can be integrated with the CableLabs Platform 653 

Controller. Instructions can be found at the official CableLabs repository. 654 

3.2.3 Operation and Demonstration 655 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 656 

operation can commence. Instructions for this are located at the official CableLabs repository. 657 

3.3 Reference Clients/IoT Devices 658 

Three reference clients were deployed in this build, each on a Raspberry Pi 3B+. They were each 659 

configured to emulate either a smart light switch or a smart lamp. The software deployed also included 660 

the capability to perform network-layer onboarding via Wi-Fi Easy Connect (or DPP) and application-661 

layer onboarding using the OCF onboarding method. These reference clients were fully interoperable 662 

with network-layer onboarding to Build 1. 663 

3.3.1 Installation and Configuration 664 

Hardware requirements, pre-installation, installation, and configuration steps for the reference clients 665 

are detailed in the official CableLabs repository. 666 

3.3.2 Operation and Demonstration 667 

Once configuration of the Platform Controller, Gateway, and Reference Client has been completed, full 668 

operation can commence. Instructions for this are located at the official CableLabs repository. 669 

https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Ref-AP-Setup-for-NCCoE/nccoe-ap-setup.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md
https://github.com/cablelabs/Streamlined_Onboarding_Demo/blob/nccoe-release/docs/Raspberry_Pi_Deployment.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

For interoperability with Build 1, the IoT device’s DPP URI was provided to Aruba Central, which allowed 670 

Build 1 to successfully complete network-layer onboarding with the Build 2 IoT devices. 671 

4 Build 3 (BRSKI, Sandelman Software Works) 672 

This section of the practice guide contains detailed instructions for installing and configuring all of the 673 

products used to build an instance of the example solution. For additional details on Build 3’s logical and 674 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 675 

The network-layer onboarding component of Build 3 utilizes the Bootstrapping Remote Secure 676 

Infrastructure (BRSKI) protocol. Build 3 is representative of a typical home or small office network. 677 

4.1 Onboarding Router/Join Proxy 678 

The onboarding router quarantines the IoT device attempting to join the network until the BRSKI 679 

onboarding process is complete. The router in this build is a Turris MOX device, which is based on the 680 

Linux OpenWrt version 4 operating system (OS). The Raspberry Pi 3 contains software to function as the 681 

Join Proxy for pledges to the network. If another brand of device is used, a different source of compiled 682 

Join Proxy might be required. 683 

4.1.1 Setup and Configuration 684 

The router needs to be IPv6 enabled. In the current implementation, the join package operates on an 685 

unencrypted network. 686 

4.2 Minerva Join Registrar Coordinator 687 

The purpose of the Join Registrar is to determine whether a new device is allowed to join the network. 688 

The Join Registrar is located on a virtual machine running Devuan Linux 4 within the network. 689 

4.2.1 Setup and Configuration 690 

The Minerva Fountain Join Registrar/Coordinator is available as a Docker container and as a VM in OVA 691 

format at the Minerva fountain page. Further setup and configuration instructions are available on the 692 

Sandelman website on the configuration page. 693 

For the Build 3 demonstration, the VM deployment was installed onto a VMware vSphere system. 694 

A freshly booted VM image will do the following on its own: 695 

▪ Configure a database 696 

▪ Configure a local certificate authority (fountain:s0\_setup\_jrc) 697 

▪ Configure certificates for the database connection 698 

▪ Configure certificates for the Registrar https interface 699 

▪ Configure certificates for use with the Bucardo database replication system 700 

▪ Configure certificates for LDevID certification authority (fountain:s2\_create\_registrar) 701 

https://minerva.sandelman.ca/fountain/
https://minerva.sandelman.ca/fountain/configuration/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

▪ Start the JRC 702 

The root user is permitted to log in on the console ("tty0") using the password “root” but is immediately 703 

forced to set a new password. 704 

The new registrar will announce itself with the name minerva-fountain.local in mDNS. 705 

The logs for this are put into /var/log/configure-fountain-12345.log (where 12345 is a new number 706 

based upon the PID of the script). 707 

4.3 Reach Pledge Simulator 708 

The Reach Pledge Simulator acts as an IoT device in Build 3. The pledge is acting as an IoT device joining 709 

the network and is hosted on a Raspberry Pi 3. More information is available on the Sandelman website 710 

on the Reach page. 711 

4.3.1 Setup and Configuration 712 

While the functionality of this device is to act as an IoT device, it runs on the same software as the Join 713 

Registrar Coordinator. This software is available in both VM and Docker container format. Please see 714 

Section 4.2.1 for installation instructions. 715 

When setting up the Reach Pledge Simulator, the address of the Join Registrar Coordinator is 716 

automatically determined by the pledge. 717 

Currently, the Reach Pledge Simulator obtains its IDevID using the following steps: 718 

1. View the available packages by visiting the Sandelman website. 719 

 

2. Open a terminal on the Raspberry Pi device and navigate to the Reach directory by entering: 720 

cd reach 721 

https://minerva.sandelman.ca/reach/
https://honeydukes.sandelman.ca/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

 

3. Enter the following command while substituting the URL for one of the available zip files 722 

containing the IDevID of choice on the Sandelman website. 723 

wget https://honeydukes.sandelman.ca/product_00-D0-E5-02-00-42.zip 724 

 

4. Unzip the file by entering the following command, substituting the name of your zip file (the 725 

IDevID is the device.crt file): 726 

unzip product_00-D0-E5-02-00-42.zip 727 

 

Typically, this would be accomplished through a provisioning process involving a Certificate Authority, as 728 

demonstrated in the Factory Provisioning builds. 729 

4.4 Serial Console Server 730 

The serial console server does not participate in the onboarding process but provides direct console 731 

access to the IoT devices. The serial console server has been attached to a multi-port USB hub and USB 732 

connectors and/or USB2TTL adapters connected to each device. The ESP32 and the nRF52840 are both 733 

connected to the serial console and receive power from the USB hub. Power to the console and IoT 734 

devices is also provided via the USB hub. A BeagleBone Green device was used as the serial console, 735 

using the "screen" program as the telecom device. 736 

4.5 Minerva Highway MASA Server 737 

In the current implementation of the build, the MASA server provides the Reach Pledge Simulator with 738 

an IDevID Certificate and a public/private keypair for demonstration purposes. Typically, this would be 739 

accomplished through a factory provisioning process involving a Certificate Authority, as demonstrated 740 

in the Factory Provisioning builds. 741 

4.5.1 Setup and Configuration 742 

Installation of the Minerva Highway MASA is described at the Highway configuration page. Additional 743 

configuration details are available at the Highway development page. 744 

https://honeydukes.sandelman.ca/
https://minerva.sandelman.ca/highway/configuration/
https://minerva.sandelman.ca/openssl/2022/06/10/configuring-highway-development.html


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

Availability of VMs and containers is described at the following Minerva page. 745 

5 Build 4 (Thread, Silicon Labs, Kudelski IoT) 746 

This section of the practice guide contains detailed instructions for installing and configuring all of the 747 

products used to build an instance of the example solution. For additional details on Build 4’s logical and 748 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 749 

This build utilizes the Thread protocol and performs application-layer onboarding using the Kudelski 750 

keySTREAM service to provision a device to the AWS IoT Core. 751 

5.1 Open Thread Border Router 752 

The Open Thread Border Router forms the Thread network and acts as the router on this build. The 753 

Open Thread Border Router is run as software on a Raspberry Pi 3B. The Silicon Labs Gecko Wireless 754 

Devkit is attached to the Raspberry Pi via USB and acts as the 802.15.4 antenna for this build. 755 

5.1.1 Installation and Configuration 756 

On the Raspberry Pi, run the following commands from a terminal to install and configure the Open 757 

Thread Border Router software: 758 

git clone https://github.com/openthread/ot-br-posix 759 

sudo NAT64=1 DNS64=1 WEB_GUI=1 ./script/bootstrap 760 

sudo NAT64=1 DNS64=1 WEB_GUI=1 ./script/setup 761 

5.1.2 Operation and Demonstration 762 

Once initial configuration has occurred, the OpenThread Border Router should be functional and 763 

operated through the web GUI. 764 

1. To open the OpenThread Border Router GUI enter the following IP in a web browser: 765 

127.0.0.1 766 

2. In the Form tab, enter the details for the Thread network being formed. For demonstration 767 

purposes we only updated the credentials field. 768 

https://minerva.sandelman.ca/containers/2018/11/14/minerva-lxd-update.html


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

 

5.2 Silicon Labs Dev Kit (BRD2601A) 769 

The Silicon Labs Dev Kit acts as the IoT device for this build. It is controlled using the Simplicity Studio v5 770 

Software available at the official Simplicity Studio page and connected to a computer running Windows 771 

or Linux via USB. Our implementation leveraged a Linux machine running Simplicity Studio. Custom 772 

firmware for the Dev Kit leveraged in this use case was made by Silicon Labs. 773 

5.2.1 Setup and Configuration 774 

The Dev Kit custom firmware image works in conjunction with the Kudelski keySTREAM service. More 775 

information is available by contacting Silicon Labs through their contact form. Once the custom 776 

firmware has been acquired the Dev Kit can be configured using the following steps. 777 

1. Connect the Dev Kit via USB to the machine running Simplicity Studio. 778 

2. The firmware is installed onto the Dev Kit using the Simplicity Commander tool within Simplicity 779 

Studio. 780 

https://www.silabs.com/developers/simplicity-studio
https://www.silabs.com/about-us/contact-us


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

 

After selecting the firmware file, click Flash to flash the firmware the Dev Kit. 781 

3. Open the device console in the Tools tab and then select the Serial 1 tab. 782 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

 

4. Enter the following command to create a new join passphrase in the Serial 1 command line: 783 

new-join-passphrase 784 

5. Enter the output of the previous command in the Commission tab in the OpenThread Border 785 

Router GUI and click Start Commission. 786 

 

6. In the Simplicity Commander Device Console, enter the following command to begin the joining 787 

process from the Thunderboard: 788 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

 join-with-curr-phrase 789 

7. Press the Reset button on the Dev Kit and the device will join the thread network and reach out 790 

to the Kudelski keySTREAM service. You should see the following output in the Simplicity 791 

Commander Device Console: 792 

 

5.3 Kudelski keySTREAM Service 793 

In this section we describe the Kudelski keySTREAM service which this build utilizes to provision 794 

certificates for connecting to the AWS IoT core. More information on keySTREAM is available at the 795 

keySTREAM page. 796 

5.3.1 Setup and Configuration 797 

The Kudelski keySTREAM service provides two certificates for the device: a CA certificate and a Proof of 798 

Possession (POP) certificate that is generated using a code from the AWS server. This section describes 799 

the steps to download these certificates. 800 

1. Locate the Chip UID for the Silicon Labs Dev Kit in Simplicity Studio by right clicking on the 801 

Device Adapters tab at the bottom and selecting Device Configuration. 802 

 

https://www.kudelski-iot.com/services-and-systems/keystream-iot-security-system


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

2. On the Security Settings tab, take the last 16 characters of the serial number and remove the 803 

‘FFFE’ characters from the 7th – 11th positions. 804 

 

3. In the Kudelski keySTREAM service, claim your device by entering the chip UID from Simplicity 805 

Studio and clicking Commit. 806 

 

4. The device will now be visible in the My Devices tab. A device can be removed from the 807 

keySTREAM service by scrolling to the right and clicking the Refurbish button. 808 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

 

5. Open the System Management tab on the left side: 809 

 

6. Click the cloud icon to download the CA Certificate and the POP certificate, the POP certificate 810 

will require a code that is obtained from the AWS IoT Core which will be generated in Section 811 

5.4.1. 812 

 

5.4 AWS IoT Core 813 

The Silicon Labs Dev Kit will connect to the AWS MQTT test client using the certificates provisioned from 814 

the Kudelski keySTREAM service. 815 

5.4.1 Setup and Configuration 816 

Application-layer onboarding for this build is performed using the AWS MQTT test client. Certificates 817 

provisioned from the Kudelski keySTREAM service are uploaded to an AWS instance and the device will 818 

demonstrate its ability to successfully send a message to AWS. 819 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

1. Within the AWS IoT Core, open the Security drop-down menu, click on Certificate authorities, 820 

and click the Register CA certificate button on the right. 821 

 

2. Select the radio button for Register CA in Single-account mode and copy the registration code 822 

to use as the Proof of Possession Code in the Kudelski keySTREAM service and download the 823 

POP certificate. 824 

 

3. After downloading the POP certificate, upload the CA certificate and the POP (verification) 825 

certificate, and select the radio buttons for Active under CA Status and On under Automatic 826 

Certificate Registration. Then click Register. 827 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

 

4. In the Security drop down menu, click on Policies and add the policies shown below. Then, click 828 

Create. 829 

 

5. In the All devices drop-down menu, click on Things and click Create things. 830 

 

6. Click the Create single thing radio button and click Next. 831 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

 

7. Enter a Thing name and click Next. 832 

 

8. Select the Skip creating a certificate at this time radio button and click Create thing. 833 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

 

9. In the Security drop-down menu, click on Certificates and click the Certificate ID of the 834 

certificate that you created. 835 

10. In the Policies tab at the bottom, click Attach policies and add the policy that you created. 836 

 

11. In the Things tab, click Attach to things and add the thing that you created. 837 

 

12. Click the MQTT test client on the left side of the page and click the Publish to a topic tab. 838 

 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

13. Create a message of your choosing and click Publish. On the Subscribe to a topic tab, make sure 839 

that you are subscribed to the topic that you just created. 840 

 

5.4.2 Testing 841 

Information sent and received by the Silicon Labs Dev Kit to the MQTT test client will be displayed in the 842 

device console in Simplicity Commander. This section describes testing the communication between the 843 

MQTT test client and the device. 844 

1. On the Thunderboard, press Button 0. This will begin the connection to the MQTT test client. 845 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

 

6 Build 5 (BRSKI over Wi-Fi, NquiringMinds) 846 

This section of the practice guide contains detailed instructions for installing and configuring all of the 847 

products used to build an instance of the example solution. For additional details on Build 5’s logical and 848 

physical architectures, see NIST SP 1800-36B: Approach, Architecture, and Security Characteristics. 849 

The network-layer onboarding component of Build 5 utilizes the BRSKI protocol. 850 

6.1 Pledge 851 

The Pledge acts as the IoT device which is attempted to onboard onto the secure network. It 852 

implements the pledge functionality as per the IETF BRSKI specification. It consists of software provided 853 

by NquiringMinds running on a Raspberry Pi Model 4B. 854 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

6.1.1 Installation and Configuration 855 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 856 

pledge device can be found at the official NquiringMinds repository. 857 

6.1.2 Operation and Demonstration 858 

To demonstrate the onboarding and offboarding functionality, NquiringMinds has provided a web 859 

application which runs on the pledge device. It features a button one can use to manually run the 860 

onboarding script and display the output of the onboarding process, as well as a button for offboarding. 861 

It also features a button to ping an IP address, which is configured to ping the designated address via the 862 

wireless network interface. 863 

 

6.2 Router and Logical Services 864 

The router and logical services were hosted on a Raspberry Pi Model 4B equipped with 2 external Wi-Fi 865 

adapters. These additional Wi-Fi adapters are needed to support VLAN tagging which is a hardware 866 

dependent feature. The details of the physical setup and all connections are provided in the official 867 

NquiringMinds documentation. 868 

6.2.1 Installation and Configuration 869 

All of the services described in the next section can be installed on a Raspberry Pi using the installer 870 

provided by NquiringMinds. 871 

https://github.com/nqminds/trustnetz/tree/main/debian-brski
https://github.com/nqminds/trustnetz/tree/main/debian-brski
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-setup/
https://github.com/nqminds/nist-brski/tree/main/brski-server/installer
https://github.com/nqminds/nist-brski/tree/main/brski-server/installer


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

The demonstration services can also be built from source code, if needed. The following links provide 872 

the instructions for building each of those services: 873 

▪ BRSKI Demo Setup 874 

▪ EAP Config 875 

▪ MDNS publishing services 876 

6.2.2 Logical services 877 

The following logical services are installed on the Registrar and services device. The implementation of 878 

these services are to be found at the following repository links: NIST BRSKI implementation and BRSKI. 879 

Figure 6-1 below describes how these entities and logical services fit together to perform the BRSKI flow, 880 

and a top-level view of how information is transmitted throughout the services to onboard the pledge. 881 

Figure 6-1 Logical Services for Build 5 882 

 

https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-setup/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/eap-config
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/eap-config
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/mdns-publish
https://github.com/nqminds/nist-brski
https://github.com/nqminds/brski


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

6.2.2.1 MASA 883 

The MASA currently resides as a local service on the registrar. In practice, this service would be located 884 

on an external server managed by the manufacturer. The MASA verifies that the IDevID is authentic, and 885 

that the IDevID was produced by the manufacturer’s MPR. 886 

6.2.2.2 Manufacturer Provisioning Root (MPR) 887 

The MPR sits on an external server and provides the IDevID (X.509 Certificate) for the device to initialize 888 

it after production and notarize it with a unique identity. The address of the MPR is built into the 889 

firmware of the device at build time. 890 

6.2.2.3 Registrar 891 

Build 5’s BRSKI Domain Registrar runs the BRSKI protocol modified to work over Wi-Fi and functions as 892 

the Domain Registrar to authenticate the IoT devices, receive and transfer voucher requests and 893 

responses to and from the MASA and ultimately determines whether network-layer onboarding of the 894 

device is authorized to take place on the respective network. NquiringMinds has developed a stateful 895 

non-persistent Linux app for android that serves this purpose. 896 

The registrar is responsible for verifying if the IDevID certificate provided by the pledge is authentic, by 897 

verifying it with the MASA and verifying that the policy for a pledge to be allowed onto the closed secure 898 

network has been met. It also runs continuous assurance periodically to ensure that the device still 899 

meets the policy requirements, revoking the pledge’s access if at a later time it doesn’t meet the policy 900 

requirements. Signed verifiable credential claims may be submitted to the registrar to communicate 901 

information about entities, which it uses to update its database used to determine if the policy is met, 902 

the tdx Volt is used to facilitate signing and verification of verifiable credentials. In the demonstrator 903 

system the MASA and router are integrated into the same physical device. 904 

6.2.2.3.1 Radius server (Continuous Assurance Client) 905 
To provide continuous assurance capabilities for connected IoT devices, the registrar includes a Radius 906 

server that integrates with the Continuous Assurance Server. 907 

The continuous assurance policy is enforced by a script which periodically runs to check that the policy 908 

conditions are met. It accomplishes this by querying the Registrar's SQLite database. For the 909 

demonstration, the defined policy is: 910 

▪ The manufacturer and device must be trusted by a user with appropriate privileges 911 

▪ The device must have a device type associated 912 

▪ The vulnerability score of the SBOM for the device type must be lower than 6 913 

▪ The device must not have contacted a denylisted IP address within the last 2 minutes 914 

If the device fails any of these checks, the device will be offboarded. 915 

6.2.2.4 Continuous Assurance Server 916 

The registrar runs several services used to power the continuous assurance flow. 917 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

6.2.2.4.1 Verifiable Credential Server 918 
The verifiable credential server is used to sign verifiable credentials submitted through the Demo web 919 

app and verify verifiable credentials submitted to the registrar, it is powered by the functionality of the 920 

tdx Volt, a local instance of which is run on the registrar. 921 

The code for the Verifiable Credential Server is hosted at the GitHub repository. 922 

6.2.2.4.2 Registrar Continuous Assurance Server 923 
The registrar hosts a REST API which is used to interface with the registrar’s SQLite database which 924 

stores information about the entities the registrar knows of. This server utilizes the verifiable credential 925 

server to verify submitted verifiable credential claims submitted to it. 926 

The code for the Registrar Continuous Assurance Server is hosted at the GitHub repository. 927 

6.2.2.4.3 Demo Web Application 928 
The demo web application is used as an interactive user-friendly way to administer the registrar. Users 929 

can view the list of verifiable credentials submitted to the registrar. The application also displays the 930 

state of the manufacturers, devices, device types and Manufacturer Usage Description (MUD). There are 931 

buttons provided which allow you to trust or distrust a manufacturer, trust or distrust a device, set the 932 

device type for a device, set if a device type is vulnerable or not and set the MUD file associated with the 933 

device type. All of these operations are performed by generating a verifiable credential containing the 934 

claim being made, which is then submitted to the verifiable credential server to sign the credential. The 935 

signed verifiable credential is then sent to the registrar continuous assurance server to be verified and 936 

used to update the SQLite database on the registrar. 937 

The code for the Demo Web Application is hosted at the GitHub repository. 938 

https://github.com/nqminds/trustnetz/tree/main/packages/nist_vc_rest_server
https://github.com/nqminds/trustnetz/tree/main/packages/registrar_demo_app
https://github.com/nqminds/trustnetz/tree/main/packages/registrar_demo_app


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

 

6.2.2.5 Application server 939 

The application server sits on a remote server and represents the server for an application which should 940 

consume data from the pledge device. The pledge device uses the IDevID certificate to establish a secure 941 

TLS connection to onboard onto the application server and begin sending data autonomously, currently 942 

OpenSSL s_client is used from the pledge to establish a TLS session with the application server, running 943 

on a server off-site, and the date and CPU temperature are sent to be logged on the application server, 944 

as a proof of principle. 945 

6.2.2.5.1 Installation/Configuration 946 
Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 947 

router can be found at the official NquiringMinds repository. 948 

6.2.2.5.2 Operation/Demonstration 949 
The instructions to use this factory use case code to provision an IDevID onto your pledge are also 950 

located at the official NquiringMinds repository in the above section. 951 

6.3 Onboarding Demonstration 952 

6.3.1 Prerequisites 953 

Prior to beginning the demonstration, the router and pledge devices must be connected to power, and 954 

to the network via their ethernet port. On boot, both devices should start the services required to 955 

demonstrate the BRSKI flow. 956 

https://github.com/nqminds/trustnetz/blob/app_onboarding/packages/app_onboarding/README.md
https://github.com/nqminds/trustnetz/blob/app_onboarding/packages/app_onboarding/README.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

Figure 6-2 Diagram of Physical/Logical Components Used to Demonstrate BRSKI Flow 957 

 

To support the demo and debug features the pledge and the registrar need to be connected to physical 958 

ethernet, ideally with internet access. They should still function without an internet connection, but the 959 

vulnerability scores of the SBOMs will not be updated and the demo web apps will only be accessible on 960 

the local network. 961 

The detailed networking setup details are available in the NquiringMinds NIST Trusted Onboarding 962 

Build-5. 963 

6.3.2 Onboarding Demonstration 964 

Once configuration of the devices and the prerequisite conditions have been achieved, the onboarding 965 

demonstration can be executed following NquiringMinds Demo Continuous Assurance Workflow. 966 

6.3.3 Continuous Assurance Demonstration 967 

The instructions to demonstrate the continuous assurance workflow are contained in the official 968 

NquiringMinds documentation. 969 

6.4 BRSKI Factory Provisioning Build 970 

This Factory Provisioning Build includes many of the components listed in Section 6.2, including the 971 

Pledge, Registrar, and other services. An Infineon Secure Element was also included in the build and 972 

provides secure generation and storage of the key material and certificates provisioned to the device. 973 

https://nist.nqm.ai/
https://nist.nqm.ai/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/user-instructions/
https://trustnetz.nqm.ai/docs/BRSKI-demonstrator/demo-workflow/


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 43 

6.4.1 Pledge 974 

The Pledge acts as the IoT device which is attempting to onboard onto the secure network. It 975 

implements the pledge functionality as per the IETF BRSKI specification. It consists of a Raspberry Pi 976 

Model 4B equipped with an Infineon Optiga SLB 9670 TPM 2.0 Secure Element. The Infineon Secure 977 

Element was connected to a Raspberry Pi via the built-in GPIO pins present on the Pi. 978 

6.4.1.1 Factory Use Case - IDevID provisioning 979 

NquiringMinds provided demonstration code that generates a public/private keypair within the secure 980 

element, creates a CSR, and uses that CSR to obtain an IDevID certificate from tdx Volt. The 981 

demonstration process can be found at the official NquiringMinds documentation. 982 

Initially, it generates a CSR using the TPM secure element to sign it, it then sends the CSR to the MPR 983 

server which is the manufacturer’s IDevID Certificate Authority and is bootstrapped in the vanilla 984 

firmware on the pledge’s creation in the factory. The MPR sends back a unique IDevID for the pledge 985 

which it stores in its secure element. 986 

The code for this is hosted at the official NquiringMinds repository. 987 

6.4.2 Installation and Configuration 988 

Hardware requirements, pre-installation steps, installation steps, and configuration instructions for the 989 

pledge can be found at the official NquiringMinds repository referenced above. 990 

6.4.3 Operation and Demonstration 991 

The instructions to use this factory provisioning use case code to provision an IDevID onto the pledge is 992 

also located in the official NquiringMinds repository referenced above.   993 

https://nist.nqm.ai/docs/Factory%20provisioning/factory-intro/
https://github.com/nqminds/nist-brski/blob/factory_use_case/packages/factory_use_case/README.md


DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 44 

994 Appendix A List of Acronyms 
AKM Authentication and Key Management 

AOS ArubaOS 

AP Access Point 

API Application Programming Interface 

ASN.1 Abstract Syntax Notation One 

AWS Amazon Web Services 

BRSKI Bootstrapping Remote Secure Key Infrastructure 

BSS Basic Service Set 

CA Certificate Authority 

CRADA Cooperative Research and Development Agreement 

CSR Certificate Signing Request 

DMZ Demilitarized Zone 

DPP Device Provisioning Protocol (Wi-Fi Easy Connect) 

EAP Extensible Authentication Protocol 

GPIO General Purpose Input/Output 

GUI Graphical User Interface 

HPE Hewlett Packard Enterprise 

IaaS Infrastructure as a Service 

IDevID Initial Device Identifier 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

IPv4 Internet Protocol Version 4 

IPv6 Internet Protocol Version 6 

LDevID Locally Significant Device Identifier 

MASA Manufacturer Authorized Signing Authority 

MPR Manufacturer Provisioning Root 

MUD Manufacturer Usage Description 

MQTT MQ Telemetry Transport 



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 45 

NCCoE National Cybersecurity Center of Excellence 

NIST National Institute of Standards and Technology 

OCF Open Connectivity Foundation 

OS Operating System 

OTBR Open Thread Border Router 

PNG Portable Network Graphics 

POP Proof of Possession 

QR Quick-Response 

RF Radio Frequency 

SBOM Software Bill of Materials 

SP Special Publication 

SoC System-on-Chip 

SSID Service Set Identifier 

TPM Trusted Platform Module 

UID Unique Identifier 

URI Uniform Resource Identifier 

USB Universal Serial Bus 

UXI User Experience Insight 

VLAN Virtual Local Area Network 

VM Virtual Machine 

WLAN Wireless Local Area Network 

WPA2 Wi-Fi Protected Access 2 

WPA3 Wi-Fi Protected Access 3 

 

  



DRAFT 

NIST SP 1800-36C: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 46 

995 Appendix B References 
[1] Wi-Fi Alliance. Wi-Fi Easy Connect. Available: https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-996 

connect. 997 

https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect


   
 

   
 

NIST SPECIAL PUBLICATION 1800-36D 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and 
Lifecycle Management 
Enhancing Internet Protocol-Based IoT Device and Network Security 
 
 
Volume D: 
Functional Demonstrations 
 
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 

Andy Dolan 
Kyle Haefner 
Craig Pratt 
Darshak Thakore 
CableLabs,  
Louisville, Colorado 

Brecht Wyseur 
Kudelski IoT, Cheseaux-sur-Lausanne, 
Switzerland 

Nick Allott 
Ashley Setter 
Nquiring Minds 
Southampton, United Kingdom 

 

Michael Richardson 
Sandleman Software Works 
Ontario, Canada 
 
Mike Dow 
Steve Egerter 
Silicon Labs,  
Austin, Texas 

Chelsea Deane 
Joshua Klosterman 
Blaine Mulugeta 
Charlie Rearick 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 

 
May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 
experimental procedure or concept adequately. Such identification is not intended to imply special 4 
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 
intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 
for the purpose. 7 

 

National Institute of Standards and Technology Special Publication 1800-36D, Natl. Inst. Stand. Technol. 8 
Spec. Publ. 1800-36D, 51 pages, May 2024, CODEN: NSPUE2 9 

 

FEEDBACK 10 

You can improve this guide by contributing feedback. As you review and adopt this solution for your 11 
own organization, we ask you and your colleagues to share your experience and advice with us.  12 

Comments on this publication may be submitted to: iot-onboarding@nist.gov.  13 

Public comment period: May 31, 2024 through July 30, 2024 14 

 

 

National Cybersecurity Center of Excellence 15 
National Institute of Standards and Technology 16 

100 Bureau Drive 17 
Mailstop 2002 18 

Gaithersburg, MD 20899 19 
Email: nccoe@nist.gov   20 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 21 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 22 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 23 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 24 
public-private partnership enables the creation of practical cybersecurity solutions for specific 25 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 26 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 27 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 28 
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 29 
solutions using commercially available technology. The NCCoE documents these example solutions in 30 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 31 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 32 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 33 
Maryland. 34 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 35 
https://www.nist.gov. 36 

NIST CYBERSECURITY PRACTICE GUIDES 37 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 38 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 39 
adoption of standards-based approaches to cybersecurity. They show members of the information 40 
security community how to implement example solutions that help them align with relevant standards 41 
and best practices, and provide users with the materials lists, configuration files, and other information 42 
they need to implement a similar approach. 43 

The documents in this series describe example implementations of cybersecurity practices that 44 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 45 
or mandatory practices, nor do they carry statutory authority.  46 

KEYWORDS 47 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 48 
(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect.  49 

  

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

ACKNOWLEDGMENTS 50 

We are grateful to the following individuals for their generous contributions of expertise and time. 51 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Dan Harkins Aruba, a Hewlett Packard Enterprise company 

Danny Jump Aruba, a Hewlett Packard Enterprise company 

Bart Brinkman Cisco 

Eliot Lear  Cisco 

Peter Romness  Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT  

Faith Ryan The MITRE Corporation  

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors  

Mihai Chelalau NXP Semiconductors  

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor  NXP Semiconductors 

Michael Richardson Sandelman Software Works 

Karen Scarfone Scarfone Cybersecurity 

Steve Clark SEALSQ, a subsidiary of WISeKey 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 
The Technology Partners/Collaborators who participated in this build submitted their capabilities in 52 
response to a notice in the Federal Register. Respondents with relevant capabilities or product 53 
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 54 
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 55 

Technology Collaborators 
Aruba, a Hewlett Packard 
Enterprise company 

Kudelski IoT Sandelman Software Works 

CableLabs NquiringMinds Silicon Labs 
Cisco NXP Semiconductors SEALSQ, a subsidiary of 

WISeKey 
Foundries.io Open Connectivity Foundation 

(OCF) 
 

 
DOCUMENT CONVENTIONS  56 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 57 
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 58 
among several possibilities, one is recommended as particularly suitable without mentioning or 59 
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 60 
the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 61 
“may” and “need not” indicate a course of action permissible within the limits of the publication. The 62 
terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 63 

https://www.arubanetworks.com/
https://www.kudelski-iot.com/
https://www.sandelman.ca/
https://www.cablelabs.com/
https://nquiringminds.com/
https://www.silabs.com/
https://www.cisco.com/
https://www.nxp.com/
https://www.sealsq.com/
https://foundries.io/
https://openconnectivity.org/
https://openconnectivity.org/


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

CALL FOR PATENT CLAIMS 

This public review includes a call for information on essential patent claims (claims whose use would be 64 
required for compliance with the guidance or requirements in this Information Technology Laboratory 65 
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 66 
or by reference to another publication. This call also includes disclosure, where known, of the existence 67 
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 68 
unexpired U.S. or foreign patents. 69 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 70 
written or electronic form, either: 71 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 72 
currently intend holding any essential patent claim(s); or 73 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 74 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 75 
publication either: 76 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 77 
or  78 

2. without compensation and under reasonable terms and conditions that are demonstrably free 79 
of any unfair discrimination.  80 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 81 
behalf) will include in any documents transferring ownership of patents subject to the assurance, 82 
provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, 83 
and that the transferee will similarly include appropriate provisions in the event of future transfers with 84 
the goal of binding each successor-in-interest.  85 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 86 
whether such provisions are included in the relevant transfer documents.  87 

Such statements should be addressed to: iot-onboarding@nist.gov. 88 

  

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 89 

1 Introduction ........................................................................................ 190 

1.1 How to Use This Guide ................................................................................................. 1 91 

2 Functional Demonstration Playbook ................................................... 392 

2.1 Scenario 0: Factory Provisioning .................................................................................. 3 93 

2.2 Scenario 1: Trusted Network-Layer Onboarding .......................................................... 4 94 

2.3 Scenario 2: Trusted Application-Layer Onboarding ...................................................... 5 95 

2.4 Scenario 3: Re-Onboarding a Device ............................................................................ 6 96 

2.5 Scenario 4: Ongoing Device Validation ........................................................................ 7 97 

2.6 Scenario 5: Establishment and Maintenance of Credential and Device Security 98 
Posture Throughout the Lifecycle ................................................................................ 8 99 

3 Functional Demonstration Results ...................................................... 9100 

3.1 Build 1 Demonstration Results ..................................................................................... 9 101 

3.2 Build 2 Demonstration Results ................................................................................... 16 102 

3.3 Build 3 Demonstration Results ................................................................................... 22 103 

3.4 Build 4 Demonstration Results ................................................................................... 28 104 

3.5 Build 5 Demonstration Results ................................................................................... 34 105 

Appendix A References ......................................................................... 42106 

List of Tables 107 

Table 2-1 Scenario 0 Factory Provisioning Capabilities That May Be Demonstrated .............................. 4 108 

Table 2-2 Scenario 1 Trusted Network-Layer Onboarding Capabilities That May Be Demonstrated ...... 5 109 

Table 2-3 Scenario 2 Trusted Application-Layer Onboarding Capabilities That May Be Demonstrated .. 6 110 

Table 2-4 Scenario 3 Re-Onboarding Capabilities That May Be Demonstrated ...................................... 6 111 

Table 2-5 Scenario 4 Ongoing Device Validation Capabilities That May Be Demonstrated .................... 7 112 

Table 2-6 Scenario 5 Credential and Device Posture Establishment and Maintenance Capabilities That 113 
May Be Demonstrated ......................................................................................................................... 8 114 

Table 3-1 Build 1 Capabilities Demonstrated ........................................................................................ 9 115 

Table 3-2 Build 2 Capabilities Demonstrated ...................................................................................... 16 116 

Table 3-3 Build 3 Capabilities Demonstrated ...................................................................................... 22 117 

Table 3-4 Build 4 Capabilities Demonstrated ...................................................................................... 28 118 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management viii 

Table 3-5 Build 5 Capabilities Demonstrated ...................................................................................... 35 119 

 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 120 

In this project, the National Cybersecurity Center of Excellence (NCCoE) is applying standards, 121 
recommended practices, and commercially available technology to demonstrate various mechanisms for 122 
trusted network-layer onboarding of IoT devices and lifecycle management of those devices. We show 123 
how to provision network credentials to IoT devices in a trusted manner and maintain a secure posture 124 
throughout the device lifecycle.  125 

This volume of the NIST Cybersecurity Practice Guide describes functional demonstration scenarios that 126 
are designed to showcase the security capabilities and characteristics supported by trusted IoT device 127 
network-layer onboarding and lifecycle management solutions. Section 2, Functional Demonstration 128 
Playbook, defines the scenarios and lists the capabilities that can be showcased in each one. Section 3, 129 
Functional Demonstration Results, reports which capabilities have been demonstrated by each of the 130 
project’s implemented solutions. 131 

1.1 How to Use This Guide 132 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 133 
implementing trusted IoT device network-layer onboarding and lifecycle management and describes 134 
various example implementations of this reference design. Each of these implementations, which are 135 
known as builds, is standards-based and is designed to help provide assurance that networks are not put 136 
at risk as new IoT devices are added to them, and also to help safeguard IoT devices from being taken 137 
over by unauthorized networks. The reference design described in this practice guide is modular and can 138 
be deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 139 
onboarding and lifecycle management into their legacy environments according to goals that they have 140 
prioritized based on risk, cost, and resources.  141 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 142 
possible rather than delaying release until all volumes are completed.  143 

This guide contains five volumes: 144 

 NIST SP 1800-36A: Executive Summary – why we wrote this guide, the challenge we address, 145 
why it could be important to your organization, and our approach to solving this challenge 146 

 NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 147 

 NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 148 
including all the security-relevant details that would allow you to replicate all or parts of this 149 
project 150 

 NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 151 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 152 
and the results of demonstrating these use cases with each of the example implementations 153 
(you are here)  154 

 NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 155 
device network-layer onboarding and lifecycle management security characteristics to 156 
cybersecurity standards and recommended practices  157 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

Depending on your role in your organization, you might use this guide in different ways: 158 

Business decision makers, including chief security and technology officers, will be interested in the 159 
Executive Summary, NIST SP 1800-36A, which describes the following topics: 160 

 challenges that enterprises face in migrating to the use of trusted IoT device network-layer 161 
onboarding 162 

 example solutions built at the NCCoE 163 

 benefits of adopting the example solution 164 

Technology or security program managers who are concerned with how to identify, understand, assess, 165 
and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why.  166 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 167 
components of the general trusted IoT device network-layer onboarding and lifecycle management 168 
reference design to security characteristics listed in various cybersecurity standards and recommended 169 
practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 170 
Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 171 
(NIST SP 800-53).  172 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 173 
them understand the importance of using standards-based trusted IoT device network-layer onboarding 174 
and lifecycle management implementations. 175 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 176 
can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 177 
in our lab. The how-to portion of the guide provides specific product installation, configuration, and 178 
integration instructions for implementing the example solution. We do not re-create the product 179 
manufacturers’ documentation, which is generally widely available. Rather, we show how we 180 
incorporated the products together in our environment to create an example solution. Also, you can use 181 
Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 182 
showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 183 
and the results of demonstrating these use cases with each of the example implementations. Finally, 184 
NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 185 
build provide. 186 

This guide assumes that IT professionals have experience implementing security products within the 187 
enterprise. While we have used a suite of commercial products to address this challenge, this guide does 188 
not endorse these particular products. Your organization can adopt this solution or one that adheres to 189 
these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 190 
parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 191 
organization’s security experts should identify the products that will best integrate with your existing 192 
tools and IT system infrastructure. We hope that you will seek products that are congruent with 193 
applicable standards and recommended practices.  194 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 195 
feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 196 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-197 
onboarding@nist.gov. 198 

2 Functional Demonstration Playbook 199 

Six scenarios have been defined that demonstrate capabilities related to various aspects of trusted IoT 200 
device network-layer onboarding, application-layer onboarding, and device lifecycle management. 201 
These scenarios are as follows: 202 

 Scenario 0: Factory Provisioning 203 

 Scenario 1: Trusted Network-Layer Onboarding 204 

 Scenario 2: Trusted Application-Layer Onboarding 205 

 Scenario 3: Re-Onboarding a Device 206 

 Scenario 4: Ongoing Device Validation  207 

 Scenario 5: Establishment and Maintenance of Credential and Device Security Posture 208 
Throughout the Lifecycle 209 

We executed the factory provisioning scenario (Scenario 0) using both a Bootstrapping Remote Secure 210 
Key Infrastructure (BRSKI) Factory Provisioning Build and a Wi-Fi Easy Connect Factory Provisioning Build 211 
that have been implemented as part of this project. We executed the trusted network-layer onboarding 212 
and lifecycle management scenarios using each of the onboarding builds that have been implemented 213 
as part of this project. The capabilities that were demonstrated depend both on the features of the 214 
network-layer onboarding protocol (i.e., Wi-Fi Easy Connect) that the build supports and on any 215 
additional mechanisms the build may have integrated (e.g., application-layer onboarding). 216 

Section 2.1 defines the factory provisioning scenario (Scenario 0). Sections 2.2 through Section 2.6 217 
define each of the five onboarding scenarios. 218 

2.1 Scenario 0: Factory Provisioning 219 

This scenario, which simulates the IoT device factory provisioning process, is designed to represent 220 
some steps that must be performed in the factory before the device is put into the supply chain. These 221 
steps are performed by the device manufacturer or integrator to provision a device with the information 222 
it requires to be able to participate in trusted network-layer onboarding and lifecycle management. The 223 
device is assumed to have been equipped with secure storage and with the software or firmware 224 
needed to support a specific network-layer onboarding protocol (e.g., Wi-Fi Easy Connect or BRSKI). 225 
Scenario 0 includes initial provisioning of the IoT device with its birth credential (e.g., its private key and 226 
initial device identifier (IDevID) [1]), where it is stored in secure storage to prevent tampering or 227 
disclosure. This process includes generation of the credential (e.g., a private key and other information), 228 
signing of this credential (if applicable, depending on what onboarding protocol the device is designed 229 
to support), and transfer of the device bootstrapping information (e.g., a DPP URI or the device’s IDevID 230 
) to the appropriate destination to ensure that it will be available for use during the network layer 231 
onboarding process. Following provisioning, the birth credential may be used for network-layer or 232 
application-layer onboarding. Table 2-1 lists the capabilities that may be demonstrated in this factory 233 
provisioning scenario. 234 

mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

Table 2-1 Scenario 0 Factory Provisioning Capabilities That May Be Demonstrated  235 

Demo 
ID 

Capability Description 

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth credentials are generated within or generated and 
provisioned into secure storage on the IoT device. The content and 
format of the credential are appropriate to the onboarding protocol 
(e.g., Wi-Fi Easy Connect [2] or BRSKI [3]) that the device is designed 
to support: 

• For BRSKI, the credential is a private key, a signed certificate 
(IDevID), a trust anchor for the manufacturer’s certificate 
authority (CA), and the location of a trusted manufacturer 
authorized signing authority (MASA). 

• For Wi-Fi Easy Connect, the credential is a private key and a 
public bootstrapping key. 

S0.C2 Birth Credential 
Signing 

The credential is signed by a trusted CA. 

S0.C3 Bootstrapping 
Information 
Availability 

The bootstrapping information required for onboarding the device is 
made available as needed. The format and content of the 
bootstrapping information depends on the onboarding protocol that 
the device is designed to support:  

• For BRSKI, the bootstrapping information is the certificate 
and ownership information that is sent to the MASA. 

• For Wi-Fi Easy Connect, the bootstrapping information is the 
Device Provisioning Protocol (DPP) uniform resource 
identifier (URI) (which contains the public key, and optionally 
other information such as device serial number).  

2.2 Scenario 1: Trusted Network-Layer Onboarding  236 

This scenario involves trusted network-layer onboarding of an authorized IoT device to a local network 237 
that is operated by the owner of the IoT device. The device is assumed to have been manufactured to 238 
support the type of network-layer onboarding protocol (e.g., Wi-Fi Easy Connect or BRSKI) that is being 239 
used by the local network. The device is also assumed to have been provisioned with its birth credential 240 
in a manner similar to that described in Scenario 0: Factory Provisioning, including transfer of the 241 
device’s bootstrapping information (e.g., its public key) to the operator of the local network to ensure 242 
that this information will be available to support authentication of the device during the initial phase of 243 
the trusted network-layer onboarding process. Onboarding is performed after the device has booted up 244 
and is placed in onboarding mode. Because the organization that is operating the local network is the 245 
owner of the IoT device, the device is authorized to onboard to the network and the network is 246 
authorized to onboard the device. In this scenario, after the identities of the device and the network are 247 
authenticated, a network onboarding component—a logical component authorized to onboard devices 248 
on behalf of the network—authenticates the device and provisions unique network credentials to the 249 
device over a secure channel. These network credentials are not just specific to the device; they are also 250 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

specific to the local network. The device then uses these credentials to connect to the network. Table 251 
2-2 lists the capabilities that may be demonstrated in this scenario. 252 

Table 2-2 Scenario 1 Trusted Network-Layer Onboarding Capabilities That May Be Demonstrated  253 

Demo 
ID 

Capability Description 

S1.C1 Device 
Authentication 

The onboarding mechanism authenticates the device’s identity. 

S1.C2 Device Authorization The onboarding mechanism verifies that the device is authorized to 
onboard to the network. 

S1.C3 Network 
Authentication 

The device can verify the network’s identity. 

S1.C4 Network 
Authorization 

The device can verify that the network is authorized to take control 
of it. 

S1.C5 Secure Local 
Credentialing 

The onboarding mechanism securely provisions local network 
credentials to the device. 

S1.C6 Secure Storage The local network credentials are provisioned to secure hardware-
backed storage on the device. 

S1.C7 Network Selection The onboarding mechanism provides the IoT device with the 
identifier of the network to which the device should onboard. 

S1.C8 Interoperability The network-layer onboarding mechanism can onboard a minimum 
of two types of IoT devices (e.g., different device vendors and 
models). 

2.3 Scenario 2: Trusted Application-Layer Onboarding 254 

This scenario involves trusted application-layer onboarding that is performed automatically on an IoT 255 
device after the device connects to a network. As a result, this scenario can be thought of as a series of 256 
steps that would be performed as an extension of Scenario 1, assuming the device has been designed 257 
and provisioned to support application-layer onboarding. As part of these steps, the device 258 
automatically mutually authenticates with a trusted application-layer onboarding service and establishes 259 
an encrypted connection to that service so the service can provision the device with application-layer 260 
credentials. The application-layer credentials could, for example, enable the device to securely connect 261 
to a trusted lifecycle management service to check for available updates or patches. For the application-262 
layer onboarding mechanism to be trusted, it must establish an encrypted connection to the device 263 
without exposing any information that must be protected to ensure the confidentiality of that 264 
connection. Two types of application-layer onboarding are defined in NIST SP 1800-36B: streamlined and 265 
independent. Table 2-3 lists the capabilities that may be demonstrated in this scenario, including both 266 
types of application-layer onboarding. 267 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

Table 2-3 Scenario 2 Trusted Application-Layer Onboarding Capabilities That May Be Demonstrated  268 

Demo 
ID 

Capability Description 

S2.C1 Automatic Initiation 
of Streamlined 
Application-Layer 
Onboarding  

The device can automatically (i.e., with no manual intervention 
required) initiate trusted application-layer onboarding after 
performing network-layer onboarding and connecting to the 
network. In this case, the application-layer onboarding bootstrapping 
information has been securely conveyed to the device during the 
network-layer onboarding process. 

S2.C2 Automatic Initiation 
of Independent 
Application-Layer 
Onboarding  

The device can automatically (i.e., with no manual intervention 
required) initiate trusted application-layer onboarding after 
performing network-layer onboarding and connecting to the 
network. In this case, the application-layer onboarding bootstrapping 
information has been pre-provisioned to the device by the device 
manufacturer or integrator (e.g., as part of an application that was 
installed on the device during the manufacturing process). 

S2.C3 Trusted Application-
Layer Onboarding 

The device and a trusted application service can establish an 
encrypted connection without exposing any information that must 
be protected to ensure the confidentiality of the connection. They 
can then use that secure association to exchange application-layer 
information. 

2.4 Scenario 3: Re-Onboarding a Device 269 

This scenario involves re-onboarding an IoT device to a network after deleting its network credentials so 270 
that the device can be re-credentialed and reconnected. If the device also supports application-layer 271 
onboarding, application-layer onboarding should also be performed again after the device reconnects to 272 
the network. This scenario assumes that the device has been able to successfully demonstrate trusted 273 
network-layer onboarding as defined in Scenario 1: Trusted Network-Layer Onboarding. If application-274 
layer re-onboarding is to be demonstrated as well, the scenario assumes that the device has also been 275 
able to successfully demonstrate at least one method of application-layer onboarding as defined in 276 
Scenario 2: Trusted Application-Layer Onboarding. Table 2-4 lists the capabilities that may be 277 
demonstrated in this scenario. 278 

Table 2-4 Scenario 3 Re-Onboarding Capabilities That May Be Demonstrated  279 

Demo 
ID 

Capability Description 

S3.C1 Credential Deletion  The device’s network credential can be deleted. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s network credential has been deleted, the device is 
not able to connect to or communicate on the network securely. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s network credential has been deleted, the network-
layer onboarding mechanism can securely re-provision a network 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

Demo 
ID 

Capability Description 

credential to the device, which the device can then use to connect to 
the network securely. 

S3.C4 Re-Onboarding 
(application layer) 

After the device’s network and application-layer credentials have 
been deleted and the device has been re-onboarded at the network 
layer and reconnected to the network, the device can again perform 
trusted application-layer onboarding. 

2.5 Scenario 4: Ongoing Device Validation  280 

This scenario involves ongoing validation of a device, not only as part of a trusted boot or attestation 281 
process prior to permitting the device to undergo network-layer onboarding, but also after the device 282 
has connected to the network. It may involve one or more security mechanisms that are designed to 283 
evaluate, validate, or respond to device trustworthiness using methods such as examining device 284 
behavior, ensuring device authenticity and integrity, and assigning the device to a specific network 285 
segment based on its conformance to policy criteria. Table 2-5 lists the capabilities that may be 286 
demonstrated in this scenario. None of these capabilities are integral to trusted network-layer 287 
onboarding; however, they may be used in conjunction with, or subsequent to, trusted network-layer 288 
onboarding to enhance device and network security. 289 

Table 2-5 Scenario 4 Ongoing Device Validation Capabilities That May Be Demonstrated  290 

Demo 
ID 

Capability Description 

S4.C1 Device Attestation 
(initial) 

The network-layer onboarding mechanism requires successful device 
attestation prior to permitting the device to be onboarded. 

S4.C2 Device Attestation 
(application layer) 

The application-layer onboarding mechanism requires successful 
device attestation prior to permitting the device to be onboarded. 

S4.C3 Device Attestation 
(ongoing) 

Successful device attestation is required prior to permitting the 
device to perform some operation (e.g., accessing a high-value 
resource). 

S4.C4 Local Network 
Segmentation (initial) 

Upon connection, the IoT device is assigned to some local network 
segment in accordance with policy, which may include an assessment 
of its security posture. 

S4.C5 Behavioral Analysis Device behavior is observed to determine whether the device meets 
the policy criteria required to be permitted to perform a given 
operation (e.g., to access a high-value resource or be placed on a 
given network segment). 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be reassigned to a different network segment 
based on ongoing assessments of its conformance to policy criteria. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the IoT device’s identity is periodically 
reauthenticated in order to maintain network access. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

Demo 
ID 

Capability Description 

S4.C8 Periodic Device 
Reauthorization 

After connection, the IoT device’s authorization to access the 
network is periodically reconfirmed in order to maintain network 
access. 

2.6 Scenario 5: Establishment and Maintenance of Credential and Device 291 

Security Posture Throughout the Lifecycle 292 

This scenario involves steps used to help establish and maintain the security posture of both the device’s 293 
network credentials and the device itself. It includes the capability to download and validate the device’s 294 
most recent firmware updates, securely integrate with a device communications intent enforcement 295 
mechanism (e.g., Manufacturer Usage Description (MUD) [4]), keep the device updated and patched, 296 
and establish and maintain the device’s network credentials by provisioning X.509 certificates or DPP 297 
Connectors to the device and updating expired network credentials. Table 2-6 lists the capabilities that 298 
may be demonstrated in this scenario. None of these capabilities are integral to trusted network-layer 299 
onboarding; however, they may be used in conjunction with or subsequent to trusted network-layer 300 
onboarding to enhance device and network security. 301 

Table 2-6 Scenario 5 Credential and Device Posture Establishment and Maintenance Capabilities That 302 
May Be Demonstrated  303 

Demo 
ID 

Capability Description 

S5.C1 Trusted Firmware 
Updates 

The device can download the most recent firmware update and 
verify its signature before it is installed. 

S5.C2 Credential Certificate 
Provisioning 

The onboarding mechanism can interact with a certificate authority 
to sign a device’s X.509 certificate and provision it onto the device. 

S5.C3 Credential Update The device’s network credential can be updated after it expires. 

S5.C4 Server Attestation Successful server attestation is required prior to permitting the 
server to perform some operation on the device (e.g., prior to 
downloading and installing updates onto the device). 

S5.C5 Secure Integration 
with MUD  

The network-layer onboarding mechanism can convey necessary 
device communications intent information (e.g., the IoT device’s 
MUD URL) to the network in encrypted form, thereby securely 
binding this information to the device and ensuring its confidentiality 
and integrity. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a lifecycle management service and can automatically 
establish a secure association with it after performing network-layer 
onboarding and connecting to the network. 

 

  



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

3 Functional Demonstration Results 304 

This section records the capabilities that were demonstrated for each of the builds. 305 

3.1 Build 1 Demonstration Results 306 

Table 3-1 lists the capabilities that were demonstrated by Build 1. 307 

Table 3-1 Build 1 Capabilities Demonstrated 308 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 0: Factory Provisioning  

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth 
credentials are 
generated within or 
generated and 
provisioned into secure 
storage on the IoT 
device. 
For Wi-Fi Easy Connect, 
the credential is a 
private key and a 
public bootstrapping 
key. 

Yes Public/private key-pair is 
generated within the 
SEALSQ VaultIC secure 
element. 

S0.C2 Birth Credential 
Signing 

The credential is signed 
by a trusted CA. 

No There is no requirement to 
support this capability in 
this build. Birth credentials 
for devices supporting Wi-
Fi Easy Connect onboarding 
do not need to be signed.  

S0.C3 Bootstrapping 
Information 
Availability 
 
 

The bootstrapping 
information required 
for onboarding the 
device is made 
available as needed. 
For Wi-Fi Easy Connect, 
the bootstrapping 
information is the 
Device Provisioning 
Protocol (DPP) uniform 
resource identifier 
(URI) (which contains 
the public key, and 
optionally other 
information such as 
device serial number).  

Yes The device’s DPP URI is 
generated using the 
public/private keypair that 
was generated in the 
device’s secure element. 
This DPP URI is encoded in 
a QR code that is written to 
a Portable Network 
Graphics (PNG) file and 
may be transferred from a 
vendor cloud upon 
acquisition of the device. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes DPP performs device 
authentication. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes When the device’s URI is 
found on the HPE cloud 
service, this verifies that 
the device is authorized to 
onboard to the network. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

No This could be supported by 
providing the IoT device 
with the DPP URI of the 
network, but the Aruba 
User Experience Insight 
(UXI) sensor used in this 
build lacks the user 
interface needed to do so. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The network that possesses 
the device’s public key is 
implicitly authorized to 
onboard the device by 
virtue of its knowledge of 
the device’s public key. 
While this is not 
cryptographic, it does 
provide a certain level of 
assurance that the “wrong” 
network doesn’t take 
control of the device. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes DPP provisions the device’s 
network credentials over 
an encrypted channel. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No The bootstrapping 
credentials are stored in a 
Trusted Platform Module 
(TPM) 2.0 hardware 
enclave, but the local 
network credentials are not 

S1.C7 Network Selection The onboarding 
mechanism provides 

Yes The network responds to 
device chirps. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes IoT devices from Build 2 
were successfully 
onboarded in Build 1. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process. 

No Not supported in this build. 

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 

Yes Once onboarded, the UXI 
sensor automatically 
initiates application-layer 
onboarding to the UXI 
application. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process). 

S2.C3 Trusted 
Application- Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information. 

Yes Once onboarded, the UXI 
sensor establishes a secure 
connection with the UXI 
cloud, which provisions the 
sensor with its credentials 
for the UXI application. 
Later, the sensor uploads 
data to the UXI application 
securely.  

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Factory reset and manual 
credential removal were 
leveraged. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely. 

Yes Observed. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

connect to the network 
securely.  

S3.C4 Re-Onboarding 
(application layer) 

After the device’s 
network and 
application-layer 
credentials have been 
deleted and the device 
has been re-onboarded 
at the network layer 
and re-connected to 
the network, the 
device can again 
perform trusted 
application-layer 
onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device Attestation 
(application layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded.  

No Not supported in this build. 

S4.C3 Device Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform 
some operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 

No  Not demonstrated in this 
phase. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

include an assessment 
of its security posture. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., 
to access a high-value 
resource or be placed 
on a given network 
segment). 

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments 
of its conformance to 
policy criteria. 

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 

S5.C1 Trusted Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority to 
sign a device’s X.509 
certificate and 
provision it onto the 
device. 

Yes This capability has been 
successfully demonstrated 
with the SEALSQ INeS CA. 

S5.C3 Credential Update The device’s network 
credential can be 
updated after it 
expires. 

No Not demonstrated in this 
phase. 

S5.C4 Server Attestation Successful server 
attestation is required 
prior to permitting the 
server to perform 
some operation on the 
device (e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure Integration 
with MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by DPP, but not 
demonstrated because 
Build 1 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 16 

3.2 Build 2 Demonstration Results 309 

Table 3-2 lists the capabilities that were demonstrated by Build 2. 310 

Table 3-2 Build 2 Capabilities Demonstrated 311 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes DPP performs device 
authentication. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes Only devices that have been 
added/approved by the 
administrator are 
onboarded. When the 
device’s URI is found, the 
controller authorizes the 
device to join the network. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

No This could be supported by 
providing the IoT device 
with the DPP URI of the 
network, but this is not 
currently implemented. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The network that possesses 
the device’s public key is 
implicitly authorized to 
onboard the device by 
virtue of its knowledge of 
the device’s public key. 
While this is not 
cryptographic, it does 
provide a certain level of 
assurance that the “wrong” 
network doesn’t take 
control of the device. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 

Yes DPP provisions the device’s 
network credentials over an 
encrypted channel. 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

connecting to the 
network. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 17 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network credentials to 
the device. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No  The IoT device does not 
have secure hardware-
backed storage. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

Yes Network responds to device 
chirps. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes Build 2 was able to onboard 
the IoT devices from Build 1. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process. 

Yes This has been demonstrated 
with the OCF Iotivity [5] 
custom extension. Iotivity is 
an open-source software 
framework that implements 
OCF standards and enables 
seamless device-to-device 
connectivity. 

S2.C2 Automatic 
Initiation of 
Independent 

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 18 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Application-Layer 
Onboarding  

trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process). 

S2.C3 Trusted 
Application- 
Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information. 

Yes Once the device is 
onboarded to the network 
using DPP, the credentials 
for the application layer 
onboarding are sent over 
the secure channel and 
provisioned by the 
onboarding tool (OBT). 

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Supports factory reset. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely. 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 19 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.  

Yes Observed. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network and 
application-layer 
credentials have been 
deleted and the device 
has been re-onboarded 
at the network layer 
and re-connected to 
the network, the device 
can again perform 
trusted application-
layer onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform 
some operation (e.g., 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 20 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

accessing a high-value 
resource). 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture. 

Yes  When the device is 
connected to the network, 
the gateway places it in a 
restricted network segment 
based on policy. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., 
to access a high-value 
resource or be placed 
on a given network 
segment). 

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria. 

Yes Device can be moved to 
new network segments 
programmatically. The 
policy to do this is not 
defined in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 21 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority to 
sign a device’s X.509 
certificate and 
provision it onto the 
device. 

No Not supported in this build. 

S5.C3 Credential 
Update 

The device’s network 
credential can be 
updated after it 
expires. 

No Not demonstrated in this 
phase. 

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the 
device (e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by DPP, but not 
demonstrated because 
Build 2 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 22 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this build. 

3.3 Build 3 Demonstration Results 312 

Table 3-3 lists the capabilities that were demonstrated by Build 3. 313 

Table 3-3 Build 3 Capabilities Demonstrated 314 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes The local domain registrar 
receives the voucher 
request. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes The registrar verifies that 
the device is from an 
authorized manufacturer.  

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

Yes Demonstrated by the 
voucher. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The registrar examines the 
new voucher and passes it 
to the device for 
onboarding. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes A local device identifier 
(LDevID) (i.e., the device’s 
network credential) [1] is 
provisioned to the device 
after the device 
authentication and 
authorization process. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 23 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No Not demonstrated in this 
phase. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

No Not demonstrated in this 
build. 

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

No Supported by BRSKI, but not 
demonstrated in this build. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process.  

No  Not supported in this build.  

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding   

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 24 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process).  

S2.C3 Trusted 
Application-Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information.  

No Not supported in this build. 

Scenario 3: Re-Onboarding a Device  

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes Observed. 

S3.C2 De-Credentialed 
Device Cannot 
Connect  

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely.  

Yes Observed. 

S3.C3 Re-Onboarding 
(network-layer) 

After the device’s 
network credential has 
been deleted, the 

Yes Observed. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 25 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network-layer 
onboarding mechanism 
can security re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.   

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network credentials 
have been deleted and 
the device has been re-
onboarded at the 
network layer and re-
connected to the 
network, the device can 
perform application-
layer onboarding 
automatically. 

No Not supported in this build. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform some 
operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 26 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture.  

No Not supported in this build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., to 
access a high-value 
resource or be placed 
on a given network 
segment).  

No Not supported in this build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria.  

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication 

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

No Not supported in this build. 

Scenario 5: Establish and Maintain Credential and Device Security Posture Throughout the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware update 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 27 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

and verify its signature 
before it is installed.  

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can interact 
with a certificate 
authority to sign a 
device’s X.509 
certificate and 
provision it onto the 
device.  

Yes A vendor-installed X.509 
certificate and a vendor’s 
authorizing service use link-
local connectivity to 
provision device credentials. 

S5.C3 Credential 
Update 

The device’s network 
credential (e.g., its 
LDevID or X.509 
certificate) can be 
updated after it 
expires. 

No Will be demonstrated in a 
future implementation of 
this build. 

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the device 
(e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

No Supported by BRSKI, but not 
demonstrated because 
Build 3 is not integrated 
with MUD or any other 
device communications 
intent enforcement 
mechanism. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 

No Not supported in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 28 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

3.4 Build 4 Demonstration Results 315 

Table 3-4 lists the capabilities that were demonstrated by Build 4. 316 

Table 3-4 Build 4 Capabilities Demonstrated 317 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to 
onboard to the 
network. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s 
identity. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials 
to the device. 

No The build performs 
trusted application-layer 
onboarding only. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to 
secure hardware-
backed storage on 
the device. 

Yes The local network 
credentials are stored in 
the Silicon Labs Secure 
Vault on the 
Thunderboard. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 29 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with 
the identifier of the 
network to which 
the device should 
onboard. 

No The device generates a 
pre-shared key that is 
manually entered in the 
OpenThread Border 
Router [6]. 

S1.C8 Interoperability The network-layer 
onboarding 
mechanism can 
onboard a minimum 
of two types of IoT 
devices (e.g., 
different device 
vendors and 
models). 

No Not supported in this 
build. 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-
Layer 
Onboarding 

The device can 
automatically (i.e., 
with no manual 
intervention 
required) initiate 
trusted application-
layer onboarding 
after performing 
network-layer 
onboarding and 
connecting to the 
network. In this 
case, the 
application-layer 
onboarding 
bootstrapping 
information has 
been securely 
conveyed to the 
device during the 
network-layer 
onboarding process. 

No Not supported in this 
build. 

S2.C2 Automatic 
Initiation of 
Independent 
Application-

The device can 
automatically (i.e., 
with no manual 
intervention 
required) initiate 

Yes Trusted application-layer 
onboarding using 
Kudelski keySTREAM is 
configured to proceed 
automatically pending 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 30 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Layer 
Onboarding  

trusted application-
layer onboarding 
after performing 
network-layer 
onboarding and 
connecting to the 
network. In this 
case, the 
application-layer 
onboarding 
bootstrapping 
information has 
been pre-
provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as 
part of an 
application that was 
installed on the 
device during the 
manufacturing 
process). 

confirmation from a user 
(through the press of a 
button). 

S2.C3 Trusted 
Application- 
Layer 
Onboarding 

The device and a 
trusted application 
service can establish 
an encrypted 
connection without 
exposing any 
information that 
must be protected 
to ensure the 
confidentiality of the 
connection. They 
can then use that 
secure association to 
exchange 
application-layer 
information. 

Yes Application Layer 
Onboarding via Kudelski 
keySTREAM GUI / AWS 
IoT Core and through the 
Silicon Labs Simplicity 
Studio Device Console  

Scenario 3: Re-Onboarding a Device 

S3.C1 Credential 
Deletion  

The device’s 
network credential 
can be deleted. 

Yes The device can be 
removed from the 
network via the Open 
Thread Border Router 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 31 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

GUI and cannot rejoin 
without entering a new 
pre-shared key. 

S3.C2 De-Credentialed 
Device Cannot 
Connect 

After the device’s 
network credential 
has been deleted, 
the device is not 
able to connect to or 
communicate on the 
network securely. 

Yes Observed. 

S3.C3 Re-Onboarding 
(network layer) 

After the device’s 
network credential 
has been deleted, 
the network-layer 
onboarding 
mechanism can 
security re-provision 
a network credential 
to the device, which 
the device can then 
use to connect to 
the network 
securely.  

Yes Observed. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network and 
application-layer 
credentials have 
been deleted and 
the device has been 
re-onboarded at the 
network layer and 
re-connected to the 
network, the device 
can again perform 
trusted application-
layer onboarding. 

Yes Observed. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding 
mechanism requires 
successful device 
attestation prior to 
permitting the 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 32 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

device to be 
onboarded. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding 
mechanism requires 
successful device 
attestation prior to 
permitting the 
device to be 
onboarded.  

No Not supported in this 
build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is 
required prior to 
permitting the 
device to perform 
some operation 
(e.g., accessing a 
high-value resource). 

No Not supported in this 
build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, 
the IoT device is 
assigned to some 
local network 
segment in 
accordance with 
policy, which may 
include an 
assessment of its 
security posture. 

No  Not supported in this 
build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to 
determine whether 
the device meets the 
policy criteria 
required to be 
permitted to 
perform a given 
operation (e.g., to 
access a high-value 
resource or be 
placed on a given 
network segment). 

No Not supported in this 
build. 

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can 
be reassigned to a 
different network 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 33 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

segment based on 
ongoing assessments 
of its conformance 
to policy criteria. 

S4.C7 Periodic Device 
Reauthentication 

After connection, 
the IoT device’s  
identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this 
build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, 
the IoT device’s 
authorization to 
access the network 
is periodically 
reconfirmed in order 
to maintain network 
access. 

No Not supported in this 
build. 

Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout 
the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware 
update and verify its 
signature before it is 
installed. 

No Not supported in this 
build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can 
interact with a 
certificate authority 
to sign a device’s 
X.509 certificate and 
provision it onto the 
device. 

No Not supported in this 
build.  

S5.C3 Credential 
Update 

The device’s 
network credential 
can be updated after 
it expires. 

No Not supported in this 
build. 

S5.C4 Server 
Attestation 

Successful server 
attestation is 
required prior to 
permitting the 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 34 

  

3.5 Build 5 Demonstration Results 318 

Table 3-5 lists the capabilities that were demonstrated by Build 5. 319 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

server to perform 
some operation on 
the device (e.g., 
prior to downloading 
and installing 
updates onto the 
device). 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding 
mechanism can 
convey necessary 
device 
communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in 
encrypted form, 
thereby securely 
binding this 
information to the 
device and ensuring 
its confidentiality 
and integrity. 

No Not supported in this 
build. 

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle 
management service 
and can 
automatically 
establish a secure 
association with it 
after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this 
build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 35 

Table 3-5 Build 5 Capabilities Demonstrated 320 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 0: Factory Provisioning  

S0.C1 Birth Credential 
Generation and 
Storage 

The device’s birth 
credentials are 
generated within or 
generated and 
provisioned into secure 
storage on the IoT 
device. 
For BRSKI, the 
credential is an IDevID 
certificate. 

Yes Supporting public/private 
keypair is generated within 
the secure element, and 
signed IDevID certificate is 
placed into the secure 
element. 

S0.C2 Birth Credential 
Signing 

The credential is signed 
by a trusted CA. 

Yes The IDevID certificate is 
signed by the Build 5 
Manufacturer Provisioning 
Root (MPR). 

S0.C3 Bootstrapping 
Information 
Availability 
 
 

The bootstrapping 
information required 
for onboarding the 
device is made 
available as needed. 
For BRSKI, the 
bootstrapping 
information is the 
IDevID certificate 
provisioned into the 
device’s secure 
element.  

Yes The device’s IDevID 
certificate is generated 
using the public/private 
keypair that was generated 
in the device’s secure 
element. This IDevID 
certificate is presented to 
verify the device’s identity 
during network-layer 
onboarding. 

Scenario 1: Trusted Network-Layer Onboarding 

S1.C1 Device 
Authentication 

The onboarding 
mechanism 
authenticates the 
device’s identity. 

Yes The device is authenticated 
using its provisioned IDevID. 

S1.C2 Device 
Authorization 

The onboarding 
mechanism verifies 
that the device is 
authorized to onboard 
to the network. 

Yes The device is implicitly 
granted authorization 
during the onboarding 
process within the registrar 
implementation. However, 
this authorization is 
contingent upon the device 
satisfying the policy 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 36 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

requirements for 
onboarding. 

S1.C3 Network 
Authentication 

The device can verify 
the network’s identity. 

Yes Demonstrated by the 
voucher. 

S1.C4 Network 
Authorization 

The device can verify 
that the network is 
authorized to take 
control of it. 

Yes The device authenticates to 
the network using EAP-TLS. 
The registrar gets a voucher 
from the MASA verifying 
that the network is 
authorized to onboard the 
device and it passes this 
voucher to the device so the 
device can verify that the 
network is authorized to 
onboard it. 

S1.C5 Secure Local 
Credentialing 

The onboarding 
mechanism securely 
provisions local 
network credentials to 
the device. 

Yes A local device identifier 
(LDevID) (i.e., the device’s 
network credential) [1] is 
provisioned to the device as 
the culmination of the 
network-layer onboarding 
process. 

S1.C6 Secure Storage The local network 
credentials are 
provisioned to secure 
hardware-backed 
storage on the device. 

No The IDevID (birth credential) 
keys are generated with a 
TPM secure element. The 
EAP-TLS negotiation is 
configured to use keys from 
the secure element. The 
local network credentials 
(LDevID) are not scored in 
secure storage. 

S1.C7 Network 
Selection 

The onboarding 
mechanism provides 
the IoT device with the 
identifier of the 
network to which the 
device should onboard. 

Yes The identifier of the 
network is passed back in 
the common name field of 
the LDevID X.509 certificate.  

S1.C8 Interoperability The network-layer 
onboarding mechanism 
can onboard a 
minimum of two types 
of IoT devices (e.g., 
different device 
vendors and models). 

Yes Supported by BRSKI over 
IEEE 802.11 [7], but not 
demonstrated in this build. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 37 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

Scenario 2: Trusted Application-Layer Onboarding 

S2.C1 Automatic 
Initiation of 
Streamlined 
Application-Layer 
Onboarding  

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
securely conveyed to 
the device during the 
network-layer 
onboarding process.  

No Not supported in this build 

S2.C2 Automatic 
Initiation of 
Independent 
Application-Layer 
Onboarding   

The device can 
automatically (i.e., with 
no manual intervention 
required) initiate 
trusted application-
layer onboarding after 
performing network-
layer onboarding and 
connecting to the 
network. In this case, 
the application-layer 
onboarding 
bootstrapping 
information has been 
pre-provisioned to the 
device by the device 
manufacturer or 
integrator (e.g., as part 
of an application that 
was installed on the 
device during the 
manufacturing 
process).  

Yes The pledge can use its 
IDevID and the private key 
in the secure element to 
automatically establish a 
TLS connection to an 
application server using 
OpenSSL s_client. The 
address of the application 
server has been pre-
provisioned to the device by 
the manufacturer. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 38 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S2.C3 Trusted 
Application-Layer 
Onboarding 

The device and a 
trusted application 
service can establish an 
encrypted connection 
without exposing any 
information that must 
be protected to ensure 
the confidentiality of 
the connection. They 
can then use that 
secure association to 
exchange application-
layer information.  

Yes The pledge can use its 
IDevID and the private key 
in the secure element to 
automatically establish a 
TLS connection to an 
application server using 
OpenSSL s_client. The 
address of the application 
server has been pre-
provisioned to the device by 
the manufacturer. 

Scenario 3: Re-Onboarding a Device  

S3.C1 Credential 
Deletion  

The device’s network 
credential can be 
deleted. 

Yes The device is removed from 
Radius server by revoking its 
voucher.  

S3.C2 De-Credentialed 
Device Cannot 
Connect  

After the device’s 
network credential has 
been deleted, the 
device is not able to 
connect to or 
communicate on the 
network securely.  

Yes If credential is removed 
from the registrar/radius 
server, the device will not 
connect. 
 
Certificate revocation 
through CRL is also 
implemented. 

 
S3.C3 Re-Onboarding 

(network-layer) 
After the device’s 
network credential has 
been deleted, the 
network-layer 
onboarding mechanism 
can securely re-
provision a network 
credential to the 
device, which the 
device can then use to 
connect to the network 
securely.   

Yes Upon a voucher being 
revoked, the LDevID is 
invalidated. The pledge can 
then perform the 
onboarding process again 
with a newly generated 
LDevID. 

S3.C4 Re-Onboarding 
(application 
layer) 

After the device’s 
network credentials 
have been deleted and 
the device has been re-
onboarded at the 

Yes After re-establishing a 
network connection, 
application onboarding 
happens automatically. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 39 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

network layer and re-
connected to the 
network, the device can 
perform application-
layer onboarding 
automatically. 

Scenario 4: Ongoing Device Validation 

S4.C1 Device 
Attestation 
(initial) 

The network-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C2 Device 
Attestation 
(application 
layer) 

The application-layer 
onboarding mechanism 
requires successful 
device attestation prior 
to permitting the 
device to be 
onboarded. 

No Not supported in this build. 

S4.C3 Device 
Attestation 
(ongoing) 

Successful device 
attestation is required 
prior to permitting the 
device to perform some 
operation (e.g., 
accessing a high-value 
resource). 

No Not supported in this build. 

S4.C4 Local Network 
Segmentation 
(initial) 

Upon connection, the 
IoT device is assigned 
to some local network 
segment in accordance 
with policy, which may 
include an assessment 
of its security posture.  

No  Not supported in this build. 

S4.C5 Behavioral 
Analysis 

Device behavior is 
observed to determine 
whether the device 
meets the policy 
criteria required to be 
permitted to perform a 
given operation (e.g., to 
access a high-value 

Yes Real time network events 
are propagated from the 
gateway(s) to the policy 
engine. When suspicious 
behavior is identified (e.g., 
contact denylisted IP 
address) device network 
access is revoked.  



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 40 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

resource or be placed 
on a given network 
segment).  

S4.C6 Local Network 
Segmentation 
(ongoing) 

The IoT device can be 
reassigned to a 
different network 
segment based on 
ongoing assessments of 
its conformance to 
policy criteria.  

No Not supported in this build. 

S4.C7 Periodic Device 
Reauthentication  

After connection, the 
IoT device’s identity is 
periodically 
reauthenticated in 
order to maintain 
network access. 

No Not supported in this build. 

S4.C8 Periodic Device 
Reauthorization 

After connection, the 
IoT device’s 
authorization to access 
the network is 
periodically 
reconfirmed in order to 
maintain network 
access. 

Yes The continuous assurance 
policy is checked 
periodically, every 30 
seconds in the demo. The 
policy sets the requirements 
for a device to be 
authorized to have access to 
the network. If a device fails 
this check, its voucher is 
revoked, invalidating the 
device’s LDevID. 

Scenario 5: Establish and Maintain Credential and Device Security Posture Throughout the Lifecycle 

S5.C1 Trusted 
Firmware 
Updates 

The device can 
download the most 
recent firmware update 
and verify its signature 
before it is installed.  

No Not supported in this build. 

S5.C2 Credential 
Certificate 
Provisioning 

The onboarding 
mechanism can interact 
with a certificate 
authority to sign a 
device’s X.509 
certificate and 
provision it onto the 
device.  

Yes In the BRSKI flows, the 
onboarding process results 
in an LDevID (X.509) 
certificate being provisioned 
on the device, after the 
trustworthiness checks have 
been completed. This 
LDevID certificate is signed 
by the Domain CA. 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 41 

Demo 
ID 

Capability Description Demonstrated? Explanation/Notes 

S5.C3 Credential 
Update 

The device’s network 
credential (e.g., its 
LDevID or X.509 
certificate) can be 
updated after it 
expires. 

Yes Device will automatically 
generate a new LDevID and 
re-onboard if LDevID 
expires.  

S5.C4 Server 
Attestation 

Successful server 
attestation is required 
prior to permitting the 
server to perform some 
operation on the device 
(e.g., prior to 
downloading and 
installing updates onto 
the device). 

No Not supported in this build. 

S5.C5 Secure 
Integration with 
MUD  

The network-layer 
onboarding mechanism 
can convey necessary 
device communications 
intent information 
(e.g., the IoT device’s 
MUD URL) to the 
network in encrypted 
form, thereby securely 
binding this 
information to the 
device and ensuring its 
confidentiality and 
integrity. 

Yes The continuous assurance 
policy engine sporadically 
resolves the MUD 
document of each unique 
connected device using all 
information available. In 
this build we use the D3DB 
method of resolution, which 
resolves using chained 
verifiable credentials; 
specifically, the MUD 
document is bound to the 
device ID using a simulated 
managed firmware service. 
This provides a verifiable 
credential binding a device 
identifier (IDevID) to a full 
MUD document.   

S5.C6 Lifecycle 
Management 
Establishment 

The device has a 
lifecycle management 
service and can 
automatically establish 
a secure association 
with it after performing 
network-layer 
onboarding and 
connecting to the 
network. 

No Not supported in this build. 
 

 



DRAFT 

NIST SP 1800-36D: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 42 

321 Appendix A References 
[1] IEEE Standard for Local and Metropolitan Area Networks - Secure Device Identity, IEEE Std 322 

802.1AR-2018 (Revision of IEEE Std 802.1AR-2009), 2 Aug. 2018, 73 pp. Available: 323 
https://ieeexplore.ieee.org/document/8423794 324 

[2] Wi-Fi Alliance, Wi-Fi Easy Connect™ Specification Version 3.0, 2022. Available:325 
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf326 

[3] M. Pritikin, M. Richardson, T.T.E. Eckert, M.H. Behringer, and K.W. Watsen, Bootstrapping327 
Remote Secure Key Infrastructure (BRSKI), IETF Request for Comments (RFC) 8995, October328 
2021. Available: https://datatracker.ietf.org/doc/rfc8995/329 

[4] E. Lear, R. Droms, and D. Romascanu, Manufacturer Usage Description Specification, IETF330 
Request for Comments (RFC) 8520, March 2019. Available: https://tools.ietf.org/html/rfc8520331 

[5] Open Connectivity Foundation (OCF) Iotivity: https://iotivity.org/332 

[6] Thread 1.1.1 Specification, February 13, 2017.333 

[7] O. Friel, E. Lear, M. Pritikin, and M. Richardson, BRSKI over IEEE 802.11, IETF Internet-Draft334 
(Individual), July 2018. Available: https://datatracker.ietf.org/doc/draft-friel-brski-over-335 
802dot11/01/336 

https://ieeexplore.ieee.org/document/8423794
https://www.wi-fi.org/system/files/Wi-Fi_Easy_Connect_Specification_v3.0.pdf
https://datatracker.ietf.org/doc/rfc8995/
https://tools.ietf.org/html/rfc8520
https://iotivity.org/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/
https://datatracker.ietf.org/doc/draft-friel-brski-over-802dot11/01/


 

NIST SPECIAL PUBLICATION 1800-36E 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and Lifecycle 
Management: 
Enhancing Internet Protocol-Based IoT Device and Network Security 
  
Volume E: 
Risk and Compliance Management  
 
Michael Fagan 
Jeffrey Marron  
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 
 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 
 
Dan Harkins 
Aruba, a Hewlett Packard Enterprise Company  
San Jose, California 
 
Steve Clark 
SEALSQ, a Subsidiary of WISeKey 
Geneva, Switzerland 
 
Andy Dolan 
Kyle Haefner 
Craig Platt 
Darshak Thakore 
CableLabs, Louisville, Colorado 

Karen Scarfone 
Scarfone Cybersecurity 
Clifton, Virginia 
 
William Barker 
Dakota Consulting 
Largo, Maryland 
 
Nick Allott 
Ashley Setter 
NquiringMinds, 
Southampton, United Kingdom 
 
Brecht Wyseur 
Kudelsky IoT 
Cheseaux-sur-Lausanne, Switzerland 
 
Mike Dow 
Steve Egerter 
Silicon Labs, Austin, Texas 
 
Michael Richardson 
Sandelman Software Works, 
Ontario, Canada 
 

May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 
 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 
experimental procedure or concept adequately. Such identification is not intended to imply special 4 
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 
intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 
for the purpose. 7 

 

National Institute of Standards and Technology Special Publication 1800-36E, Natl. Inst. Stand. Technol. 8 
Spec. Publ. 1800-36E, 22 pages, May 2024, CODEN: NSPUE2 9 

 

FEEDBACK 10 

You can improve this guide by contributing feedback on the mappings included in this volume. Do you 11 
find the mappings that we have provided in this document helpful to you as you try to achieve your 12 
cybersecurity goals? Could the mappings that we have provided be improved, either in terms of their 13 
content or format? Are there additional standards, best practices, or other guidance documents that 14 
you would like us to map to and from trusted IoT device network-layer onboarding and lifecycle 15 
management capabilities? Are there additional use cases for these mappings that we should consider in 16 
the future? As you review and adopt this solution for your own organization, we ask you and your 17 
colleagues to share your experience and advice with us. 18 

Comments on this publication may be submitted to: iot-onboarding@nist.gov.  19 

Public comment period: May 31, 2024 through July 30, 2024 20 

All comments are subject to release under the Freedom of Information Act. 21 

 

 

National Cybersecurity Center of Excellence 22 
National Institute of Standards and Technology 23 

100 Bureau Drive 24 
Mailstop 2002 25 

Gaithersburg, MD 20899 26 
Email: nccoe@nist.gov   27 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 28 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 29 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 30 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 31 
public-private partnership enables the creation of practical cybersecurity solutions for specific 32 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 33 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 34 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 35 
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 36 
solutions using commercially available technology. The NCCoE documents these example solutions in 37 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 38 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 39 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 40 
Maryland. 41 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 42 
https://www.nist.gov. 43 

NIST CYBERSECURITY PRACTICE GUIDES 44 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 45 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 46 
adoption of standards-based approaches to cybersecurity. They show members of the information 47 
security community how to implement example solutions that help them align with relevant standards 48 
and best practices, and provide users with the materials lists, configuration files, and other information 49 
they need to implement a similar approach. 50 

The documents in this series describe example implementations of cybersecurity practices that 51 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 52 
or mandatory practices, nor do they carry statutory authority. 53 

KEYWORDS 54 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 55 
(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 56 

ACKNOWLEDGMENTS 57 

We are grateful to the following individuals for their generous contributions of expertise and time. 58 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Danny Jump Aruba, a Hewlett Packard Enterprise company 

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

Name Organization 

Bart Brinkman Cisco 

Eliot Lear  Cisco 

Peter Romness  Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT  

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors  

Mihai Chelalau NXP Semiconductors  

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor  NXP Semiconductors 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 59 
response to a notice in the Federal Register. Respondents with relevant capabilities or product 60 
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 61 
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 62 

Technology Collaborators 63 

Aruba, a Hewlett Packard 64 
Enterprise company 65 
CableLabs 66 
Cisco 67 

Foundries.io 
Kudelski IoT 
NquiringMinds 
NXP Semiconductors 

Open Connectivity Foundation (OCF) 
Sandelman Software Works 
SEALSQ, a subsidiary of WISeKey 
Silicon Labs 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

DOCUMENT CONVENTIONS 68 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 69 
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 70 
among several possibilities, one is recommended as particularly suitable without mentioning or 71 
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 72 
the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 73 
“may” and “need not” indicate a course of action permissible within the limits of the publication. The 74 
terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 75 

CALL FOR PATENT CLAIMS 76 

This public review includes a call for information on essential patent claims (claims whose use would be 77 
required for compliance with the guidance or requirements in this Information Technology Laboratory 78 
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 79 
or by reference to another publication. This call also includes disclosure, where known, of the existence 80 
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 81 
unexpired U.S. or foreign patents. 82 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in writ-83 
ten or electronic form, either: 84 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 85 
currently intend holding any essential patent claim(s); or 86 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 87 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 88 
publication either: 89 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 90 
or  91 

2. without compensation and under reasonable terms and conditions that are demonstrably free 92 
of any unfair discrimination.  93 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 94 
behalf) will include in any documents transferring ownership of patents subject to the assurance, provi-95 
sions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that 96 
the transferee will similarly include appropriate provisions in the event of future transfers with the goal 97 
of binding each successor-in-interest.  98 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 99 
whether such provisions are included in the relevant transfer documents.  100 

Such statements should be addressed to: iot-onboarding@nist.gov.  101 

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 102 

1 Introduction ........................................................................................ 1 103 

1.1 How to Use This Guide ................................................................................................. 1 104 

2 Risks Addressed by Trusted Network-Layer Onboarding and Lifecycle 105 

Management ...................................................................................... 3 106 

2.1 Risks to the Network .................................................................................................... 3 107 

2.1.1 Risks to the Network Due to Device Limitations .......................................................... 3 108 

2.1.2 Risks to the Network Due to Use of Shared Network Credentials ............................... 3 109 

2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning ..................... 4 110 

2.1.4 Risks to the Network Due to Supply Chain Attacks ...................................................... 4 111 

2.2 Risks to the Device ....................................................................................................... 4 112 

2.3 Risks to Secure Lifecycle Management ........................................................................ 4 113 

2.4 Limitations and Dependencies of Trusted Onboarding ................................................ 5 114 

3 Mapping Use Cases, Approach, and Terminology ................................ 6 115 

3.1 Use Cases ..................................................................................................................... 6 116 

3.2 Mapping Producers ...................................................................................................... 7 117 

3.3 Mapping Approach ...................................................................................................... 7 118 

3.3.1 Mapping Terminology ................................................................................................... 8 119 

3.3.2 Mapping Process ........................................................................................................... 8 120 

4 Mappings ............................................................................................ 9 121 

4.1 NIST CSF Subcategory Mappings ................................................................................ 10 122 

4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories .......... 10 123 

4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF Subcategories ...... 10 124 

4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories ................................ 10 125 

4.2 NIST SP 800-53 Control Mappings ............................................................................. 12 126 

4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls ......... 12 127 

4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 Controls ..... 12 128 

4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls .............................. 13 129 

Appendix A References ......................................................................... 15 130 

 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 131 

In this project, the National Cybersecurity Center of Excellence (NCCoE) applies standards, 132 
recommended practices, and commercially available technology to demonstrate various mechanisms for 133 
trusted network-layer onboarding of IoT devices and lifecycle management of those devices. We show 134 
how to provision network credentials to IoT devices in a trusted manner and maintain a secure posture 135 
throughout the device lifecycle. 136 

This volume of the NIST Cybersecurity Practice Guide discusses risks addressed by the trusted IoT device 137 
network-layer onboarding and lifecycle management reference design. It also maps between 138 
cybersecurity functionality provided by logical components of the reference design and Subcategories in 139 
the NIST Cybersecurity Framework (CSF) and controls in NIST Special Publication (SP) 800-53, Security 140 
and Privacy Controls for Information Systems and Organizations. (Note: The reference design is 141 
described in detail in NIST SP 1800-36B, Section 4.) 142 

Mappings are also provided between cybersecurity functionality provided by specific network-layer 143 
onboarding protocols (e.g., Wi-Fi Easy Connect and Bootstrapping Remote Secure Key Infrastructure 144 
[BRSKI]) and those same Subcategories and controls, as well as between cybersecurity functionality 145 
provided by builds of the reference design that have been implemented as part of this project and those 146 
same Subcategories and controls. (Note: the composition of the builds is described in detail in the 147 
appendices of NIST SP 1800-36B.) 148 

None of the mappings we provide is intended to be exhaustive; the mappings focus on the strongest 149 
relationships involving each reference design cybersecurity function in order to help organizations 150 
prioritize their work. The mappings help users understand how trusted IoT device network-layer 151 
onboarding and lifecycle management can help them achieve their cybersecurity goals in terms of CSF 152 
Subcategories and SP 800-53 controls. The mappings also help users understand how they can 153 
implement trusted onboarding and lifecycle management by identifying how trusted onboarding 154 
functionality is supported by the user’s existing implementations of CSF Subcategories and SP 800-53 155 
controls. 156 

1.1 How to Use This Guide 157 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 158 
implementing trusted IoT device network-layer onboarding and lifecycle management and describes 159 
various example implementations of this reference design. Each of these implementations, which are 160 
known as builds, is standards-based and is designed to help provide assurance that networks are not put 161 
at risk as new IoT devices are added to them and help safeguard IoT devices from being taken over by 162 
unauthorized networks. The reference design described in this practice guide is modular and can be 163 
deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 164 
onboarding and lifecycle management into their legacy environments according to goals that they have 165 
prioritized based on risk, cost, and resources. 166 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 167 
possible rather than delaying release until all volumes are completed.  168 

This guide contains five volumes: 169 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

 NIST SP 1800-36A: Executive Summary – why we wrote this guide, the challenge we address, 170 
why it could be important to your organization, and our approach to solving this challenge 171 

 NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 172 

 NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 173 
including all the security-relevant details that would allow you to replicate all or parts of this 174 
project 175 

 NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 176 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 177 
and the results of demonstrating these use cases with each of the example implementations 178 

 NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 179 
device network-layer onboarding and lifecycle management security characteristics to 180 
cybersecurity standards and best practices (you are here) 181 

Depending on your role in your organization, you might use this guide in different ways: 182 

Business decision makers, including chief security and technology officers, will be interested in the 183 
Executive Summary, NIST SP 1800-36A, which describes the following topics: 184 

 challenges that enterprises face in migrating to the use of trusted IoT device network-layer 185 
onboarding 186 

 example solutions built at the NCCoE 187 

 benefits of adopting the example solution 188 

Technology or security program managers who are concerned with how to identify, understand, assess, 189 
and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 190 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 191 
components of the general trusted IoT device network-layer onboarding and lifecycle management 192 
reference design to security characteristics listed in various cybersecurity standards and recommended 193 
practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 194 
Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 195 
(NIST SP 800-53). 196 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 197 
them understand the importance of using standards-based trusted IoT device network-layer onboarding 198 
and lifecycle management implementations. 199 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 200 
can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 201 
in our lab. The how-to portion of the guide provides specific product installation, configuration, and 202 
integration instructions for implementing the example solution. We do not re-create the product 203 
manufacturers’ documentation, which is generally widely available. Rather, we show how we 204 
incorporated the products together in our environment to create an example solution. Also, you can use 205 
Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 206 
showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 207 
and the results of demonstrating these use cases with each of the example implementations. Finally, 208 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 209 
build provide. 210 

This guide assumes that IT professionals have experience implementing security products within the 211 
enterprise. While we have used a suite of commercial products to address this challenge, this guide does 212 
not endorse these particular products. Your organization can adopt this solution or one that adheres to 213 
these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 214 
parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 215 
organization’s security experts should identify the products that will best integrate with your existing 216 
tools and IT system infrastructure. We hope that you will seek products that are congruent with 217 
applicable standards and recommended practices. 218 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 219 
feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 220 
stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-221 
onboarding@nist.gov. 222 

2 Risks Addressed by Trusted Network-Layer Onboarding and 223 

Lifecycle Management 224 

Historically, IoT devices have not tended to be onboarded to networks in a trusted manner. This has left 225 
networks open to the threat of having unauthorized devices connect to them. It has also left devices 226 
open to the threat of being onboarded to networks that are not authorized to control them. 227 

2.1 Risks to the Network  228 

Unauthorized devices that are able to connect to a network pose many risks to that network. They may 229 
be able to send and receive data on that network, scan the network for vulnerabilities, eavesdrop on the 230 
communications of other devices, and attack other connected devices to exfiltrate or modify their data 231 
or to compromise those devices and co-opt them into service to launch distributed denial of service 232 
(DDoS) attacks. 233 

2.1.1 Risks to the Network Due to Device Limitations 234 

Many IoT devices are manufactured to be as inexpensive as possible, which sometimes means that the 235 
devices are not equipped with secure storage, cryptographic modules, unique authoritative birth 236 
credentials, or other features needed to enable the devices to be identified and authenticated. This can 237 
make it impossible for a network to determine if a device attempting to connect to it is the intended 238 
device. Lack of these features can also make it impossible to protect the confidentiality of a device’s 239 
network credentials, both during the provisioning process and after the credentials have been installed 240 
on the device. 241 

2.1.2 Risks to the Network Due to Use of Shared Network Credentials 242 

If a network uses a single network password that is shared among all devices rather than providing each 243 
device with a unique network credential, the network will be vulnerable to having unauthorized devices 244 
connect to it if the shared network password falls into the wrong hands, which can happen relatively 245 

mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

easily. It also means that the network will permit devices to connect to it simply because a device 246 
presents the correct shared password, regardless of the device’s type or identity, or whether it has any 247 
legitimate reason to connect to the network. 248 

2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning 249 

If devices are manually provisioned with their network credentials, the provisioning process is error-250 
prone, cumbersome, and vulnerable to having the device’s network credentials disclosed. If the devices 251 
are provisioned automatically over Wi-Fi or some other interface that does not use an encrypted 252 
channel, the credentials are also vulnerable to unauthorized disclosure. If the network credentials are 253 
not provisioned in a trusted manner, the credentials are vulnerable to disclosure not only the first time 254 
the device is onboarded to the network, but every time it is onboarded, which may occur many times 255 
during the device lifecycle. For example, the device may need to be re-onboarded periodically to change 256 
its credentials in accordance with security policy, or it may need to be re-onboarded due to a security 257 
breach, hardware repair, security update, or other reasons. Any insecure features of the onboarding 258 
process, therefore, will render the device and network vulnerable every time the device is onboarded. 259 

2.1.4 Risks to the Network Due to Supply Chain Attacks 260 

If a device is compromised while in the supply chain or at some other point prior to being onboarded, 261 
then even though the device may be onboarded in a trusted manner, it may still pose a threat to the 262 
network, its data, and all devices connected to it. If, on the other hand, the trusted network-layer 263 
onboarding mechanism is integrated with a device attestation or supply chain management service that 264 
is capable of evaluating the integrity and provenance of the device and detecting that it has been 265 
compromised or may have been tampered with, the trusted network-layer onboarding mechanism 266 
could prevent such a compromised device from being onboarded and connected to the network. 267 

2.2 Risks to the Device 268 

Although it is relatively easy for one network to masquerade as another, IoT devices often do not 269 
authenticate the identity of the networks to which they allow themselves to be onboarded and 270 
connected. Devices may be unwittingly tricked into onboarding and connecting to imposter networks 271 
that are not authorized to onboard them. This makes those devices vulnerable to being taken control of 272 
by those unauthorized networks and thereby prevented from connecting to and providing their 273 
intended function on their authorized network. 274 

2.3 Risks to Secure Lifecycle Management 275 

Even if a device is authorized to connect to a network and the network is authorized to control the 276 
device, if the device has not been onboarded in a trusted manner, then other security-related 277 
operations that are performed after the device has connected to the network may not have as secure a 278 
foundation as they would if the device had been onboarded in a trusted manner. For example, if device 279 
communications intent enforcement is performed but the integrity and confidentiality of the 280 
communicated device intent information was not protected (as it would be by a trusted network-layer 281 
onboarding mechanism), then trust in the device communications intent enforcement mechanism may 282 
not be as robust as it could have been. Similarly, if application-layer onboarding is performed after the 283 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

device connects, but the information needed to bootstrap the application-layer onboarding process did 284 
not have its integrity and confidentiality protected (as it would be by a trusted network-layer 285 
onboarding mechanism), then trust in the application-layer onboarding mechanism may not be as 286 
robust as it could have been. Lack of trust in the application-layer onboarding mechanism may, in turn, 287 
undermine trust in the device lifecycle management or other application-layer service that is invoked as 288 
part of the application-layer onboarding process. 289 

2.4 Limitations and Dependencies of Trusted Onboarding 290 

While implementing trusted IoT device network-layer onboarding and lifecycle management addresses 291 
many risks, it also has limitations. Use of trusted network-layer onboarding is designed to enable IoT 292 
devices to be provisioned with unique local network credentials in a manner that preserves credential 293 
confidentiality. As part of the trusted network-layer onboarding process, the device and the network 294 
may mutually authenticate one another, thereby protecting the network from having unauthorized 295 
devices connect to it and the device from being taken over by an unauthorized network. However, if the 296 
network also enables devices that do not support the trusted network-layer onboarding solution to be 297 
provisioned with network credentials and connect to it using a different (untrusted) onboarding 298 
solution, the network and all devices on it will still be at risk from IoT devices that have been onboarded 299 
using untrusted mechanisms, and the devices that are onboarded using untrusted mechanisms will still 300 
be at risk of being taken over by networks that are not authorized to control them. 301 

The trusted network-layer onboarding solution leverages the device’s unique, authoritative birth 302 
credentials, which are provisioned to the device by the device manufacturer and must consist, at a 303 
minimum, of a unique device identity and a secret. The trustworthiness of the network-layer onboarding 304 
process and the network credentials that it provisions to the device depends on the uniqueness, 305 
integrity, and confidentiality of the device’s birth credentials which, in many cases, depend on the 306 
device’s hardware root of trust. If the manufacturer does not ensure that the device’s credentials are 307 
unique, the identity of the device cannot be definitively authenticated. If the manufacturer is not able to 308 
maintain the confidentiality of the secret that is part of the device credentials, the trustworthiness of 309 
the device authentication process will be undermined, and the channel over which the device’s 310 
credentials are provisioned will be vulnerable to eavesdropping. 311 

The trusted network-layer onboarding solution depends upon the trustworthiness of the device’s secure 312 
storage to ensure the confidentiality of the device and network credentials. If the device’s secure 313 
storage is vulnerable, the trustworthiness of the network-layer onboarding process and the 314 
confidentiality of the device’s network credentials will be compromised. If the secure storage in which 315 
the device’s network credentials are stored is vulnerable, the network will be at risk of having 316 
unauthorized devices attach to it. 317 

If the trusted network-layer onboarding mechanism is integrated with additional security capabilities 318 
such as device attestation, device communications intent enforcement, application-layer onboarding, 319 
and device lifecycle management, it can further increase trust in both the IoT device and, by extension, 320 
the network to which the device connects, assuming that these additional security capabilities 321 
themselves are secure and robust. If these security capabilities are not implemented correctly, then 322 
integrating with them is of no additional value and in fact may provide a false sense of security. 323 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

3 Mapping Use Cases, Approach, and Terminology 324 

A mapping indicates that one concept is related to another concept. The remainder of this volume 325 
describes the mappings between trusted IoT device network-layer onboarding and lifecycle 326 
management cybersecurity functions and the security characteristics enumerated in relevant 327 
cybersecurity documents.  328 

For this mapping, we have used the supportive relationship mapping style as defined in Section 4.2 of 329 
draft NIST Internal Report (IR) 8477, Mapping Relationships Between Documentary Standards, 330 
Regulations, Frameworks, and Guidelines: Developing Cybersecurity and Privacy Concept Mappings [1]. 331 

Each set of mappings involves one of the following types of trusted IoT device network-layer onboarding 332 
and lifecycle management cybersecurity functions: 333 

 Cybersecurity functions performed by the reference design’s logical components (see NIST SP 334 
1800-36B Section 4) 335 

 Cybersecurity functions provided by specific network-layer onboarding protocols (e.g., Wi-Fi 336 
Easy Connect and BRSKI) 337 

 Cybersecurity functions provided by builds of the reference design that have been implemented 338 
as part of this project 339 

Each of the cybersecurity functions is mapped to the security characteristics concepts found in the 340 
following widely used cybersecurity guidance documents: 341 

 Subcategories from the NIST Cybersecurity Framework (CSF) 1.1 [2] which are also mapped to 342 
The NIST Cybersecurity Framework 2.0 (CSF 2.0) [3]. The CSF identifies enterprise-level security 343 
outcomes. Stakeholders have identified these outcomes as helpful for managing cybersecurity 344 
risk, but organizations adopting the CSF need to determine how to achieve the outcomes. Exec-345 
utive Order (EO) 13800, Strengthening the Cybersecurity of Federal Networks and Critical Infra-346 
structure [4], made the CSF mandatory for federal government agencies, and other government 347 
agencies and sectors have also made the CSF mandatory. 348 

 Security controls from NIST SP 800-53r5 (Security and Privacy Controls for Information Systems 349 
and Organizations) [5]. NIST SP 800-53 identifies security controls that apply to systems on 350 
which those enterprises are reliant. Which SP 800-53 controls need to be employed depends on 351 
system functions and a risk assessment of the perceived impact of loss of system functionality or 352 
exposure of information from the system to unauthorized entities. In the case of systems owned 353 
by or operated on behalf of federal government enterprises, the risk assessment and applicable 354 
SP 800-53 controls are mandated under the Federal Information Security Modernization Act 355 
(FISMA) [6]. Many other governments and private sector organizations voluntarily employ the 356 
Risk Management Framework [7] and associated SP 800-53 controls. 357 

3.1 Use Cases 358 

All of the elements in these mappings—the trusted IoT device network-layer onboarding and lifecycle 359 
management cybersecurity functions, cybersecurity functions provided by specific network-layer 360 
onboarding protocols, cybersecurity functions provided by specific builds, CSF Subcategories, and SP 361 
800-53 controls—are concepts involving ways to reduce cybersecurity risk. 362 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

There are two primary use cases for this mapping. They are not intended to be comprehensive, but 363 
rather to capture the strongest relationships involving the trusted IoT device network-layer onboarding 364 
and lifecycle management cybersecurity functions. 365 

1. Why should organizations implement trusted IoT device network-layer onboarding and lifecy-366 
cle management? This use case identifies how implementing trusted IoT device network-layer 367 
onboarding and lifecycle management can support organizations with achieving CSF Subcatego-368 
ries and SP 800-53 controls. This helps communicate to an organization’s chief information secu-369 
rity officer, security team, and senior management that expending resources to implement 370 
trusted IoT device network-layer onboarding and lifecycle management can also aid in fulfilling 371 
other security requirements.  372 

2. How can organizations implement trusted IoT device network-layer onboarding and lifecycle 373 
management? This use case identifies how an organization’s existing implementations of CSF 374 
Subcategories and SP 800-53 controls can help support a trusted IoT device network-layer 375 
onboarding and lifecycle management implementation. An organization wanting to implement 376 
trusted IoT device network-layer onboarding and lifecycle management might first assess its cur-377 
rent security capabilities so that it can plan how to add missing capabilities and enhance existing 378 
capabilities. Organizations can leverage their existing security investments and prioritize future 379 
security technology deployment to address the gaps. 380 

These mappings are intended to be used by any organization that is interested in implementing trusted 381 
IoT device network-layer onboarding and lifecycle management or that has begun or completed an 382 
implementation. 383 

3.2 Mapping Producers 384 

The NCCoE trusted IoT device network-layer onboarding and lifecycle management project team 385 
performed the mappings between the cybersecurity functions performed by the reference design’s 386 
logical components (see NIST SP 1800 36B Section 4) and the security characteristics in the cybersecurity 387 
documents. They also performed the mappings between the cybersecurity functions performed by the 388 
specific network-layer onboarding protocols (i.e., Wi-Fi Easy Connect and BRSKI) and the security 389 
characteristics in the cybersecurity documents. These mappings were performed with input and 390 
feedback from the collaborators who have contributed technology to the builds of the reference design. 391 
Collaborators for each build, in conjunction with the NCCoE trusted IoT device network-layer onboarding 392 
and lifecycle management project team, performed the mappings between the cybersecurity functions 393 
provided by their contributed technologies in each build and the security characteristics in the 394 
cybersecurity documents. 395 

3.3 Mapping Approach 396 

In addition to performing general mappings between the reference design’s cybersecurity functions and 397 
various sets of security characteristics, as well as between specific network-layer onboarding protocol 398 
cybersecurity functions and various sets of security characteristics, the NCCoE asked the collaborators 399 
for each build to indicate the mapping between the cybersecurity functions their technology 400 
components provide in that build and the sets of security characteristics. 401 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

Using the logical components in the reference design as the organizing principle for the initial mapping 402 
of cybersecurity functions to security characteristics and then providing onboarding protocol-specific 403 
mappings was intended to make it easier for collaborators to map their build-specific technology 404 
contributions. Using this approach, the build-specific technology mappings are instantiations of the 405 
project’s general reference design and protocol-specific mappings for each document. 406 

3.3.1 Mapping Terminology 407 

In this publication, we use the following relationship types from NIST IR 8477 [1] to describe how the 408 
functions in our reference design are related to the NIST reference documents. Note that the Supports 409 
relationship applies only to use case 1 in Section 3.1 and the Is Supported By relationship applies only to 410 
use case 2. 411 

 Supports: Trusted IoT device network-layer onboarding and lifecycle management function X 412 
supports security control/Subcategory/capability/requirement Y when X can be applied alone or 413 
in combination with one or more other functions to achieve Y in whole or in part. 414 

 Is Supported By: Trusted IoT device network-layer onboarding and lifecycle management 415 
function X is supported by security control/Subcategory/capability/requirement Y when Y can be 416 
applied alone or in combination with one or more other security 417 
controls/Subcategories/capabilities/requirements to achieve X in whole or in part.  418 

Each Supports and Is Supported By relationship has one of the following properties assigned to it: 419 

 Example of: The supporting concept X is one way (an example) of achieving the supported 420 
concept Y in whole or in part. However, Y could also be achieved without applying X. 421 

 Integral to: The supporting concept X is integral to and a component of the supported concept 422 
Y. X must be applied as part of achieving Y. 423 

 Precedes: The supporting concept X precedes the supported concept Y when X must be 424 
achieved before applying Y. In other words, X is a prerequisite for Y. 425 

When determining whether a reference design function’s support for a given CSF Subcategory or SP 800-426 
53 control is integral to that support versus an example of that support, we do not consider how that 427 
function may in general be used to support the Subcategory, control, capability, or requirement. Rather, 428 
we consider only how that function is intended to support that Subcategory, control, capability, or 429 
requirement within the context of our reference design. 430 

Also, when determining whether a function is supported by a CSF Subcategory, SP 800-53 control, 431 
capability, etc. with the relationship property of precedes, we do not consider whether it is possible to 432 
apply the function without first achieving the Subcategory, control, capability, or requirement. Rather, 433 
we consider whether, according to our reference design, the Subcategory, control, capability, or 434 
requirement is to be achieved prior to applying that function. 435 

3.3.2 Mapping Process 436 

The process that the NCCoE used to create the mapping from the logical components of the reference 437 
design to the security characteristics of a given document was as follows: 438 

1. Create a table that lists each of the logical components of the reference design in column 1. 439 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

2. Describe each logical component’s cybersecurity function in column 2. 440 

3. Map each cybersecurity function to each of the security characteristics in the document to 441 
which the function is most strongly related, and list each of these security characteristics on 442 
different sub-rows within column 3. Begin each security characteristic entry with an underlined 443 
keyword that describes the mapping’s relationship type (i.e., Supports, Is Supported By). After 444 
the keyword indicating the relationship type, put in parentheses the underlined keyword 445 
describing the relationship’s property (i.e., Example of, Integral to, or Precedes). 446 

4. In the fourth column, provide a brief explanation of why that relationship type and property 447 
apply to the mapping. 448 

5. After completing the mapping table entries as described above for all the logical components in 449 
the reference design, examine the mapping in the other direction, i.e., starting with the security 450 
characteristics listed in the document and considering whether they have a relationship to the 451 
logical components’ cybersecurity functions in the reference design. In other words, step 452 
through each of the security characteristics in the document and determine if there is some 453 
logical component in the reference design that has a strong relationship to that security 454 
characteristic. If so, add an entry for that security characteristic mapping to that logical 455 
component’s row in the table. By examining the mapping in both directions in this manner, 456 
security characteristic mappings are less likely to be overlooked or omitted. 457 

6. Once these steps are complete, any rows in the table that don’t have any mappings should be 458 
deleted. 459 

The NCCoE applied this mapping process separately for each reference document. None of the 460 
mappings is intended to be exhaustive; they all focus on the strongest relationships involving each 461 
cybersecurity function in order to help organizations prioritize their work. Mapping every possible 462 
relationship, no matter how tenuous, would create so many mappings that they would not have any 463 
value in prioritization. 464 

4 Mappings 465 

The mappings are provided in the form of Excel files. Links to the mapping Excel files are organized in 466 
the remainder of this document as follows: 467 

 Section 4.1 – NIST CSF 1.1 [2] and NIST CSF 2.0 [3] mappings. These include: 468 

o Section 4.1.1 – Mappings between reference design functions and NIST CSF 469 
Subcategories 470 

o Section 4.1.2 – Mappings between specific onboarding protocol (i.e., Wi-Fi Easy Connect 471 
and BRSKI) functions and NIST CSF Subcategories 472 

o Section 4.1.3 – Mappings between specific build functions and NIST CSF Subcategories 473 

 Section 4.2 – NIST SP 800-53r5 [5] mappings. These include: 474 

o Section 4.2.1 – Mappings between reference design functions and NIST SP 800-53r5 475 
controls 476 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

o Section 4.2.2 – Mappings between specific onboarding protocol (i.e., Wi-Fi Easy Connect 477 
and BRSKI) functions and NIST SP 800-53r5 controls478 

o Section 4.2.3 – Mappings between specific build functions and NIST SP 800-53r5479 
controls 480 

4.1 NIST CSF Subcategory Mappings 481 

This section provides links to mappings between various elements that provide trusted network-layer 482 
onboarding functionality and NIST CSF Subcategories. 483 

4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories 484 

This Excel file provides mappings between the logical components of the reference design and the NIST 485 
CSF Subcategories. These mappings indicate how trusted IoT device network-layer onboarding and 486 
lifecycle management functions help support CSF Subcategories and vice versa. 487 

Link to the Excel file called “IoT Volume E CSF 1-1 and 2-0”, and to the tab called “CSF-to-Reference 488 
Arch” (first tab) 489 

4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF 490 
Subcategories 491 

This section provides mappings between the functionality provided by two network-layer onboarding 492 
protocols, Wi-Fi Easy Connect and BRSKI, and the NIST CSF Subcategories. 493 

4.1.2.1 Mapping Between Wi-Fi Easy Connect and NIST CSF Subcategories 494 

This Excel file provides a mapping between the functionality provided by the Wi-Fi Easy Connect 495 
protocol and the NIST CSF Subcategories. These mappings indicate how Wi-Fi Easy Connect functionality 496 
helps support CSF Subcategories and vice versa. 497 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-Wi-Fi EasyCnct” 498 
(third tab) 499 

4.1.2.2 Mapping Between BRSKI and NIST CSF Subcategories 500 

This Excel file provides a mapping between the functionality provided by BRSKI and the NIST CSF 501 
Subcategories. These mappings indicate how BRSKI functionality helps support CSF Subcategories and 502 
vice versa. 503 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-BRSKI” (second tab) 504 

4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories 505 

This section provides mappings between the functionality provided by builds of the trusted IoT device 506 
network-layer onboarding and lifecycle management reference design that were implemented as part of 507 
this project and the NIST CSF Subcategories. 508 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

4.1.3.1 Mapping Between Build 1 and NIST CSF Subcategories 509 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 510 
The onboarding infrastructure and related technology components for Build 1 have been provided by 511 
Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 512 
The technologies used in Build 1 are detailed in Appendix C of SP 1800-36B. 513 

This Excel file details the mapping between the functionality provided by Build 1 components and CSF 514 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 515 
vice versa. 516 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B1” (fourth tab) 517 

4.1.3.2 Mapping Between Build 2 and NIST CSF Subcategories 518 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 519 
The onboarding infrastructure and related technology components for Build 2 have been provided by 520 
CableLabs and OCF. IoT devices that were onboarded using Build 2 were provided by CableLabs, OCF, 521 
and Aruba/HPE. The technologies used in Build 2 are detailed in Appendix D of SP 1800-36B. 522 

This Excel file details the mapping between the functionality provided by Build 2 components and CSF 523 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 524 
vice versa. 525 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B2” (fifth tab) 526 

4.1.3.3 Mapping Between Build 3 and NIST CSF Subcategories 527 

Build 3 is an implementation of network-layer onboarding that uses BRSKI. The onboarding 528 
infrastructure and related technology components for Build 3 have been provided by Sandelman 529 
Software Works. The IoT device that was used to demonstrate onboarding in Build 3 was a pledge 530 
simulator provided by Sandelman. The technologies used in Build 3 are detailed in Appendix E of SP 531 
1800-36B. 532 

This Excel file details the mapping between the functionality provided by Build 3 components and CSF 533 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 534 
vice versa. 535 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B3” (sixth tab) 536 

4.1.3.4 Mapping Between Build 4 and NIST CSF Subcategories 537 

Build 4 is an implementation of network-layer connection to an OpenThread network using pre-538 
provisioned network credentials as well as independent application-layer onboarding using the Kudelski 539 
KeySTREAM service. The network infrastructure and related technology components for Build 4 have 540 
been provided by Silicon Labs and Kudelski. The IoT device that was used to demonstrate onboarding in 541 
Build 4 was provided by Silicon Labs. The technologies used in Build 4 are detailed in Appendix F of SP 542 
1800-36B. 543 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

This Excel file details the mapping between the functionality provided by Build 4 components and CSF 544 
Subcategories These mappings indicate how these components help support CSF Subcategories and vice 545 
versa. 546 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B4” (seventh tab) 547 

4.1.3.5 Mapping Between Build 5 and NIST CSF Subcategories 548 

Build 5 is an implementation of network-layer onboarding using BRSKI over Wi-Fi, as well as 549 
demonstration of a continuous authorization service. The network layer onboarding infrastructure and 550 
related technology components for Build 5 have been provided by NquiringMinds. The IoT devices that 551 
were used to demonstrate onboarding in Build 5 were provided by NquiringMinds. The technologies 552 
used in Build 5 are detailed in Appendix G of SP 1800-36B. 553 

This Excel file details the mapping between the functionality provided by Build 5 components and CSF 554 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 555 
vice versa. 556 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B5” (eighth tab) 557 

4.2 NIST SP 800-53 Control Mappings 558 

This section provides mappings between various elements that provide trusted network-layer 559 
onboarding functionality and NIST SP 800-53 controls. 560 

4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls 561 

This Excel file provides a mapping between the logical components of the reference design and NIST SP 562 
800-53 security controls. These mappings indicate how trusted IoT device network-layer onboarding and 563 
lifecycle management functions help support NIST SP 800-53 controls. Because hundreds of NIST SP 800-564 
53 controls can help support these functions, we have limited use case 2 (see Section 3.1) mappings to 565 
those controls on which specified supporting controls directly depend (e.g., dependence of 566 
cryptographic protection on key management). Readers needing to determine how their trusted IoT 567 
device network-layer onboarding and lifecycle management implementations support RMF processes 568 
can refer to these mappings. 569 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-Reference Arch” (first tab) 570 

4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 571 
Controls 572 

This section provides mappings between the functionality provided by specific network-layer 573 
onboarding protocols and the NIST SP 800-53 controls. Mappings are provided for both the Wi-Fi Easy 574 
Connect protocol and BRSKI. 575 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

4.2.2.1 Mapping Between Wi-Fi Easy Connect and NIST SP 800-53 Controls 576 

This Excel file provides a mapping between the functionality provided by the Wi-Fi Easy Connect 577 
protocol and the NIST SP 800-53 controls. These mappings indicate how Wi-Fi Easy Connect functions 578 
help support NIST SP 800-53 controls and vice versa. 579 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-Wi-Fi EasyCnct” (second 580 
tab) 581 

4.2.2.2 Mapping Between BRSKI and NIST SP 800-53 Controls 582 

This Excel file provides a mapping between the functionality provided by BRSKI and the NIST SP 800-53 583 
controls. These mappings indicate how BRSKI functions help support NIST SP 800-53 controls and vice 584 
versa. 585 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-BRSKI” (third tab) 586 

4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls 587 

This section provides mappings between the functionality provided by builds of the trusted IoT device 588 
network-layer onboarding and lifecycle management reference design that were implemented as part of 589 
this project and the NIST SP 800-53 controls. 590 

4.2.3.1 Mapping Between Build 1 and NIST SP 800-53 Controls 591 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 592 
The onboarding infrastructure and related technology components for Build 1 have been provided by 593 
Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 594 
The technologies used in Build 1 are detailed in Appendix C of SP 1800-36B. 595 

This Excel file details the mapping between the functionality provided by Build 1 components and SP 596 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 597 
vice versa. 598 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B1” (fourth tab) 599 

4.2.3.2 Mapping Between Build 2 and NIST SP 800-53 Controls 600 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 601 
The onboarding infrastructure and related technology components for Build 2 have been provided by 602 
CableLabs and OCF. IoT devices that were onboarded using Build 2 were provided by CableLabs, OCF, 603 
and Aruba/HPE. The technologies used in Build 1 are detailed in Appendix D of SP 1800-36B. 604 

This Excel file details the mapping between the functionality provided by Build 2 components and SP 605 
800-53 controls These mappings indicate how these components help support SP 800-53 controls and 606 
vice versa. 607 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B2” (fifth tab) 608 

4.2.3.3 Mapping Between Build 3 and NIST SP 800-53 Controls 609 

Build 3 is an implementation of network-layer onboarding that uses BRSKI. The onboarding 610 
infrastructure and related technology components for Build 3 have been provided by Sandelman 611 
Software Works. The IoT device that was used to demonstrate onboarding in Build 3 was a pledge 612 
simulator provided by Sandelman. The technologies used in Build 3 are detailed in Appendix E of SP 613 
1800-36B. 614 

This Excel file details the mapping between the functionality provided by Build 3 components and SP 615 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 616 
vice versa. 617 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B3” (sixth tab) 618 

4.2.3.4 Mapping Between Build 4 and NIST SP 800-53 Controls 619 

Build 4 is an implementation of network-layer connection to an OpenThread network using pre-620 
provisioned network credentials as well as independent application-layer onboarding using the Kudelski 621 
KeySTREAM service. The network infrastructure and related technology components for Build 4 have 622 
been provided by Silicon Labs and Kudelski. The IoT device that was used to demonstrate onboarding in 623 
Build 4 was provided by Silicon Labs. The technologies used in Build 4 are detailed in Appendix F of SP 624 
1800-36B. 625 

This Excel file details the mapping between the functionality provided by Build 4 components and SP 626 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 627 
vice versa. 628 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B4” (seventh tab) 629 

4.2.3.5 Mapping Between Build 5 and NIST SP 800-53 Controls 630 

Build 5 is an implementation of network-layer onboarding using BRSKI over Wi-Fi, as well as 631 
demonstration of a continuous authorization service. The network layer onboarding infrastructure and 632 
related technology components for Build 5 have been provided by NquiringMinds. The IoT devices that 633 
were used to demonstrate onboarding in Build 5 were provided by NquiringMinds. The technologies 634 
used in Build 5 are detailed in Appendix G of SP 1800-36B. 635 

This Excel file details the mapping between the functionality provided by Build 5 components and SP 636 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 637 
vice versa. 638 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B5” (eighth tab) 639 

  

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

640 Appendix A References 
[1] K. Scarfone, M. Souppaya, and M. Fagan, Mapping Relationships Between Documentary 641 

Standards, Regulations, Frameworks, and Guidelines: Developing Cybersecurity and Privacy 642 
Content Mappings, National Institute of Standards and Technology (NIST) Internal Report (IR) 643 
8477, Gaithersburg, Md., August 2023, 26 pp. Available: 644 
https://doi.org/10.6028/NIST.IR.8477.ipd 645 

[2] National Institute of Standards and Technology (2018) Framework for Improving Critical 646 
Infrastructure Cybersecurity, Version 1.1. (National Institute of Standards and Technology, 647 
Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 6. 648 
https://doi.org/10.6028/NIST.CSWP.6 649 

[3] National Institute of Standards and Technology, Version 2.0. The NIST Cybersecurity Framework 650 
2.0 (CSF 2.0) (National Institute of Standards and Technology, Gaithersburg, MD), 651 
https://csrc.nist.gov/pubs/cswp/29/the-nist-cybersecurity-framework-20/ipd 652 

[4] Executive Order 13800 (2017) Strengthening the Cybersecurity of Federal Networks and Critical 653 
Infrastructure. (The White House, Washington, DC), DCPD-201700327, May 11, 2017. 654 
https://www.govinfo.gov/app/details/DCPD-201700327 655 

[5] Joint Task Force (2020) Security and Privacy Controls for Information Systems and Organizations. 656 
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication 657 
(SP) 800-53, Rev. 5. Includes updates as of December 10, 2020. 658 
https://doi.org/10.6028/NIST.SP.800-53r5 659 

[6] S.2521 - Federal Information Security Modernization Act of 2014, 113th Congress (2013-2014), 660 
Became Public Law No: 113-283, December 18, 2014. Available: 661 
https://www.congress.gov/bill/113th-congress/senate-bill/2521 662 

[7] Joint Task Force (2018) Risk Management Framework for Information Systems and 663 
Organizations: A System Life Cycle Approach for Security and Privacy. (National Institute of 664 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-37, Rev. 2. 665 
https://doi.org/10.6028/NIST.SP.800-37r2 666 

https://doi.org/10.6028/NIST.IR.8477.ipd
https://doi.org/10.6028/NIST.CSWP.6
https://www.govinfo.gov/app/details/DCPD-201700327
https://doi.org/10.6028/NIST.SP.800-53r5
https://www.congress.gov/bill/113th-congress/senate-bill/2521
https://doi.org/10.6028/NIST.SP.800-37r2


 

NIST SPECIAL PUBLICATION 1800-36E 

Trusted Internet of Things (IoT) Device 
Network-Layer Onboarding and Lifecycle 
Management: 
Enhancing Internet Protocol-Based IoT Device and Network Security 
  
Volume E: 
Risk and Compliance Management  
 
Michael Fagan 
Jeffrey Marron  
Paul Watrobski 
Murugiah Souppaya 
National Cybersecurity Center of Excellence  
Information Technology Laboratory 
 
Susan Symington 
The MITRE Corporation 
McLean, Virginia 
 
Dan Harkins 
Aruba, a Hewlett Packard Enterprise Company  
San Jose, California 
 
Steve Clark 
SEALSQ, a Subsidiary of WISeKey 
Geneva, Switzerland 
 
Andy Dolan 
Kyle Haefner 
Craig Platt 
Darshak Thakore 
CableLabs, Louisville, Colorado 

Karen Scarfone 
Scarfone Cybersecurity 
Clifton, Virginia 
 
William Barker 
Dakota Consulting 
Largo, Maryland 
 
Nick Allott 
Ashley Setter 
NquiringMinds, 
Southampton, United Kingdom 
 
Brecht Wyseur 
Kudelsky IoT 
Cheseaux-sur-Lausanne, Switzerland 
 
Mike Dow 
Steve Egerter 
Silicon Labs, Austin, Texas 
 
Michael Richardson 
Sandelman Software Works, 
Ontario, Canada 
 

May 2024 
 
DRAFT 
 
This publication is available free of charge from 
https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management 
 
 

https://www.nccoe.nist.gov/projects/trusted-iot-device-network-layer-onboarding-and-lifecycle-management


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management ii 

DISCLAIMER 1 

Certain commercial entities, equipment, products, or materials may be identified by name or company 2 
logo or other insignia in order to acknowledge their participation in this collaboration or to describe an 3 
experimental procedure or concept adequately. Such identification is not intended to imply special 4 
status or relationship with NIST or recommendation or endorsement by NIST or NCCoE; neither is it 5 
intended to imply that the entities, equipment, products, or materials are necessarily the best available 6 
for the purpose. 7 

 

National Institute of Standards and Technology Special Publication 1800-36E, Natl. Inst. Stand. Technol. 8 
Spec. Publ. 1800-36E, 22 pages, May 2024, CODEN: NSPUE2 9 

 

FEEDBACK 10 

You can improve this guide by contributing feedback on the mappings included in this volume. Do you 11 
find the mappings that we have provided in this document helpful to you as you try to achieve your 12 
cybersecurity goals? Could the mappings that we have provided be improved, either in terms of their 13 
content or format? Are there additional standards, best practices, or other guidance documents that 14 
you would like us to map to and from trusted IoT device network-layer onboarding and lifecycle 15 
management capabilities? Are there additional use cases for these mappings that we should consider in 16 
the future? As you review and adopt this solution for your own organization, we ask you and your 17 
colleagues to share your experience and advice with us. 18 

Comments on this publication may be submitted to: iot-onboarding@nist.gov.  19 

Public comment period: May 31, 2024 through July 30, 2024 20 

All comments are subject to release under the Freedom of Information Act. 21 

 

 

National Cybersecurity Center of Excellence 22 
National Institute of Standards and Technology 23 

100 Bureau Drive 24 
Mailstop 2002 25 

Gaithersburg, MD 20899 26 
Email: nccoe@nist.gov   27 

mailto:iot-onboarding@nist.gov
mailto:nccoe@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iii 

NATIONAL CYBERSECURITY CENTER OF EXCELLENCE 28 

The National Cybersecurity Center of Excellence (NCCoE), a part of the National Institute of Standards 29 
and Technology (NIST), is a collaborative hub where industry organizations, government agencies, and 30 
academic institutions work together to address businesses’ most pressing cybersecurity issues. This 31 
public-private partnership enables the creation of practical cybersecurity solutions for specific 32 
industries, as well as for broad, cross-sector technology challenges. Through consortia under 33 
Cooperative Research and Development Agreements (CRADAs), including technology partners—from 34 
Fortune 50 market leaders to smaller companies specializing in information technology security—the 35 
NCCoE applies standards and best practices to develop modular, adaptable example cybersecurity 36 
solutions using commercially available technology. The NCCoE documents these example solutions in 37 
the NIST Special Publication 1800 series, which maps capabilities to the NIST Cybersecurity Framework 38 
and details the steps needed for another entity to re-create the example solution. The NCCoE was 39 
established in 2012 by NIST in partnership with the State of Maryland and Montgomery County, 40 
Maryland. 41 

To learn more about the NCCoE, visit https://www.nccoe.nist.gov/. To learn more about NIST, visit 42 
https://www.nist.gov. 43 

NIST CYBERSECURITY PRACTICE GUIDES 44 

NIST Cybersecurity Practice Guides (Special Publication 1800 series) target specific cybersecurity 45 
challenges in the public and private sectors. They are practical, user-friendly guides that facilitate the 46 
adoption of standards-based approaches to cybersecurity. They show members of the information 47 
security community how to implement example solutions that help them align with relevant standards 48 
and best practices, and provide users with the materials lists, configuration files, and other information 49 
they need to implement a similar approach. 50 

The documents in this series describe example implementations of cybersecurity practices that 51 
businesses and other organizations may voluntarily adopt. These documents do not describe regulations 52 
or mandatory practices, nor do they carry statutory authority. 53 

KEYWORDS 54 

application-layer onboarding; bootstrapping; Internet of Things (IoT); Manufacturer Usage Description 55 
(MUD); network-layer onboarding; onboarding; Wi-Fi Easy Connect. 56 

ACKNOWLEDGMENTS 57 

We are grateful to the following individuals for their generous contributions of expertise and time. 58 

Name Organization 

Amogh Guruprasad Deshmukh Aruba, a Hewlett Packard Enterprise company 

Danny Jump Aruba, a Hewlett Packard Enterprise company 

https://www.nccoe.nist.gov/
https://www.nist.gov/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management iv 

Name Organization 

Bart Brinkman Cisco 

Eliot Lear  Cisco 

Peter Romness  Cisco 

Tyler Baker Foundries.io 

George Grey Foundries.io 

David Griego Foundries.io 

Fabien Gremaud Kudelski IoT  

Faith Ryan The MITRE Corporation 

Toby Ealden NquiringMinds 

John Manslow NquiringMinds 

Antony McCaigue NquiringMinds 

Alexandru Mereacre NquiringMinds 

Loic Cavaille NXP Semiconductors  

Mihai Chelalau NXP Semiconductors  

Julien Delplancke NXP Semiconductors 

Anda-Alexandra Dorneanu NXP Semiconductors 

Todd Nuzum NXP Semiconductors 

Nicusor Penisoara NXP Semiconductors 

Laurentiu Tudor  NXP Semiconductors 

Pedro Fuentes SEALSQ, a subsidiary of WISeKey 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management v 

Name Organization 

Gweltas Radenac SEALSQ, a subsidiary of WISeKey 

Kalvin Yang SEALSQ, a subsidiary of WISeKey 

 

The Technology Partners/Collaborators who participated in this build submitted their capabilities in 59 
response to a notice in the Federal Register. Respondents with relevant capabilities or product 60 
components were invited to sign a Cooperative Research and Development Agreement (CRADA) with 61 
NIST, allowing them to participate in a consortium to build this example solution. We worked with: 62 

Technology Collaborators 63 

Aruba, a Hewlett Packard 64 
Enterprise company 65 
CableLabs 66 
Cisco 67 

Foundries.io 
Kudelski IoT 
NquiringMinds 
NXP Semiconductors 

Open Connectivity Foundation (OCF) 
Sandelman Software Works 
SEALSQ, a subsidiary of WISeKey 
Silicon Labs 

https://www.arubanetworks.com/
https://www.cablelabs.com/
https://www.cisco.com/
https://foundries.io/
https://www.kudelski-iot.com/
https://nquiringminds.com/
https://www.nxp.com/
https://openconnectivity.org/
https://www.sandelman.ca/
https://www.sealsq.com/
https://www.silabs.com/


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vi 

DOCUMENT CONVENTIONS 68 

The terms “shall” and “shall not” indicate requirements to be followed strictly to conform to the 69 
publication and from which no deviation is permitted. The terms “should” and “should not” indicate that 70 
among several possibilities, one is recommended as particularly suitable without mentioning or 71 
excluding others, or that a certain course of action is preferred but not necessarily required, or that (in 72 
the negative form) a certain possibility or course of action is discouraged but not prohibited. The terms 73 
“may” and “need not” indicate a course of action permissible within the limits of the publication. The 74 
terms “can” and “cannot” indicate a possibility and capability, whether material, physical, or causal. 75 

CALL FOR PATENT CLAIMS 76 

This public review includes a call for information on essential patent claims (claims whose use would be 77 
required for compliance with the guidance or requirements in this Information Technology Laboratory 78 
(ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication 79 
or by reference to another publication. This call also includes disclosure, where known, of the existence 80 
of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant 81 
unexpired U.S. or foreign patents. 82 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in writ-83 
ten or electronic form, either: 84 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not 85 
currently intend holding any essential patent claim(s); or 86 

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring 87 
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft 88 
publication either: 89 

1. under reasonable terms and conditions that are demonstrably free of any unfair discrimination; 90 
or  91 

2. without compensation and under reasonable terms and conditions that are demonstrably free 92 
of any unfair discrimination.  93 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its 94 
behalf) will include in any documents transferring ownership of patents subject to the assurance, provi-95 
sions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that 96 
the transferee will similarly include appropriate provisions in the event of future transfers with the goal 97 
of binding each successor-in-interest.  98 

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of 99 
whether such provisions are included in the relevant transfer documents.  100 

Such statements should be addressed to: iot-onboarding@nist.gov.  101 

mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management vii 

Contents 102 

1 Introduction ........................................................................................ 1 103 

1.1 How to Use This Guide ................................................................................................. 1 104 

2 Risks Addressed by Trusted Network-Layer Onboarding and Lifecycle 105 

Management ...................................................................................... 3 106 

2.1 Risks to the Network .................................................................................................... 3 107 

2.1.1 Risks to the Network Due to Device Limitations .......................................................... 3 108 

2.1.2 Risks to the Network Due to Use of Shared Network Credentials ............................... 3 109 

2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning ..................... 4 110 

2.1.4 Risks to the Network Due to Supply Chain Attacks ...................................................... 4 111 

2.2 Risks to the Device ....................................................................................................... 4 112 

2.3 Risks to Secure Lifecycle Management ........................................................................ 4 113 

2.4 Limitations and Dependencies of Trusted Onboarding ................................................ 5 114 

3 Mapping Use Cases, Approach, and Terminology ................................ 6 115 

3.1 Use Cases ..................................................................................................................... 6 116 

3.2 Mapping Producers ...................................................................................................... 7 117 

3.3 Mapping Approach ...................................................................................................... 7 118 

3.3.1 Mapping Terminology ................................................................................................... 8 119 

3.3.2 Mapping Process ........................................................................................................... 8 120 

4 Mappings ............................................................................................ 9 121 

4.1 NIST CSF Subcategory Mappings ................................................................................ 10 122 

4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories .......... 10 123 

4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF Subcategories ...... 10 124 

4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories ................................ 10 125 

4.2 NIST SP 800-53 Control Mappings ............................................................................. 12 126 

4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls ......... 12 127 

4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 Controls ..... 12 128 

4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls .............................. 13 129 

Appendix A References ......................................................................... 15 130 

 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 1 

1 Introduction 131 

In this project, the National Cybersecurity Center of Excellence (NCCoE) applies standards, 132 
recommended practices, and commercially available technology to demonstrate various mechanisms for 133 
trusted network-layer onboarding of IoT devices and lifecycle management of those devices. We show 134 
how to provision network credentials to IoT devices in a trusted manner and maintain a secure posture 135 
throughout the device lifecycle. 136 

This volume of the NIST Cybersecurity Practice Guide discusses risks addressed by the trusted IoT device 137 
network-layer onboarding and lifecycle management reference design. It also maps between 138 
cybersecurity functionality provided by logical components of the reference design and Subcategories in 139 
the NIST Cybersecurity Framework (CSF) and controls in NIST Special Publication (SP) 800-53, Security 140 
and Privacy Controls for Information Systems and Organizations. (Note: The reference design is 141 
described in detail in NIST SP 1800-36B, Section 4.) 142 

Mappings are also provided between cybersecurity functionality provided by specific network-layer 143 
onboarding protocols (e.g., Wi-Fi Easy Connect and Bootstrapping Remote Secure Key Infrastructure 144 
[BRSKI]) and those same Subcategories and controls, as well as between cybersecurity functionality 145 
provided by builds of the reference design that have been implemented as part of this project and those 146 
same Subcategories and controls. (Note: the composition of the builds is described in detail in the 147 
appendices of NIST SP 1800-36B.) 148 

None of the mappings we provide is intended to be exhaustive; the mappings focus on the strongest 149 
relationships involving each reference design cybersecurity function in order to help organizations 150 
prioritize their work. The mappings help users understand how trusted IoT device network-layer 151 
onboarding and lifecycle management can help them achieve their cybersecurity goals in terms of CSF 152 
Subcategories and SP 800-53 controls. The mappings also help users understand how they can 153 
implement trusted onboarding and lifecycle management by identifying how trusted onboarding 154 
functionality is supported by the user’s existing implementations of CSF Subcategories and SP 800-53 155 
controls. 156 

1.1 How to Use This Guide 157 

This NIST Cybersecurity Practice Guide demonstrates a standards-based reference design for 158 
implementing trusted IoT device network-layer onboarding and lifecycle management and describes 159 
various example implementations of this reference design. Each of these implementations, which are 160 
known as builds, is standards-based and is designed to help provide assurance that networks are not put 161 
at risk as new IoT devices are added to them and help safeguard IoT devices from being taken over by 162 
unauthorized networks. The reference design described in this practice guide is modular and can be 163 
deployed in whole or in part, enabling organizations to incorporate trusted IoT device network-layer 164 
onboarding and lifecycle management into their legacy environments according to goals that they have 165 
prioritized based on risk, cost, and resources. 166 

NIST is adopting an agile process to publish this content. Each volume is being made available as soon as 167 
possible rather than delaying release until all volumes are completed.  168 

This guide contains five volumes: 169 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 2 

 NIST SP 1800-36A: Executive Summary – why we wrote this guide, the challenge we address, 170 
why it could be important to your organization, and our approach to solving this challenge 171 

 NIST SP 1800-36B: Approach, Architecture, and Security Characteristics – what we built and why 172 

 NIST SP 1800-36C: How-To Guides – instructions for building the example implementations, 173 
including all the security-relevant details that would allow you to replicate all or parts of this 174 
project 175 

 NIST SP 1800-36D: Functional Demonstrations – use cases that have been defined to showcase 176 
trusted IoT device network-layer onboarding and lifecycle management security capabilities, 177 
and the results of demonstrating these use cases with each of the example implementations 178 

 NIST SP 1800-36E: Risk and Compliance Management – risk analysis and mapping of trusted IoT 179 
device network-layer onboarding and lifecycle management security characteristics to 180 
cybersecurity standards and best practices (you are here) 181 

Depending on your role in your organization, you might use this guide in different ways: 182 

Business decision makers, including chief security and technology officers, will be interested in the 183 
Executive Summary, NIST SP 1800-36A, which describes the following topics: 184 

 challenges that enterprises face in migrating to the use of trusted IoT device network-layer 185 
onboarding 186 

 example solutions built at the NCCoE 187 

 benefits of adopting the example solution 188 

Technology or security program managers who are concerned with how to identify, understand, assess, 189 
and mitigate risk will be interested in NIST SP 1800-36B, which describes what we did and why. 190 

Also, Section 4 of NIST SP 1800-36E will be of particular interest. Section 4, Mappings, maps logical 191 
components of the general trusted IoT device network-layer onboarding and lifecycle management 192 
reference design to security characteristics listed in various cybersecurity standards and recommended 193 
practices documents, including Framework for Improving Critical Infrastructure Cybersecurity (NIST 194 
Cybersecurity Framework) and Security and Privacy Controls for Information Systems and Organizations 195 
(NIST SP 800-53). 196 

You might share the Executive Summary, NIST SP 1800-36A, with your leadership team members to help 197 
them understand the importance of using standards-based trusted IoT device network-layer onboarding 198 
and lifecycle management implementations. 199 

IT professionals who want to implement similar solutions will find the whole practice guide useful. You 200 
can use the how-to portion of the guide, NIST SP 1800-36C, to replicate all or parts of the builds created 201 
in our lab. The how-to portion of the guide provides specific product installation, configuration, and 202 
integration instructions for implementing the example solution. We do not re-create the product 203 
manufacturers’ documentation, which is generally widely available. Rather, we show how we 204 
incorporated the products together in our environment to create an example solution. Also, you can use 205 
Functional Demonstrations, NIST SP 1800-36D, which provides the use cases that have been defined to 206 
showcase trusted IoT device network-layer onboarding and lifecycle management security capabilities 207 
and the results of demonstrating these use cases with each of the example implementations. Finally, 208 

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-53/rev-5/draft/documents/sp800-53r5-draft.pdf


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 3 

NIST SP 1800-36E will be helpful in explaining the security functionality that the components of each 209 
build provide. 210 

This guide assumes that IT professionals have experience implementing security products within the 211 
enterprise. While we have used a suite of commercial products to address this challenge, this guide does 212 
not endorse these particular products. Your organization can adopt this solution or one that adheres to 213 
these guidelines in whole, or you can use this guide as a starting point for tailoring and implementing 214 
parts of a trusted IoT device network-layer onboarding and lifecycle management solution. Your 215 
organization’s security experts should identify the products that will best integrate with your existing 216 
tools and IT system infrastructure. We hope that you will seek products that are congruent with 217 
applicable standards and recommended practices. 218 

A NIST Cybersecurity Practice Guide does not describe “the” solution, but example solutions. We seek 219 
feedback on the publication’s contents and welcome your input. Comments, suggestions, and success 220 
stories will improve subsequent versions of this guide. Please contribute your thoughts to iot-221 
onboarding@nist.gov. 222 

2 Risks Addressed by Trusted Network-Layer Onboarding and 223 

Lifecycle Management 224 

Historically, IoT devices have not tended to be onboarded to networks in a trusted manner. This has left 225 
networks open to the threat of having unauthorized devices connect to them. It has also left devices 226 
open to the threat of being onboarded to networks that are not authorized to control them. 227 

2.1 Risks to the Network  228 

Unauthorized devices that are able to connect to a network pose many risks to that network. They may 229 
be able to send and receive data on that network, scan the network for vulnerabilities, eavesdrop on the 230 
communications of other devices, and attack other connected devices to exfiltrate or modify their data 231 
or to compromise those devices and co-opt them into service to launch distributed denial of service 232 
(DDoS) attacks. 233 

2.1.1 Risks to the Network Due to Device Limitations 234 

Many IoT devices are manufactured to be as inexpensive as possible, which sometimes means that the 235 
devices are not equipped with secure storage, cryptographic modules, unique authoritative birth 236 
credentials, or other features needed to enable the devices to be identified and authenticated. This can 237 
make it impossible for a network to determine if a device attempting to connect to it is the intended 238 
device. Lack of these features can also make it impossible to protect the confidentiality of a device’s 239 
network credentials, both during the provisioning process and after the credentials have been installed 240 
on the device. 241 

2.1.2 Risks to the Network Due to Use of Shared Network Credentials 242 

If a network uses a single network password that is shared among all devices rather than providing each 243 
device with a unique network credential, the network will be vulnerable to having unauthorized devices 244 
connect to it if the shared network password falls into the wrong hands, which can happen relatively 245 

mailto:iot-onboarding@nist.gov
mailto:iot-onboarding@nist.gov


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 4 

easily. It also means that the network will permit devices to connect to it simply because a device 246 
presents the correct shared password, regardless of the device’s type or identity, or whether it has any 247 
legitimate reason to connect to the network. 248 

2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning 249 

If devices are manually provisioned with their network credentials, the provisioning process is error-250 
prone, cumbersome, and vulnerable to having the device’s network credentials disclosed. If the devices 251 
are provisioned automatically over Wi-Fi or some other interface that does not use an encrypted 252 
channel, the credentials are also vulnerable to unauthorized disclosure. If the network credentials are 253 
not provisioned in a trusted manner, the credentials are vulnerable to disclosure not only the first time 254 
the device is onboarded to the network, but every time it is onboarded, which may occur many times 255 
during the device lifecycle. For example, the device may need to be re-onboarded periodically to change 256 
its credentials in accordance with security policy, or it may need to be re-onboarded due to a security 257 
breach, hardware repair, security update, or other reasons. Any insecure features of the onboarding 258 
process, therefore, will render the device and network vulnerable every time the device is onboarded. 259 

2.1.4 Risks to the Network Due to Supply Chain Attacks 260 

If a device is compromised while in the supply chain or at some other point prior to being onboarded, 261 
then even though the device may be onboarded in a trusted manner, it may still pose a threat to the 262 
network, its data, and all devices connected to it. If, on the other hand, the trusted network-layer 263 
onboarding mechanism is integrated with a device attestation or supply chain management service that 264 
is capable of evaluating the integrity and provenance of the device and detecting that it has been 265 
compromised or may have been tampered with, the trusted network-layer onboarding mechanism 266 
could prevent such a compromised device from being onboarded and connected to the network. 267 

2.2 Risks to the Device 268 

Although it is relatively easy for one network to masquerade as another, IoT devices often do not 269 
authenticate the identity of the networks to which they allow themselves to be onboarded and 270 
connected. Devices may be unwittingly tricked into onboarding and connecting to imposter networks 271 
that are not authorized to onboard them. This makes those devices vulnerable to being taken control of 272 
by those unauthorized networks and thereby prevented from connecting to and providing their 273 
intended function on their authorized network. 274 

2.3 Risks to Secure Lifecycle Management 275 

Even if a device is authorized to connect to a network and the network is authorized to control the 276 
device, if the device has not been onboarded in a trusted manner, then other security-related 277 
operations that are performed after the device has connected to the network may not have as secure a 278 
foundation as they would if the device had been onboarded in a trusted manner. For example, if device 279 
communications intent enforcement is performed but the integrity and confidentiality of the 280 
communicated device intent information was not protected (as it would be by a trusted network-layer 281 
onboarding mechanism), then trust in the device communications intent enforcement mechanism may 282 
not be as robust as it could have been. Similarly, if application-layer onboarding is performed after the 283 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 5 

device connects, but the information needed to bootstrap the application-layer onboarding process did 284 
not have its integrity and confidentiality protected (as it would be by a trusted network-layer 285 
onboarding mechanism), then trust in the application-layer onboarding mechanism may not be as 286 
robust as it could have been. Lack of trust in the application-layer onboarding mechanism may, in turn, 287 
undermine trust in the device lifecycle management or other application-layer service that is invoked as 288 
part of the application-layer onboarding process. 289 

2.4 Limitations and Dependencies of Trusted Onboarding 290 

While implementing trusted IoT device network-layer onboarding and lifecycle management addresses 291 
many risks, it also has limitations. Use of trusted network-layer onboarding is designed to enable IoT 292 
devices to be provisioned with unique local network credentials in a manner that preserves credential 293 
confidentiality. As part of the trusted network-layer onboarding process, the device and the network 294 
may mutually authenticate one another, thereby protecting the network from having unauthorized 295 
devices connect to it and the device from being taken over by an unauthorized network. However, if the 296 
network also enables devices that do not support the trusted network-layer onboarding solution to be 297 
provisioned with network credentials and connect to it using a different (untrusted) onboarding 298 
solution, the network and all devices on it will still be at risk from IoT devices that have been onboarded 299 
using untrusted mechanisms, and the devices that are onboarded using untrusted mechanisms will still 300 
be at risk of being taken over by networks that are not authorized to control them. 301 

The trusted network-layer onboarding solution leverages the device’s unique, authoritative birth 302 
credentials, which are provisioned to the device by the device manufacturer and must consist, at a 303 
minimum, of a unique device identity and a secret. The trustworthiness of the network-layer onboarding 304 
process and the network credentials that it provisions to the device depends on the uniqueness, 305 
integrity, and confidentiality of the device’s birth credentials which, in many cases, depend on the 306 
device’s hardware root of trust. If the manufacturer does not ensure that the device’s credentials are 307 
unique, the identity of the device cannot be definitively authenticated. If the manufacturer is not able to 308 
maintain the confidentiality of the secret that is part of the device credentials, the trustworthiness of 309 
the device authentication process will be undermined, and the channel over which the device’s 310 
credentials are provisioned will be vulnerable to eavesdropping. 311 

The trusted network-layer onboarding solution depends upon the trustworthiness of the device’s secure 312 
storage to ensure the confidentiality of the device and network credentials. If the device’s secure 313 
storage is vulnerable, the trustworthiness of the network-layer onboarding process and the 314 
confidentiality of the device’s network credentials will be compromised. If the secure storage in which 315 
the device’s network credentials are stored is vulnerable, the network will be at risk of having 316 
unauthorized devices attach to it. 317 

If the trusted network-layer onboarding mechanism is integrated with additional security capabilities 318 
such as device attestation, device communications intent enforcement, application-layer onboarding, 319 
and device lifecycle management, it can further increase trust in both the IoT device and, by extension, 320 
the network to which the device connects, assuming that these additional security capabilities 321 
themselves are secure and robust. If these security capabilities are not implemented correctly, then 322 
integrating with them is of no additional value and in fact may provide a false sense of security. 323 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 6 

3 Mapping Use Cases, Approach, and Terminology 324 

A mapping indicates that one concept is related to another concept. The remainder of this volume 325 
describes the mappings between trusted IoT device network-layer onboarding and lifecycle 326 
management cybersecurity functions and the security characteristics enumerated in relevant 327 
cybersecurity documents.  328 

For this mapping, we have used the supportive relationship mapping style as defined in Section 4.2 of 329 
draft NIST Internal Report (IR) 8477, Mapping Relationships Between Documentary Standards, 330 
Regulations, Frameworks, and Guidelines: Developing Cybersecurity and Privacy Concept Mappings [1]. 331 

Each set of mappings involves one of the following types of trusted IoT device network-layer onboarding 332 
and lifecycle management cybersecurity functions: 333 

 Cybersecurity functions performed by the reference design’s logical components (see NIST SP 334 
1800-36B Section 4) 335 

 Cybersecurity functions provided by specific network-layer onboarding protocols (e.g., Wi-Fi 336 
Easy Connect and BRSKI) 337 

 Cybersecurity functions provided by builds of the reference design that have been implemented 338 
as part of this project 339 

Each of the cybersecurity functions is mapped to the security characteristics concepts found in the 340 
following widely used cybersecurity guidance documents: 341 

 Subcategories from the NIST Cybersecurity Framework (CSF) 1.1 [2] which are also mapped to 342 
The NIST Cybersecurity Framework 2.0 (CSF 2.0) [3]. The CSF identifies enterprise-level security 343 
outcomes. Stakeholders have identified these outcomes as helpful for managing cybersecurity 344 
risk, but organizations adopting the CSF need to determine how to achieve the outcomes. Exec-345 
utive Order (EO) 13800, Strengthening the Cybersecurity of Federal Networks and Critical Infra-346 
structure [4], made the CSF mandatory for federal government agencies, and other government 347 
agencies and sectors have also made the CSF mandatory. 348 

 Security controls from NIST SP 800-53r5 (Security and Privacy Controls for Information Systems 349 
and Organizations) [5]. NIST SP 800-53 identifies security controls that apply to systems on 350 
which those enterprises are reliant. Which SP 800-53 controls need to be employed depends on 351 
system functions and a risk assessment of the perceived impact of loss of system functionality or 352 
exposure of information from the system to unauthorized entities. In the case of systems owned 353 
by or operated on behalf of federal government enterprises, the risk assessment and applicable 354 
SP 800-53 controls are mandated under the Federal Information Security Modernization Act 355 
(FISMA) [6]. Many other governments and private sector organizations voluntarily employ the 356 
Risk Management Framework [7] and associated SP 800-53 controls. 357 

3.1 Use Cases 358 

All of the elements in these mappings—the trusted IoT device network-layer onboarding and lifecycle 359 
management cybersecurity functions, cybersecurity functions provided by specific network-layer 360 
onboarding protocols, cybersecurity functions provided by specific builds, CSF Subcategories, and SP 361 
800-53 controls—are concepts involving ways to reduce cybersecurity risk. 362 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 7 

There are two primary use cases for this mapping. They are not intended to be comprehensive, but 363 
rather to capture the strongest relationships involving the trusted IoT device network-layer onboarding 364 
and lifecycle management cybersecurity functions. 365 

1. Why should organizations implement trusted IoT device network-layer onboarding and lifecy-366 
cle management? This use case identifies how implementing trusted IoT device network-layer 367 
onboarding and lifecycle management can support organizations with achieving CSF Subcatego-368 
ries and SP 800-53 controls. This helps communicate to an organization’s chief information secu-369 
rity officer, security team, and senior management that expending resources to implement 370 
trusted IoT device network-layer onboarding and lifecycle management can also aid in fulfilling 371 
other security requirements.  372 

2. How can organizations implement trusted IoT device network-layer onboarding and lifecycle 373 
management? This use case identifies how an organization’s existing implementations of CSF 374 
Subcategories and SP 800-53 controls can help support a trusted IoT device network-layer 375 
onboarding and lifecycle management implementation. An organization wanting to implement 376 
trusted IoT device network-layer onboarding and lifecycle management might first assess its cur-377 
rent security capabilities so that it can plan how to add missing capabilities and enhance existing 378 
capabilities. Organizations can leverage their existing security investments and prioritize future 379 
security technology deployment to address the gaps. 380 

These mappings are intended to be used by any organization that is interested in implementing trusted 381 
IoT device network-layer onboarding and lifecycle management or that has begun or completed an 382 
implementation. 383 

3.2 Mapping Producers 384 

The NCCoE trusted IoT device network-layer onboarding and lifecycle management project team 385 
performed the mappings between the cybersecurity functions performed by the reference design’s 386 
logical components (see NIST SP 1800 36B Section 4) and the security characteristics in the cybersecurity 387 
documents. They also performed the mappings between the cybersecurity functions performed by the 388 
specific network-layer onboarding protocols (i.e., Wi-Fi Easy Connect and BRSKI) and the security 389 
characteristics in the cybersecurity documents. These mappings were performed with input and 390 
feedback from the collaborators who have contributed technology to the builds of the reference design. 391 
Collaborators for each build, in conjunction with the NCCoE trusted IoT device network-layer onboarding 392 
and lifecycle management project team, performed the mappings between the cybersecurity functions 393 
provided by their contributed technologies in each build and the security characteristics in the 394 
cybersecurity documents. 395 

3.3 Mapping Approach 396 

In addition to performing general mappings between the reference design’s cybersecurity functions and 397 
various sets of security characteristics, as well as between specific network-layer onboarding protocol 398 
cybersecurity functions and various sets of security characteristics, the NCCoE asked the collaborators 399 
for each build to indicate the mapping between the cybersecurity functions their technology 400 
components provide in that build and the sets of security characteristics. 401 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 8 

Using the logical components in the reference design as the organizing principle for the initial mapping 402 
of cybersecurity functions to security characteristics and then providing onboarding protocol-specific 403 
mappings was intended to make it easier for collaborators to map their build-specific technology 404 
contributions. Using this approach, the build-specific technology mappings are instantiations of the 405 
project’s general reference design and protocol-specific mappings for each document. 406 

3.3.1 Mapping Terminology 407 

In this publication, we use the following relationship types from NIST IR 8477 [1] to describe how the 408 
functions in our reference design are related to the NIST reference documents. Note that the Supports 409 
relationship applies only to use case 1 in Section 3.1 and the Is Supported By relationship applies only to 410 
use case 2. 411 

 Supports: Trusted IoT device network-layer onboarding and lifecycle management function X 412 
supports security control/Subcategory/capability/requirement Y when X can be applied alone or 413 
in combination with one or more other functions to achieve Y in whole or in part. 414 

 Is Supported By: Trusted IoT device network-layer onboarding and lifecycle management 415 
function X is supported by security control/Subcategory/capability/requirement Y when Y can be 416 
applied alone or in combination with one or more other security 417 
controls/Subcategories/capabilities/requirements to achieve X in whole or in part.  418 

Each Supports and Is Supported By relationship has one of the following properties assigned to it: 419 

 Example of: The supporting concept X is one way (an example) of achieving the supported 420 
concept Y in whole or in part. However, Y could also be achieved without applying X. 421 

 Integral to: The supporting concept X is integral to and a component of the supported concept 422 
Y. X must be applied as part of achieving Y. 423 

 Precedes: The supporting concept X precedes the supported concept Y when X must be 424 
achieved before applying Y. In other words, X is a prerequisite for Y. 425 

When determining whether a reference design function’s support for a given CSF Subcategory or SP 800-426 
53 control is integral to that support versus an example of that support, we do not consider how that 427 
function may in general be used to support the Subcategory, control, capability, or requirement. Rather, 428 
we consider only how that function is intended to support that Subcategory, control, capability, or 429 
requirement within the context of our reference design. 430 

Also, when determining whether a function is supported by a CSF Subcategory, SP 800-53 control, 431 
capability, etc. with the relationship property of precedes, we do not consider whether it is possible to 432 
apply the function without first achieving the Subcategory, control, capability, or requirement. Rather, 433 
we consider whether, according to our reference design, the Subcategory, control, capability, or 434 
requirement is to be achieved prior to applying that function. 435 

3.3.2 Mapping Process 436 

The process that the NCCoE used to create the mapping from the logical components of the reference 437 
design to the security characteristics of a given document was as follows: 438 

1. Create a table that lists each of the logical components of the reference design in column 1. 439 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 9 

2. Describe each logical component’s cybersecurity function in column 2. 440 

3. Map each cybersecurity function to each of the security characteristics in the document to 441 
which the function is most strongly related, and list each of these security characteristics on 442 
different sub-rows within column 3. Begin each security characteristic entry with an underlined 443 
keyword that describes the mapping’s relationship type (i.e., Supports, Is Supported By). After 444 
the keyword indicating the relationship type, put in parentheses the underlined keyword 445 
describing the relationship’s property (i.e., Example of, Integral to, or Precedes). 446 

4. In the fourth column, provide a brief explanation of why that relationship type and property 447 
apply to the mapping. 448 

5. After completing the mapping table entries as described above for all the logical components in 449 
the reference design, examine the mapping in the other direction, i.e., starting with the security 450 
characteristics listed in the document and considering whether they have a relationship to the 451 
logical components’ cybersecurity functions in the reference design. In other words, step 452 
through each of the security characteristics in the document and determine if there is some 453 
logical component in the reference design that has a strong relationship to that security 454 
characteristic. If so, add an entry for that security characteristic mapping to that logical 455 
component’s row in the table. By examining the mapping in both directions in this manner, 456 
security characteristic mappings are less likely to be overlooked or omitted. 457 

6. Once these steps are complete, any rows in the table that don’t have any mappings should be 458 
deleted. 459 

The NCCoE applied this mapping process separately for each reference document. None of the 460 
mappings is intended to be exhaustive; they all focus on the strongest relationships involving each 461 
cybersecurity function in order to help organizations prioritize their work. Mapping every possible 462 
relationship, no matter how tenuous, would create so many mappings that they would not have any 463 
value in prioritization. 464 

4 Mappings 465 

The mappings are provided in the form of Excel files. Links to the mapping Excel files are organized in 466 
the remainder of this document as follows: 467 

 Section 4.1 – NIST CSF 1.1 [2] and NIST CSF 2.0 [3] mappings. These include: 468 

o Section 4.1.1 – Mappings between reference design functions and NIST CSF 469 
Subcategories 470 

o Section 4.1.2 – Mappings between specific onboarding protocol (i.e., Wi-Fi Easy Connect 471 
and BRSKI) functions and NIST CSF Subcategories 472 

o Section 4.1.3 – Mappings between specific build functions and NIST CSF Subcategories 473 

 Section 4.2 – NIST SP 800-53r5 [5] mappings. These include: 474 

o Section 4.2.1 – Mappings between reference design functions and NIST SP 800-53r5 475 
controls 476 



DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 10 

o Section 4.2.2 – Mappings between specific onboarding protocol (i.e., Wi-Fi Easy Connect 477 
and BRSKI) functions and NIST SP 800-53r5 controls 478 

o Section 4.2.3 – Mappings between specific build functions and NIST SP 800-53r5 479 
controls 480 

4.1 NIST CSF Subcategory Mappings 481 

This section provides links to mappings between various elements that provide trusted network-layer 482 
onboarding functionality and NIST CSF Subcategories. 483 

4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories 484 

This Excel file provides mappings between the logical components of the reference design and the NIST 485 
CSF Subcategories. These mappings indicate how trusted IoT device network-layer onboarding and 486 
lifecycle management functions help support CSF Subcategories and vice versa. 487 

Link to the Excel file called “IoT Volume E CSF 1-1 and 2-0”, and to the tab called “CSF-to-Reference 488 
Arch” (first tab) 489 

4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF 490 
Subcategories 491 

This section provides mappings between the functionality provided by two network-layer onboarding 492 
protocols, Wi-Fi Easy Connect and BRSKI, and the NIST CSF Subcategories. 493 

4.1.2.1 Mapping Between Wi-Fi Easy Connect and NIST CSF Subcategories 494 

This Excel file provides a mapping between the functionality provided by the Wi-Fi Easy Connect 495 
protocol and the NIST CSF Subcategories. These mappings indicate how Wi-Fi Easy Connect functionality 496 
helps support CSF Subcategories and vice versa. 497 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-Wi-Fi EasyCnct” 498 
(third tab) 499 

4.1.2.2 Mapping Between BRSKI and NIST CSF Subcategories 500 

This Excel file provides a mapping between the functionality provided by BRSKI and the NIST CSF 501 
Subcategories. These mappings indicate how BRSKI functionality helps support CSF Subcategories and 502 
vice versa. 503 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-BRSKI” (second tab) 504 

4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories 505 

This section provides mappings between the functionality provided by builds of the trusted IoT device 506 
network-layer onboarding and lifecycle management reference design that were implemented as part of 507 
this project and the NIST CSF Subcategories.  508 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 11 

4.1.3.1 Mapping Between Build 1 and NIST CSF Subcategories 509 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 510 
The onboarding infrastructure and related technology components for Build 1 have been provided by 511 
Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 512 
The technologies used in Build 1 are detailed in Appendix C of SP 1800-36B. 513 

This Excel file details the mapping between the functionality provided by Build 1 components and CSF 514 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 515 
vice versa. 516 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B1” (fourth tab) 517 

4.1.3.2 Mapping Between Build 2 and NIST CSF Subcategories 518 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 519 
The onboarding infrastructure and related technology components for Build 2 have been provided by 520 
CableLabs and OCF. IoT devices that were onboarded using Build 2 were provided by CableLabs, OCF, 521 
and Aruba/HPE. The technologies used in Build 2 are detailed in Appendix D of SP 1800-36B. 522 

This Excel file details the mapping between the functionality provided by Build 2 components and CSF 523 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 524 
vice versa. 525 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B2” (fifth tab) 526 

4.1.3.3 Mapping Between Build 3 and NIST CSF Subcategories 527 

Build 3 is an implementation of network-layer onboarding that uses BRSKI. The onboarding 528 
infrastructure and related technology components for Build 3 have been provided by Sandelman 529 
Software Works. The IoT device that was used to demonstrate onboarding in Build 3 was a pledge 530 
simulator provided by Sandelman. The technologies used in Build 3 are detailed in Appendix E of SP 531 
1800-36B. 532 

This Excel file details the mapping between the functionality provided by Build 3 components and CSF 533 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 534 
vice versa. 535 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B3” (sixth tab) 536 

4.1.3.4 Mapping Between Build 4 and NIST CSF Subcategories 537 

Build 4 is an implementation of network-layer connection to an OpenThread network using pre-538 
provisioned network credentials as well as independent application-layer onboarding using the Kudelski 539 
KeySTREAM service. The network infrastructure and related technology components for Build 4 have 540 
been provided by Silicon Labs and Kudelski. The IoT device that was used to demonstrate onboarding in 541 
Build 4 was provided by Silicon Labs. The technologies used in Build 4 are detailed in Appendix F of SP 542 
1800-36B. 543 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 12 

This Excel file details the mapping between the functionality provided by Build 4 components and CSF 544 
Subcategories These mappings indicate how these components help support CSF Subcategories and vice 545 
versa. 546 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B4” (seventh tab) 547 

4.1.3.5 Mapping Between Build 5 and NIST CSF Subcategories 548 

Build 5 is an implementation of network-layer onboarding using BRSKI over Wi-Fi, as well as 549 
demonstration of a continuous authorization service. The network layer onboarding infrastructure and 550 
related technology components for Build 5 have been provided by NquiringMinds. The IoT devices that 551 
were used to demonstrate onboarding in Build 5 were provided by NquiringMinds. The technologies 552 
used in Build 5 are detailed in Appendix G of SP 1800-36B. 553 

This Excel file details the mapping between the functionality provided by Build 5 components and CSF 554 
Subcategories. These mappings indicate how these components help support CSF Subcategories and 555 
vice versa. 556 

Link to the Excel file called “CSF 1.1 and 2.0 Tables”, and to the tab called “CSF-to-B5” (eighth tab) 557 

4.2 NIST SP 800-53 Control Mappings 558 

This section provides mappings between various elements that provide trusted network-layer 559 
onboarding functionality and NIST SP 800-53 controls. 560 

4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls 561 

This Excel file provides a mapping between the logical components of the reference design and NIST SP 562 
800-53 security controls. These mappings indicate how trusted IoT device network-layer onboarding and563 
lifecycle management functions help support NIST SP 800-53 controls. Because hundreds of NIST SP 800-564 
53 controls can help support these functions, we have limited use case 2 (see Section 3.1) mappings to 565 
those controls on which specified supporting controls directly depend (e.g., dependence of 566 
cryptographic protection on key management). Readers needing to determine how their trusted IoT 567 
device network-layer onboarding and lifecycle management implementations support RMF processes 568 
can refer to these mappings. 569 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-Reference Arch” (first tab) 570 

4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 571 
Controls 572 

This section provides mappings between the functionality provided by specific network-layer 573 
onboarding protocols and the NIST SP 800-53 controls. Mappings are provided for both the Wi-Fi Easy 574 
Connect protocol and BRSKI. 575 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_CSF-1-1_and_2-0-tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 13 

4.2.2.1 Mapping Between Wi-Fi Easy Connect and NIST SP 800-53 Controls 576 

This Excel file provides a mapping between the functionality provided by the Wi-Fi Easy Connect 577 
protocol and the NIST SP 800-53 controls. These mappings indicate how Wi-Fi Easy Connect functions 578 
help support NIST SP 800-53 controls and vice versa. 579 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-Wi-Fi EasyCnct” (second 580 
tab) 581 

4.2.2.2 Mapping Between BRSKI and NIST SP 800-53 Controls 582 

This Excel file provides a mapping between the functionality provided by BRSKI and the NIST SP 800-53 583 
controls. These mappings indicate how BRSKI functions help support NIST SP 800-53 controls and vice 584 
versa. 585 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-BRSKI” (third tab) 586 

4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls 587 

This section provides mappings between the functionality provided by builds of the trusted IoT device 588 
network-layer onboarding and lifecycle management reference design that were implemented as part of 589 
this project and the NIST SP 800-53 controls. 590 

4.2.3.1 Mapping Between Build 1 and NIST SP 800-53 Controls 591 

Build 1 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 592 
The onboarding infrastructure and related technology components for Build 1 have been provided by 593 
Aruba/HPE. IoT devices that were onboarded using Build 1 were provided by Aruba/HPE and CableLabs. 594 
The technologies used in Build 1 are detailed in Appendix C of SP 1800-36B. 595 

This Excel file details the mapping between the functionality provided by Build 1 components and SP 596 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 597 
vice versa. 598 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B1” (fourth tab) 599 

4.2.3.2 Mapping Between Build 2 and NIST SP 800-53 Controls 600 

Build 2 is an implementation of network-layer onboarding that uses the Wi-Fi Easy Connect protocol. 601 
The onboarding infrastructure and related technology components for Build 2 have been provided by 602 
CableLabs and OCF. IoT devices that were onboarded using Build 2 were provided by CableLabs, OCF, 603 
and Aruba/HPE. The technologies used in Build 1 are detailed in Appendix D of SP 1800-36B. 604 

This Excel file details the mapping between the functionality provided by Build 2 components and SP 605 
800-53 controls These mappings indicate how these components help support SP 800-53 controls and 606 
vice versa. 607 

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 14 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B2” (fifth tab) 608 

4.2.3.3 Mapping Between Build 3 and NIST SP 800-53 Controls 609 

Build 3 is an implementation of network-layer onboarding that uses BRSKI. The onboarding 610 
infrastructure and related technology components for Build 3 have been provided by Sandelman 611 
Software Works. The IoT device that was used to demonstrate onboarding in Build 3 was a pledge 612 
simulator provided by Sandelman. The technologies used in Build 3 are detailed in Appendix E of SP 613 
1800-36B. 614 

This Excel file details the mapping between the functionality provided by Build 3 components and SP 615 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 616 
vice versa. 617 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B3” (sixth tab) 618 

4.2.3.4 Mapping Between Build 4 and NIST SP 800-53 Controls 619 

Build 4 is an implementation of network-layer connection to an OpenThread network using pre-620 
provisioned network credentials as well as independent application-layer onboarding using the Kudelski 621 
KeySTREAM service. The network infrastructure and related technology components for Build 4 have 622 
been provided by Silicon Labs and Kudelski. The IoT device that was used to demonstrate onboarding in 623 
Build 4 was provided by Silicon Labs. The technologies used in Build 4 are detailed in Appendix F of SP 624 
1800-36B. 625 

This Excel file details the mapping between the functionality provided by Build 4 components and SP 626 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 627 
vice versa. 628 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B4” (seventh tab) 629 

4.2.3.5 Mapping Between Build 5 and NIST SP 800-53 Controls 630 

Build 5 is an implementation of network-layer onboarding using BRSKI over Wi-Fi, as well as 631 
demonstration of a continuous authorization service. The network layer onboarding infrastructure and 632 
related technology components for Build 5 have been provided by NquiringMinds. The IoT devices that 633 
were used to demonstrate onboarding in Build 5 were provided by NquiringMinds. The technologies 634 
used in Build 5 are detailed in Appendix G of SP 1800-36B. 635 

This Excel file details the mapping between the functionality provided by Build 5 components and SP 636 
800-53 controls. These mappings indicate how these components help support SP 800-53 controls and 637 
vice versa. 638 

Link to the Excel file called “800-53 Tables”, and to the tab called “800-53-to-B5” (eighth tab) 639 

  

https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx
https://www.nccoe.nist.gov/sites/default/files/2024-05/nist-sp-1800-36e-draft_800-53_tables.xlsx


DRAFT 

NIST SP 1800-36E: Trusted IoT Device Network-Layer Onboarding and Lifecycle Management 15 

640 Appendix A References 
[1] K. Scarfone, M. Souppaya, and M. Fagan, Mapping Relationships Between Documentary 641 

Standards, Regulations, Frameworks, and Guidelines: Developing Cybersecurity and Privacy 642 
Content Mappings, National Institute of Standards and Technology (NIST) Internal Report (IR) 643 
8477, Gaithersburg, Md., August 2023, 26 pp. Available: 644 
https://doi.org/10.6028/NIST.IR.8477.ipd 645 

[2] National Institute of Standards and Technology (2018) Framework for Improving Critical 646 
Infrastructure Cybersecurity, Version 1.1. (National Institute of Standards and Technology, 647 
Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 6. 648 
https://doi.org/10.6028/NIST.CSWP.6 649 

[3] National Institute of Standards and Technology, Version 2.0. The NIST Cybersecurity Framework 650 
2.0 (CSF 2.0) (National Institute of Standards and Technology, Gaithersburg, MD), 651 
https://csrc.nist.gov/pubs/cswp/29/the-nist-cybersecurity-framework-20/ipd 652 

[4] Executive Order 13800 (2017) Strengthening the Cybersecurity of Federal Networks and Critical 653 
Infrastructure. (The White House, Washington, DC), DCPD-201700327, May 11, 2017. 654 
https://www.govinfo.gov/app/details/DCPD-201700327 655 

[5] Joint Task Force (2020) Security and Privacy Controls for Information Systems and Organizations. 656 
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication 657 
(SP) 800-53, Rev. 5. Includes updates as of December 10, 2020. 658 
https://doi.org/10.6028/NIST.SP.800-53r5 659 

[6] S.2521 - Federal Information Security Modernization Act of 2014, 113th Congress (2013-2014), 660 
Became Public Law No: 113-283, December 18, 2014. Available: 661 
https://www.congress.gov/bill/113th-congress/senate-bill/2521 662 

[7] Joint Task Force (2018) Risk Management Framework for Information Systems and 663 
Organizations: A System Life Cycle Approach for Security and Privacy. (National Institute of 664 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-37, Rev. 2. 665 
https://doi.org/10.6028/NIST.SP.800-37r2 666 

https://doi.org/10.6028/NIST.IR.8477.ipd
https://doi.org/10.6028/NIST.CSWP.6
https://www.govinfo.gov/app/details/DCPD-201700327
https://doi.org/10.6028/NIST.SP.800-53r5
https://www.congress.gov/bill/113th-congress/senate-bill/2521
https://doi.org/10.6028/NIST.SP.800-37r2


eno3: 192.168.0.124/24

Amarisoft CallBox Classic

18/07/2024

Swa0.0
192.168.127.1/24

Swa0.1
192.168.128.1/24

Swa1.0
192.168.131.1/24

Swa2.1
192.168.135.1/24

RRH NR_4
Xchurch_1

RRH NR_6
The Crescent

RRH NR_5
Xchurch_2

RRH NR_7
Walpole Rd

2 U

SERVER_5G_1

Swa0.0
192.168.127.1/24

Swa1.0
192.168.131.1/24

Swa2.0
192.168.135.1/24

RRH NR_8
Kings Park Cafe

RRH NR_9
Kings Park Bowling

RRH NR_10
Vitality Stadium

2 U

SERVER_5G_2



eno3: 192.168.0.133/24
SSH Port 221

2 U
SERVER_4G
BOSCOMBE

RRH NR_1

RRH NR_2

RRH NR_3

Swa0.0
192.168.127.1/24

Swa1.0
192.168.131.1/24

Swa2.0
192.168.135.1/24

RRH LTE_1

RRH LTE_2

RRH LTE_3

Swa0.1
192.168.128.1/24

Swa1.1
192.168.1.132/24

Swa2.1
192.168.136.1/24

Pier Approach

Seafront East

Seafront West

RRH LTE_4
Walpole Rd

RRH LTE_6
Kings Park Bowling

Swa0.1
192.168.128.1/24

Swa0.2
192.168.129.1/24

Swa0.3
192.168.130.1/24

Swa1.0
192.168.131.1/24

5G Gateway
185.100.90.4

192.168.0.30/24

eno3: 192.168.0.124/24

Amarisoft CallBox Classic

BCP LAB

18/07/2024 Designed:
Xavier N.

Logical topology /connectivity diagram
5G network BCP

V2.0 Draft

Approved: 
XN

RRH LTE_3
The Crescent

RRH LTE_5
Kings Park Cafe

RRH LTE_2
Xchurch Road

RRH LTE_1
Xchurch_1

Swa0.P0
192.168.127.1/24

Swa1.1
192.168.132.1/24

RRH LTE_7
Vitality Stadium 

Sth. Stand

2 U

SERVER_Pier 5G
Boscombe

eno3: 192.168.0.126/24

2 U
MLL Fortinet
Fortgate 600E
G0/2

1 U FS GbE switch
L3

Amarisoft UE SIM

192.168.0.31/24

eno3: 192.168.0.71/24



VLAN1,44 T

1 U
MLL’s Fortinet
185.100.90.1/30

VLAN1, 44 T

VLAN1,44 T

VLAN1,44 T

AP28..40/ e700/
XV2

10.0.1.48-60/20
172.16.x.x/16

AP41..46/ XV2 
10.0.1.61-66/20

172.16.x.x/16

AP47..55/ XE3 
10.0.1.67-75/20

Lansdowne Router WAN
185.100.90.3/28

Router’s LAN
192.168.0.1/24

Lancom Eth1
192.168.0.2/24

1 UcnMatrix Switch 6
10.0.1.7/20

VLAN1,44 T

VLAN1,44T

VLAN1,44T

1 UcnMatrix Switch 4
10.0.1.5/20

1 UcnMatrix Switch 5
10.0.1.6/20

BOSCOMBE PUBLIC WI FI ARCHITECTURE

1 ULancom Eth2
10.0.1.1/20 VLAN 1
172.16.0.1/16 VLAN 44

1 UcnMatrix Switch 7
10.0.1.8/20

AP56.67/ e700 / 
XV2 / XE3

10.0.1.76-87/20



1 U
MLL’s Fortinet
185.100.90.1/30

1 U
Lancom Eth2
10.0.1.1/20 VLAN 1
172.16.0.1/16 VLAN 44

VLAN1, 44 T

VLAN1,44 T

VLAN1,44 T

AP1..12/ e700
10.0.1.21-32/20

172.16.x.x/16

AP13..24/ e700 
10.0.1.33-44/20

172.16.x.x/16

AP25..27/ e700 
10.0.1.45-47/20

UE
172.16.x.x/16

VLAN44 U

Lansdowne Router WAN
185.100.90.2/28

Router’s LAN
192.168.0.1/24

Lancom Eth1
192.168.0.2/24

1 UUnifi EdgeSwitch 3
10.0.1.4/20

2 U

Ch.31 - 43

Ch57-60

Ch44 - 56

1550nm 21-60 
DWDM 2 U

MUX

VLAN1,44 T

VLAN1,44T

VLAN1,44T

1550nm 21-60 
DWDM

1 UUnifi EdgeSwitch 1
10.0.1.2/20

1 UUnifi EdgeSwitch 2
10.0.1.3/20

Arcade’s LAB CAB4 Madeira Road / 
Lansdowne

LANSDOWNE PUBLIC WI FI ARCHITECTURE



VLAN1,44 T

1 U
MLL’s Fortinet
185.100.90.1/30

VLAN1, 44 T

VLAN1,44 T

VLAN1,44 T

AP28..40/ e700/
XV2

10.0.1.48-60/20
172.16.x.x/16

AP41..46/ XV2 
10.0.1.61-66/20

172.16.x.x/16

AP47..55/ XE3 
10.0.1.67-75/20

Lansdowne Router WAN
185.100.90.3/28

Router’s LAN
192.168.0.1/24

Lancom Eth1
192.168.0.2/24

1 UcnMatrix Switch 6
10.0.1.7/20

VLAN1,44 T

VLAN1,44T

VLAN1,44T

1 UcnMatrix Switch 4
10.0.1.5/20

1 UcnMatrix Switch 5
10.0.1.6/20

BOSCOMBE PUBLIC WI FI ARCHITECTURE

1 ULancom Eth2
10.0.1.1/20 VLAN 1
172.16.0.1/16 VLAN 44

1 UcnMatrix Switch 7
10.0.1.8/20

AP56.67/ e700 / 
XV2 / XE3

10.0.1.76-87/20




	30-tdxvolt docs.pdf
	tdxVolt documentation
	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	NodeJS client
	Install packages
	Configuration
	Connection
	API call
	Unary calls
	Streaming calls
	Server streaming calls
	Client streaming calls
	Bi-directional streaming calls



	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Web client
	HTTP interface
	Websocket API
	Configuration
	Connection
	API call
	Unary calls
	Streaming calls
	Server streaming calls
	Client streaming calls
	Bi-directional streaming calls



	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Command line interface
	tdx Volt management commands
	battery options
	create command
	Create a secure Volt
	Create a tdx Volt using a fixed host
	Create a tdx Volt with a file-based key

	run command
	config command

	Client commands
	download command
	upload command
	list command
	wire command
	publish
	subscribe


	Utility commands
	logger command
	STDIN logger performance



	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	C++ client
	Coming soon…

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	FAQ
	Errors
	I get Volt IP invalid error when starting a tdx Volt
	I get invalid argument errors when attempting to bind or connect to a tdx Volt
	Linked Volt connections and Relays are broken


	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Connect to a tdx Volt
	api
	cli
	javascript
	grpc
	web

	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Establish a connect stream
	api
	cli
	fusebox
	javascript [grpc]
	Javascript [web]
	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Subscribe to wire
	api
	cli
	fusebox
	javascript
	grpc
	web

	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Start a Volt
	cli
	fusebox

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Approve authenticate request
	Managing authentication requests

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Publish to wire
	api
	cli
	fusebox
	javascript
	web

	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Execute SQL
	api
	cli
	fusebox
	javascript
	grpc
	web

	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Create a Volt
	cli
	Using a YubiKey Hardware Security Module (HSM)
	Using an encrypted root key
	Using a file-based key
	Create a tdx Volt using a fixed host
	Create a tdx Volt with a Relay

	fusebox

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Import data
	api
	cli
	fusebox
	javascript
	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Download file or folder
	api
	cli
	fusebox
	javascript
	grpc
	web

	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Create database
	api
	cli
	fusebox
	javascript
	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Upload file or folder
	api
	cli
	fusebox
	javascript
	C++

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Protobuf Data Synchronisation
	File Format
	Logger integration
	Configuration
	Sync algorithm
	File size
	Appendix
	Configuration file example


	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Stand-alone SQLite server
	Usage

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Wire Transform
	Usage
	protoDbSync integration

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Quick Start
	Windows
	MacOS - M1, M2, M3
	MacOS - Intel
	Ubuntu
	Android
	SDK packages
	Run
	fusebox
	Command line
	show CLI create options
	create a Volt
	start a Volt
	list Volts


	Next steps

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Wire
	Authentication and authorisation
	Format and Transforms

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Verifiable credentials
	What is a verifiable credential?
	Usage within the tdx Volt
	Example credential
	Verifying a credential
	Policy-based access control
	Non-DID subjects

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Database
	Encryption
	Policy
	Audit
	Locks
	Stand-alone server

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Resource
	Kinds
	Service description
	Attributes
	Ownership
	Hierarchy

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Fundamentals
	Security policy
	Identity Management
	Resource Management
	Service Registration and Discovery

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Identity
	Public key cryptography
	Decentralized Identifiers (DIDs)
	Authentication
	The Authenticate step
	Token authentication

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Key strategy
	Hardware
	Battery
	Password
	File

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	File
	Policy and file modes
	Encryption
	Sync

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	DID registry
	What is a DID?
	DID Registry
	Resolution API
	Registration API
	Synchronisation

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Relay
	Encryption
	Authentication
	Discovery
	Configuration

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Policy
	SSI integration
	Implementation
	Hierarchy
	Persistence
	Examples

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	DiscoveryAPI
	Discover()
	DiscoverRequest
	DiscoverResponse
	SignedEndpoint
	Status

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	SqliteDatabaseAPI
	BulkUpdate()
	Execute()
	ImportCSV()
	SqlBulkUpdateRequest
	SqlBulkUpdateResponse
	SqlExecuteEnd
	SqlExecuteNext
	SqlExecuteRequest
	SqlExecuteResponse
	SqlExecuteStart
	SqlExecuteStart.ParameterEntry
	SqlImportCSVConfiguration
	SqlImportCSVRequest
	SqlImportCSVResponse
	Status
	Column
	RowHeader
	Schema
	Variant
	VariantRow
	DataType
	Access
	AttributeValue
	Identity
	IdentityAlias
	MethodDescription
	ProtoFile
	ProxyConnection
	Resource
	ResourceAttribute
	ServiceDescription
	Session
	SessionCredential
	Version
	VoltEndpoint
	VoltParameters
	AttributeDataType
	DiscoveryMode
	OnlineStatus
	PolicyDecision
	ResourceStatus
	SecureMode
	ServiceHostType
	SessionStatus
	ShareMode

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	WireAPI
	PublishWire()
	SubscribeWire()
	PublishWireRequest
	PublishWireResponse
	SubscribeWireRequest
	SubscribeWireResponse
	Status

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	SqliteServerAPI
	CreateDatabase()
	CreateDatabaseRequest
	CreateDatabaseResponse
	Status
	Access
	AttributeValue
	Identity
	IdentityAlias
	MethodDescription
	ProtoFile
	ProxyConnection
	Resource
	ResourceAttribute
	ServiceDescription
	Session
	SessionCredential
	Version
	VoltEndpoint
	VoltParameters
	AttributeDataType
	DiscoveryMode
	OnlineStatus
	PolicyDecision
	ResourceStatus
	SecureMode
	ServiceHostType
	SessionStatus
	ShareMode

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	VoltAPI
	Authenticate()
	CanAccessResource()
	CheckCompatibility()
	Connect()
	CopyResource()
	DeleteAccess()
	DeleteResource()
	DiscoverServices()
	GetAccess()
	GetIdentities()
	GetIdentity()
	GetOneTimeToken()
	GetParameters()
	GetPolicy()
	GetResource()
	GetResources()
	GetResourceAncestors()
	GetResourceDescendants()
	GetSessions()
	Invoke()
	MoveResource()
	RequestAccess()
	SaveAccess()
	SaveHttpFileServer()
	SaveHttpApiServer()
	SaveIdentity()
	SaveMirroredLink()
	SaveParameters()
	SaveResource()
	SaveSymbolicLink()
	SaveSession()
	SetAccessRequestDecision()
	SetPolicy()
	SetServiceStatus()
	Shutdown()
	SignVerify()
	AuthenticateRequest
	AuthenticateResponse
	CanAccessResourceRequest
	CanAccessResourceResponse
	CheckCompatibilityRequest
	CheckCompatibilityResponse
	ConnectAcknowledge
	ConnectAuthRequest
	ConnectDIDRegistryUpdate
	ConnectEvent
	ConnectGoodbye
	ConnectHello
	ConnectPing
	ConnectRelay
	ConnectRequest
	ConnectResource
	ConnectResponse
	CopyResourceRequest
	CopyResourceResponse
	DeleteAccessRequest
	DeleteAccessResponse
	DeleteResourceRequest
	DeleteResourceResponse
	DiscoverServicesRequest
	DiscoverServicesResponse
	GetAccessRequest
	GetAccessResponse
	GetIdentitiesRequest
	GetIdentitiesResponse
	GetIdentityRequest
	GetIdentityResponse
	GetOneTimeTokenRequest
	GetOneTimeTokenResponse
	GetParametersRequest
	GetParametersResponse
	GetPolicyRequest
	GetPolicyResponse
	GetResourceAncestorsRequest
	GetResourceAncestorsResponse
	GetResourceDescendantsRequest
	GetResourceDescendantsResponse
	GetResourceRequest
	GetResourceResponse
	GetResourcesRequest
	GetResourcesResponse
	GetSessionsRequest
	GetSessionsResponse
	InvokeRequest
	InvokeRequestKeyExchange
	InvokeResponse
	MoveResourceRequest
	MoveResourceResponse
	RequestAccessRequest
	RequestAccessResponse
	ResourceAttributeQuery
	SaveAccessRequest
	SaveAccessResponse
	SaveIdentityRequest
	SaveIdentityResponse
	SaveParametersRequest
	SaveParametersResponse
	SaveResourceRequest
	SaveResourceResponse
	SaveSessionRequest
	SaveSessionResponse
	SetAccessRequestDecisionRequest
	SetAccessRequestDecisionResponse
	SetPolicyRequest
	SetPolicyResponse
	SetServiceStatusRequest
	SetServiceStatusResponse
	ShutdownRequest
	ShutdownResponse
	SignVerifyRequest
	SignVerifyResponse
	ConnectResourceEvent
	CopyResourceMode
	Status
	Access
	AttributeValue
	Identity
	IdentityAlias
	MethodDescription
	ProtoFile
	ProxyConnection
	Resource
	ResourceAttribute
	ServiceDescription
	Session
	SessionCredential
	Version
	VoltEndpoint
	VoltParameters
	AttributeDataType
	DiscoveryMode
	OnlineStatus
	PolicyDecision
	ResourceStatus
	SecureMode
	ServiceHostType
	SessionStatus
	ShareMode
	HttpInvoke
	HttpInvoke.HeadersEntry
	HttpPayload
	HttpRequest
	HttpResponse
	MethodEnd
	MethodInvoke
	MethodPayload
	RemotePing
	RemoteRequest
	RemoteResponse
	MethodType

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	ProtobufSyncConfiguration
	ProtobufSyncConfigurationHeader
	ProtobufSyncWrapper

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	RelayAPI
	GetVoltEndpoint()
	Tunnel()
	CloudTunnel()
	GetVoltEndpointRequest
	GetVoltEndpointResponse
	TunnelControl
	TunnelRequest
	TunnelResponse
	TunnelServiceControl
	TunnelStart
	HttpInvoke
	HttpInvoke.HeadersEntry
	HttpPayload
	HttpRequest
	HttpResponse
	MethodEnd
	MethodInvoke
	MethodPayload
	RemotePing
	RemoteRequest
	RemoteResponse
	MethodType
	Status
	Access
	AttributeValue
	Identity
	IdentityAlias
	MethodDescription
	ProtoFile
	ProxyConnection
	Resource
	ResourceAttribute
	ServiceDescription
	Session
	SessionCredential
	Version
	VoltEndpoint
	VoltParameters
	AttributeDataType
	DiscoveryMode
	OnlineStatus
	PolicyDecision
	ResourceStatus
	SecureMode
	ServiceHostType
	SessionStatus
	ShareMode

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	SsiAPI
	DeleteDID()
	GetDIDRegistryUpdates()
	ImportCredential()
	ParseCredential()
	ResolveDID()
	RegisterDIDDocument()
	SaveCredential()
	SearchDIDRegistry()
	DeleteDIDRequest
	DeleteDIDResponse
	GetDIDRegistryUpdatesRequest
	GetDIDRegistryUpdatesResponse
	ImportCredentialRequest
	ImportCredentialResponse
	ParseCredentialRequest
	ParseCredentialResponse
	RegisterDIDDocumentRequest
	RegisterDIDDocumentResponse
	ResolveDIDRequest
	ResolveDIDResponse
	SaveCredentialRequest
	SaveCredentialResponse
	SearchDIDRegistryRequest
	SearchDIDRegistryResponse
	DIDRegistryUpdate
	DIDRegistryUpdate.VectorClockEntry
	VerifiableCredential
	VerifiablePresentation
	Status

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon
	Contents
	Contents
	FileAPI
	DownloadFile()
	GetFile()
	GetFileContent()
	GetFileDescendants()
	SetFileContent()
	UploadFile()
	DownloadFileRequest
	DownloadFileResponse
	GetFileContentRequest
	GetFileContentResponse
	GetFileDescendantsRequest
	GetFileDescendantsResponse
	GetFileRequest
	GetFileResponse
	SetFileContentRequest
	SetFileContentResponse
	UploadFileRequest
	UploadFileResponse
	UploadFileStart
	Status
	File

	Scalar Value Types

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Roadmap
	cli
	fusebox
	core

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Introduction
	Features
	OR


	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Connect stream
	Service registration
	Remote invocation

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Battery
	Storage
	Battery key strategy
	Battery password protection
	Location

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	PKCS#11
	Prerequisites
	Installation
	Generate a key pair
	Configure the tdx Volt
	Appendix

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Configuration
	Obtaining a tdx Volt configuration
	Out of band
	fusebox
	Command line
	Web portal
	Peer to Peer discovery
	Remote discovery

	Examples
	Property description
	id [required]
	display_name
	address
	ca_pem [required]
	challenge_code
	public_key
	fingerprint
	owner_credential

	Appendix
	Volt configuration definition


	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Connection
	Client connection information
	Client configuration file
	Obtain a client configuration
	Populating the client key

	Create client configuration
	Get the Volt configuration details
	Creating the configuration file

	Test the connection
	Relay connections
	Appendix
	Client configuration definition

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Best practice
	tdx Volt Key Strategy
	Secure the Volt key

	tdx Volt
	Getting Started
	Concepts
	How to...
	Clients
	Reference
	API
	Utilities
	FAQ
	Coming soon

	Logging
	Environment variables
	Release builds
	Debug builds
	GRPC


	nist-sp-1800-36e-draft.pdf
	NIST SP1800-36E: Risk and Compliance Management
	1 Introduction
	1.1 How to Use This Guide

	2 Risks Addressed by Trusted Network-Layer Onboarding and Lifecycle Management
	2.1 Risks to the Network
	2.1.1 Risks to the Network Due to Device Limitations
	2.1.2 Risks to the Network Due to Use of Shared Network Credentials
	2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning
	2.1.4 Risks to the Network Due to Supply Chain Attacks

	2.2 Risks to the Device
	2.3 Risks to Secure Lifecycle Management
	2.4 Limitations and Dependencies of Trusted Onboarding

	3 Mapping Use Cases, Approach, and Terminology
	3.1 Use Cases
	3.2 Mapping Producers
	3.3 Mapping Approach
	3.3.1 Mapping Terminology
	3.3.2 Mapping Process


	4 Mappings
	4.1 NIST CSF Subcategory Mappings
	4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories
	4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF Subcategories
	4.1.2.1 Mapping Between Wi-Fi Easy Connect and NIST CSF Subcategories
	4.1.2.2 Mapping Between BRSKI and NIST CSF Subcategories

	4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories
	4.1.3.1 Mapping Between Build 1 and NIST CSF Subcategories
	4.1.3.2 Mapping Between Build 2 and NIST CSF Subcategories
	4.1.3.3 Mapping Between Build 3 and NIST CSF Subcategories
	4.1.3.4 Mapping Between Build 4 and NIST CSF Subcategories
	4.1.3.5 Mapping Between Build 5 and NIST CSF Subcategories


	4.2 NIST SP 800-53 Control Mappings
	4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls
	4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 Controls
	4.2.2.1 Mapping Between Wi-Fi Easy Connect and NIST SP 800-53 Controls
	4.2.2.2 Mapping Between BRSKI and NIST SP 800-53 Controls

	4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls
	4.2.3.1 Mapping Between Build 1 and NIST SP 800-53 Controls
	4.2.3.2 Mapping Between Build 2 and NIST SP 800-53 Controls
	4.2.3.3 Mapping Between Build 3 and NIST SP 800-53 Controls
	4.2.3.4 Mapping Between Build 4 and NIST SP 800-53 Controls
	4.2.3.5 Mapping Between Build 5 and NIST SP 800-53 Controls



	Appendix A References


	nist-sp-1800-36-draft.pdf
	NIST SP 1800-36 Trusted Internet of Things (IoT) Device Network-Layer Onboarding and Lifecycle Management
	NIST SP 1800-36A: Executive Summary
	Challenge
	Outcome
	Solution
	How to Use This Guide
	Share Your Feedback
	Collaborators

	NIST SP 1800-36B: Approach, Architecture, and Security Characteristics
	1 Summary
	1.1 Challenge
	1.2 Solution
	1.3 Benefits

	2 How to Use This Guide
	2.1 Typographic Conventions

	3 Approach
	3.1 Audience
	3.2 Scope
	3.3 Assumptions and Definitions
	3.3.1 Credential Types
	3.3.2 Integrating Security Enhancements
	3.3.3 Device Limitations
	3.3.4 Specifications Are Still Improving

	3.4 Collaborators and Their Contributions
	3.4.1 Aruba, a Hewlett Packard Enterprise Company
	3.4.1.1 Device Provisioning Protocol
	3.4.1.2 Aruba Access Point (AP)
	3.4.1.3 Aruba Central
	3.4.1.4 IoT Operations
	3.4.1.5 Client Insights
	3.4.1.6 Cloud Auth
	3.4.1.7 UXI Sensor: DPP Enrollee

	3.4.2 CableLabs
	3.4.2.1 Platform Controller
	3.4.2.2 Custom Connectivity Gateway Agent
	3.4.2.3 Reference Clients

	3.4.3 Cisco
	3.4.3.1 Cisco Catalyst Switch

	3.4.4 Foundries.io
	3.4.4.1 FoundriesFactory

	3.4.5 Kudelski IoT
	3.4.5.1 Kudelski IoT keySTREAM™

	3.4.6 NquiringMinds
	3.4.6.1 NquiringMinds’ BRSKI Protocol Implementation
	3.4.6.2 TrustNetZ
	3.4.6.3 edgeSEC
	3.4.6.4 tdx Volt
	3.4.6.5 Reference Hardware

	3.4.7 NXP Semiconductors
	3.4.7.1 EdgeLock SE050 secure element
	3.4.7.2 EdgeLock 2GO
	3.4.7.3 i.MX 8M family

	3.4.8 Open Connectivity Foundation (OCF)
	3.4.8.1 IoTivity

	3.4.9 Sandelman Software Works
	3.4.9.1 Minerva Highway IoT Network-Layer Onboarding and Lifecycle Management System

	3.4.10 SEALSQ, a subsidiary of WISeKey
	3.4.11 VaultIC408
	3.4.11.1 INeS Certificate Management System (CMS)

	3.4.12 Silicon Labs
	3.4.12.1 OpenThread Border Router Platform
	3.4.12.2 SLWSTK6023A Thread Radio Transceiver
	3.4.12.3 xG24-DK2601B Thread “End” Device
	3.4.12.4 Kudelski IoT keySTREAM™



	4 Reference Architecture
	4.1 Device Manufacture and Factory Provisioning Process
	4.2 Device Ownership and Bootstrapping Information Transfer Process
	4.3 Trusted Network-Layer Onboarding Process
	4.4 Trusted Application-Layer Onboarding Process
	4.5 Continuous Verification

	5 Laboratory Physical Architecture
	5.1 Shared Environment
	5.1.1 Domain Controller
	5.1.2 Jumpbox

	5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture
	5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture

	5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture
	5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture
	5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture
	5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture
	5.6.1 BRSKI Factory Provisioning Build Physical Architecture


	6 General Findings
	6.1 Wi-Fi Easy Connect
	6.1.1 Mutual Authentication
	6.1.2 Mutual Authorization
	6.1.3 Secure Storage

	6.2 BRSKI
	6.2.1 Reliance on the Device Manufacturer
	6.2.2 Mutual Authentication
	6.2.3 Mutual Authorization
	6.2.4 Secure Storage

	6.3 Thread
	6.4 Application-Layer Onboarding
	6.4.1 Independent Application-Layer Onboarding
	6.4.2 Streamline Application-Layer Onboarding


	7 Additional Build Considerations
	7.1 Network Authentication
	7.2 Device Communications Intent
	7.3 Network Segmentation
	7.4 Integration with a Lifecycle Management Service
	7.5 Network Credential Renewal
	7.6 Integration with Supply Chain Management Tools
	7.7 Attestation
	7.8 Mutual Attestation
	7.9 Behavioral Analysis
	7.10 Device Trustworthiness Scale
	7.11 Resource Constrained Systems

	Appendix A List of Acronyms
	Appendix B Glossary
	Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE)
	C.1 Technologies
	C.2 Build 1 Architecture
	C.2.1 Build 1 Logical Architecture
	C.2.2 Build 1 Physical Architecture


	Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF)
	D.1 Technologies
	D.2 Build 2 Architecture
	D.2.1 Build 2 Logical Architecture
	D.2.2 Build 2 Physical Architecture


	Appendix E Build 3 (BRSKI, Sandelman Software Works)
	E.1 Technologies
	E.2 Build 3 Architecture
	E.2.1 Build 3 Logical Architecture
	E.2.2 Build 3 Physical Architecture


	Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski KeySTREAM)
	F.1 Technologies
	F.2 Build 4 Architecture
	F.2.1 Build 4 Logical Architecture
	F.2.1.1 Device Preparation
	F.2.1.2 Network-Layer Connection
	F.2.1.3 Application-Layer Onboarding

	F.2.2 Build 4 Physical Architecture


	Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds)
	G.1 Technologies
	G.2 Build 5 Architecture
	G.2.1 Build 5 Logical Architecture
	G.2.2 Build 5 Physical Architecture


	Appendix H Factory Provisioning Process
	H.1 Factory Provisioning Process
	H.1.1 Device Birth Credential Provisioning Methods

	H.2 Factory Provisioning Builds – General Provisioning Process
	H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ)
	H.3.1 BRSKI Factory Provisioning Build Technologies
	H.3.2 BRSKI Factory Provisioning Build Logical Architectures
	H.3.3 BRSKI Factory Provisioning Build Physical Architectures

	H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and Aruba/HPE)
	H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies
	H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture
	H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture


	Appendix I References

	NIST SP 1800-36C: How-to Guides
	1 Introduction
	1.1 How to Use This Guide
	1.2 Build Overview
	1.2.1 Reference Architecture Summary
	1.2.2 Physical Architecture Summary

	1.3 Typographic Conventions

	2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE)
	2.1 Aruba Central/Hewlett Packard Enterprise (HPE) Cloud
	2.2 Aruba Wireless Access Point
	2.2.1 Wi-Fi Network Setup and Configuration
	2.2.2 Wi-Fi Easy Connect Configuration

	2.3 Cisco Catalyst 3850-S Switch
	2.3.1 Configuration

	2.4 Aruba User Experience Insight (UXI) Sensor
	2.4.1 Configuration

	2.5 Raspberry Pi
	2.5.1 Configuration
	2.5.2 DPP Onboarding

	2.6 Certificate Authority
	2.6.1 Private Certificate Authority
	2.6.1.1 Installation and Configuration
	2.6.1.2 Operation and Demonstration

	2.6.2 SEALSQ INeS
	2.6.2.1 Setup and Configuration


	2.7 UXI Cloud
	2.8 Wi-Fi Easy Connect Factory Provisioning Build
	2.8.1 SEALSQ VaultIC Secure Element
	2.8.1.1 Installation and Configuration
	2.8.1.2 Running the demonstration code



	3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF)
	3.1 CableLabs Platform Controller
	3.1.1 Operation and Demonstration

	3.2 CableLabs Custom Connectivity Gateway
	3.2.1 Installation and Configuration
	3.2.2 Integration with CableLabs Platform Controller
	3.2.3 Operation and Demonstration

	3.3 Reference Clients/IoT Devices
	3.3.1 Installation and Configuration
	3.3.2 Operation and Demonstration


	4 Build 3 (BRSKI, Sandelman Software Works)
	4.1 Onboarding Router/Join Proxy
	4.1.1 Setup and Configuration

	4.2 Minerva Join Registrar Coordinator
	4.2.1 Setup and Configuration

	4.3 Reach Pledge Simulator
	4.3.1 Setup and Configuration

	4.4 Serial Console Server
	4.5 Minerva Highway MASA Server
	4.5.1 Setup and Configuration


	5 Build 4 (Thread, Silicon Labs, Kudelski IoT)
	5.1 Open Thread Border Router
	5.1.1 Installation and Configuration
	5.1.2 Operation and Demonstration

	5.2 Silicon Labs Dev Kit (BRD2601A)
	5.2.1 Setup and Configuration

	5.3 Kudelski keySTREAM Service
	5.3.1 Setup and Configuration

	5.4 AWS IoT Core
	5.4.1 Setup and Configuration
	5.4.2 Testing


	6 Build 5 (BRSKI over Wi-Fi, NquiringMinds)
	6.1 Pledge
	6.1.1 Installation and Configuration
	6.1.2 Operation and Demonstration

	6.2 Router and Logical Services
	6.2.1 Installation and Configuration
	6.2.2 Logical services
	6.2.2.1 MASA
	6.2.2.2 Manufacturer Provisioning Root (MPR)
	6.2.2.3 Registrar
	6.2.2.3.1 Radius server (Continuous Assurance Client)

	6.2.2.4 Continuous Assurance Server
	6.2.2.4.1 Verifiable Credential Server
	6.2.2.4.2 Registrar Continuous Assurance Server
	6.2.2.4.3 Demo Web Application

	6.2.2.5 Application server
	6.2.2.5.1 Installation/Configuration
	6.2.2.5.2 Operation/Demonstration



	6.3 Onboarding Demonstration
	6.3.1 Prerequisites
	6.3.2 Onboarding Demonstration
	6.3.3 Continuous Assurance Demonstration

	6.4 BRSKI Factory Provisioning Build
	6.4.1 Pledge
	6.4.1.1 Factory Use Case - IDevID provisioning

	6.4.2 Installation and Configuration
	6.4.3 Operation and Demonstration


	Appendix A List of Acronyms
	Appendix B References

	NIST SP 1800-36D: Functional Demonstrations
	1 Introduction
	1.1 How to Use This Guide

	2 Functional Demonstration Playbook
	2.1 Scenario 0: Factory Provisioning
	2.2 Scenario 1: Trusted Network-Layer Onboarding
	2.3 Scenario 2: Trusted Application-Layer Onboarding
	2.4 Scenario 3: Re-Onboarding a Device
	2.5 Scenario 4: Ongoing Device Validation
	2.6 Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout the Lifecycle

	3 Functional Demonstration Results
	3.1 Build 1 Demonstration Results
	3.2 Build 2 Demonstration Results
	3.3 Build 3 Demonstration Results
	3.4 Build 4 Demonstration Results
	3.5 Build 5 Demonstration Results

	Appendix A References

	NIST SP1800-36E: Risk and Compliance Management
	1 Introduction
	1.1 How to Use This Guide

	2 Risks Addressed by Trusted Network-Layer Onboarding and Lifecycle Management
	2.1 Risks to the Network
	2.1.1 Risks to the Network Due to Device Limitations
	2.1.2 Risks to the Network Due to Use of Shared Network Credentials
	2.1.3 Risks to the Network Due to Insecure Network Credential Provisioning
	2.1.4 Risks to the Network Due to Supply Chain Attacks

	2.2 Risks to the Device
	2.3 Risks to Secure Lifecycle Management
	2.4 Limitations and Dependencies of Trusted Onboarding

	3 Mapping Use Cases, Approach, and Terminology
	3.1 Use Cases
	3.2 Mapping Producers
	3.3 Mapping Approach
	3.3.1 Mapping Terminology
	3.3.2 Mapping Process


	4 Mappings
	4.1 NIST CSF Subcategory Mappings
	4.1.1 Mappings Between Reference Design Functions and NIST CSF Subcategories
	4.1.2 Mappings Between Specific Onboarding Protocols and NIST CSF Subcategories
	4.1.2.1 Mapping Between Wi-Fi Easy Connect and NIST CSF Subcategories
	4.1.2.2 Mapping Between BRSKI and NIST CSF Subcategories

	4.1.3 Mappings Between Specific Builds and NIST CSF Subcategories
	4.1.3.1 Mapping Between Build 1 and NIST CSF Subcategories
	4.1.3.2 Mapping Between Build 2 and NIST CSF Subcategories
	4.1.3.3 Mapping Between Build 3 and NIST CSF Subcategories
	4.1.3.4 Mapping Between Build 4 and NIST CSF Subcategories
	4.1.3.5 Mapping Between Build 5 and NIST CSF Subcategories


	4.2 NIST SP 800-53 Control Mappings
	4.2.1 Mappings Between Reference Design Functions and NIST SP 800-53 Controls
	4.2.2 Mappings Between Specific Onboarding Protocols and NIST SP 800-53 Controls
	4.2.2.1 Mapping Between Wi-Fi Easy Connect and NIST SP 800-53 Controls
	4.2.2.2 Mapping Between BRSKI and NIST SP 800-53 Controls

	4.2.3 Mappings Between Specific Builds and NIST SP 800-53 Controls
	4.2.3.1 Mapping Between Build 1 and NIST SP 800-53 Controls
	4.2.3.2 Mapping Between Build 2 and NIST SP 800-53 Controls
	4.2.3.3 Mapping Between Build 3 and NIST SP 800-53 Controls
	4.2.3.4 Mapping Between Build 4 and NIST SP 800-53 Controls
	4.2.3.5 Mapping Between Build 5 and NIST SP 800-53 Controls



	Appendix A References



	nist-sp-1800-36d-draft.pdf
	NIST SP 1800-36D: Functional Demonstrations
	1 Introduction
	1.1 How to Use This Guide

	2 Functional Demonstration Playbook
	2.1 Scenario 0: Factory Provisioning
	2.2 Scenario 1: Trusted Network-Layer Onboarding
	2.3 Scenario 2: Trusted Application-Layer Onboarding
	2.4 Scenario 3: Re-Onboarding a Device
	2.5 Scenario 4: Ongoing Device Validation
	2.6 Scenario 5: Establishment and Maintenance of Credential and Device Security Posture Throughout the Lifecycle

	3 Functional Demonstration Results
	3.1 Build 1 Demonstration Results
	3.2 Build 2 Demonstration Results
	3.3 Build 3 Demonstration Results
	3.4 Build 4 Demonstration Results
	3.5 Build 5 Demonstration Results

	Appendix A References


	nist-sp-1800-36c-draft.pdf
	NIST SP 1800-36C: How-to Guides
	1 Introduction
	1.1 How to Use This Guide
	1.2 Build Overview
	1.2.1 Reference Architecture Summary
	1.2.2 Physical Architecture Summary

	1.3 Typographic Conventions

	2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE)
	2.1 Aruba Central/Hewlett Packard Enterprise (HPE) Cloud
	2.2 Aruba Wireless Access Point
	2.2.1 Wi-Fi Network Setup and Configuration
	2.2.2 Wi-Fi Easy Connect Configuration

	2.3 Cisco Catalyst 3850-S Switch
	2.3.1 Configuration

	2.4 Aruba User Experience Insight (UXI) Sensor
	2.4.1 Configuration

	2.5 Raspberry Pi
	2.5.1 Configuration
	2.5.2 DPP Onboarding

	2.6 Certificate Authority
	2.6.1 Private Certificate Authority
	2.6.1.1 Installation and Configuration
	2.6.1.2 Operation and Demonstration

	2.6.2 SEALSQ INeS
	2.6.2.1 Setup and Configuration


	2.7 UXI Cloud
	2.8 Wi-Fi Easy Connect Factory Provisioning Build
	2.8.1 SEALSQ VaultIC Secure Element
	2.8.1.1 Installation and Configuration
	2.8.1.2 Running the demonstration code



	3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF)
	3.1 CableLabs Platform Controller
	3.1.1 Operation and Demonstration

	3.2 CableLabs Custom Connectivity Gateway
	3.2.1 Installation and Configuration
	3.2.2 Integration with CableLabs Platform Controller
	3.2.3 Operation and Demonstration

	3.3 Reference Clients/IoT Devices
	3.3.1 Installation and Configuration
	3.3.2 Operation and Demonstration


	4 Build 3 (BRSKI, Sandelman Software Works)
	4.1 Onboarding Router/Join Proxy
	4.1.1 Setup and Configuration

	4.2 Minerva Join Registrar Coordinator
	4.2.1 Setup and Configuration

	4.3 Reach Pledge Simulator
	4.3.1 Setup and Configuration

	4.4 Serial Console Server
	4.5 Minerva Highway MASA Server
	4.5.1 Setup and Configuration


	5 Build 4 (Thread, Silicon Labs, Kudelski IoT)
	5.1 Open Thread Border Router
	5.1.1 Installation and Configuration
	5.1.2 Operation and Demonstration

	5.2 Silicon Labs Dev Kit (BRD2601A)
	5.2.1 Setup and Configuration

	5.3 Kudelski keySTREAM Service
	5.3.1 Setup and Configuration

	5.4 AWS IoT Core
	5.4.1 Setup and Configuration
	5.4.2 Testing


	6 Build 5 (BRSKI over Wi-Fi, NquiringMinds)
	6.1 Pledge
	6.1.1 Installation and Configuration
	6.1.2 Operation and Demonstration

	6.2 Router and Logical Services
	6.2.1 Installation and Configuration
	6.2.2 Logical services
	6.2.2.1 MASA
	6.2.2.2 Manufacturer Provisioning Root (MPR)
	6.2.2.3 Registrar
	6.2.2.3.1 Radius server (Continuous Assurance Client)

	6.2.2.4 Continuous Assurance Server
	6.2.2.4.1 Verifiable Credential Server
	6.2.2.4.2 Registrar Continuous Assurance Server
	6.2.2.4.3 Demo Web Application

	6.2.2.5 Application server
	6.2.2.5.1 Installation/Configuration
	6.2.2.5.2 Operation/Demonstration



	6.3 Onboarding Demonstration
	6.3.1 Prerequisites
	6.3.2 Onboarding Demonstration
	6.3.3 Continuous Assurance Demonstration

	6.4 BRSKI Factory Provisioning Build
	6.4.1 Pledge
	6.4.1.1 Factory Use Case - IDevID provisioning

	6.4.2 Installation and Configuration
	6.4.3 Operation and Demonstration


	Appendix A List of Acronyms
	Appendix B References


	nist-sp-1800-36b-draft.pdf
	NIST SP 1800-36B: Approach, Architecture, and Security Characteristics
	1 Summary
	1.1 Challenge
	1.2 Solution
	1.3 Benefits

	2 How to Use This Guide
	2.1 Typographic Conventions

	3 Approach
	3.1 Audience
	3.2 Scope
	3.3 Assumptions and Definitions
	3.3.1 Credential Types
	3.3.2 Integrating Security Enhancements
	3.3.3 Device Limitations
	3.3.4 Specifications Are Still Improving

	3.4 Collaborators and Their Contributions
	3.4.1 Aruba, a Hewlett Packard Enterprise Company
	3.4.1.1 Device Provisioning Protocol
	3.4.1.2 Aruba Access Point (AP)
	3.4.1.3 Aruba Central
	3.4.1.4 IoT Operations
	3.4.1.5 Client Insights
	3.4.1.6 Cloud Auth
	3.4.1.7 UXI Sensor: DPP Enrollee

	3.4.2 CableLabs
	3.4.2.1 Platform Controller
	3.4.2.2 Custom Connectivity Gateway Agent
	3.4.2.3 Reference Clients

	3.4.3 Cisco
	3.4.3.1 Cisco Catalyst Switch

	3.4.4 Foundries.io
	3.4.4.1 FoundriesFactory

	3.4.5 Kudelski IoT
	3.4.5.1 Kudelski IoT keySTREAM™

	3.4.6 NquiringMinds
	3.4.6.1 NquiringMinds’ BRSKI Protocol Implementation
	3.4.6.2 TrustNetZ
	3.4.6.3 edgeSEC
	3.4.6.4 tdx Volt
	3.4.6.5 Reference Hardware

	3.4.7 NXP Semiconductors
	3.4.7.1 EdgeLock SE050 secure element
	3.4.7.2 EdgeLock 2GO
	3.4.7.3 i.MX 8M family

	3.4.8 Open Connectivity Foundation (OCF)
	3.4.8.1 IoTivity

	3.4.9 Sandelman Software Works
	3.4.9.1 Minerva Highway IoT Network-Layer Onboarding and Lifecycle Management System

	3.4.10 SEALSQ, a subsidiary of WISeKey
	3.4.11 VaultIC408
	3.4.11.1 INeS Certificate Management System (CMS)

	3.4.12 Silicon Labs
	3.4.12.1 OpenThread Border Router Platform
	3.4.12.2 SLWSTK6023A Thread Radio Transceiver
	3.4.12.3 xG24-DK2601B Thread “End” Device
	3.4.12.4 Kudelski IoT keySTREAM™



	4 Reference Architecture
	4.1 Device Manufacture and Factory Provisioning Process
	4.2 Device Ownership and Bootstrapping Information Transfer Process
	4.3 Trusted Network-Layer Onboarding Process
	4.4 Trusted Application-Layer Onboarding Process
	4.5 Continuous Verification

	5 Laboratory Physical Architecture
	5.1 Shared Environment
	5.1.1 Domain Controller
	5.1.2 Jumpbox

	5.2 Build 1 (Wi-Fi Easy Connect, Aruba/HPE) Physical Architecture
	5.2.1 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture

	5.3 Build 2 (Wi-Fi Easy Connect, CableLabs, OCF) Physical Architecture
	5.4 Build 3 (BRSKI, Sandelman Software Works) Physical Architecture
	5.5 Build 4 (Thread, Silicon Labs, Kudelski IoT) Physical Architecture
	5.6 Build 5 (BRSKI, NquiringMinds) Physical Architecture
	5.6.1 BRSKI Factory Provisioning Build Physical Architecture


	6 General Findings
	6.1 Wi-Fi Easy Connect
	6.1.1 Mutual Authentication
	6.1.2 Mutual Authorization
	6.1.3 Secure Storage

	6.2 BRSKI
	6.2.1 Reliance on the Device Manufacturer
	6.2.2 Mutual Authentication
	6.2.3 Mutual Authorization
	6.2.4 Secure Storage

	6.3 Thread
	6.4 Application-Layer Onboarding
	6.4.1 Independent Application-Layer Onboarding
	6.4.2 Streamline Application-Layer Onboarding


	7 Additional Build Considerations
	7.1 Network Authentication
	7.2 Device Communications Intent
	7.3 Network Segmentation
	7.4 Integration with a Lifecycle Management Service
	7.5 Network Credential Renewal
	7.6 Integration with Supply Chain Management Tools
	7.7 Attestation
	7.8 Mutual Attestation
	7.9 Behavioral Analysis
	7.10 Device Trustworthiness Scale
	7.11 Resource Constrained Systems

	Appendix A List of Acronyms
	Appendix B Glossary
	Appendix C Build 1 (Wi-Fi Easy Connect, Aruba/HPE)
	C.1 Technologies
	C.2 Build 1 Architecture
	C.2.1 Build 1 Logical Architecture
	C.2.2 Build 1 Physical Architecture


	Appendix D Build 2 (Wi-Fi Easy Connect, CableLabs, OCF)
	D.1 Technologies
	D.2 Build 2 Architecture
	D.2.1 Build 2 Logical Architecture
	D.2.2 Build 2 Physical Architecture


	Appendix E Build 3 (BRSKI, Sandelman Software Works)
	E.1 Technologies
	E.2 Build 3 Architecture
	E.2.1 Build 3 Logical Architecture
	E.2.2 Build 3 Physical Architecture


	Appendix F Build 4 (Thread, Silicon Labs-Thread, Kudelski KeySTREAM)
	F.1 Technologies
	F.2 Build 4 Architecture
	F.2.1 Build 4 Logical Architecture
	F.2.1.1 Device Preparation
	F.2.1.2 Network-Layer Connection
	F.2.1.3 Application-Layer Onboarding

	F.2.2 Build 4 Physical Architecture


	Appendix G Build 5 (BRSKI over Wi-Fi, NquiringMinds)
	G.1 Technologies
	G.2 Build 5 Architecture
	G.2.1 Build 5 Logical Architecture
	G.2.2 Build 5 Physical Architecture


	Appendix H Factory Provisioning Process
	H.1 Factory Provisioning Process
	H.1.1 Device Birth Credential Provisioning Methods

	H.2 Factory Provisioning Builds – General Provisioning Process
	H.3 BRSKI Factory Provisioning Builds (NquiringMinds and SEALSQ)
	H.3.1 BRSKI Factory Provisioning Build Technologies
	H.3.2 BRSKI Factory Provisioning Build Logical Architectures
	H.3.3 BRSKI Factory Provisioning Build Physical Architectures

	H.4 Wi-Fi Easy Connect Factory Provisioning Build (SEALSQ and Aruba/HPE)
	H.4.1 Wi-Fi Easy Connect Factory Provisioning Build Technologies
	H.4.2 Wi-Fi Easy Connect Factory Provisioning Build Logical Architecture
	H.4.3 Wi-Fi Easy Connect Factory Provisioning Build Physical Architecture


	Appendix I References


	nist-sp-1800-36a-draft.pdf
	NIST SP 1800-36A: Executive Summary
	Challenge
	Outcome
	Solution
	How to Use This Guide
	Share Your Feedback
	Collaborators





